NOTES

* Call for actions
- In-class presentation sign-ups
- Term project team-up (by the 10th)

g Oregon State
@*5 Universi
ty



CS 499/573: TRUSTWORTHY ML
ADVERSARIAL ATTACKS: TRANSFERABILITY

Tu/Th 4:00 — 5:50 pm
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WHY DO ADVERSARIAL ATTACKS TRANSFER?

THE SPACE OF TRANSFERABLE ADVERSARIAL EXAMPLES, TRAMER ET AL.
WHY DO ADVERSARIAL ATTACKS TRANSFER, DEMONTIS ET AL., USENIX SEcuriTy 2019



WHY DO ADVERSARIAL ATTACKS TRANSFER?

* How to answer this question?
- Inspect a model’s decision boundary (Liu et al., Tramer et al.)
- Inspect the data distribution (Tramer et al.)
- Comprehensive empirical evaluation (Demotis et al.)
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

* Recap: Inspect a model’s decision boundary
- Setup:
* Take a sample image, and two orthogonal gradient directions
* Perturb the sample along each direction and measure the labels

- Results

VGG-16 ResNet-50 ResNet-101 ResNet-152 GoogLeNet

Zoom-in

Zoom-out
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

* Recap: Inspect a model’s decision boundary: ensemble
- Setup:
* Take a sample image, and two orthogonal gradient directions
* Perturb the sample along each direction and measure the labels

— Results
80
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

* Inspect a model’s decision boundary: subspace
- Setup:
* Take a sample image, and orthogonal gradient directions
* Perturb the sample along each direction and measure the loss

- Results
)4
FGM attack | o _>

Figure 1: Illustration of the Gradient Aligned  Figure 2: Probability density function of the
Adversarial Subspace (GAAS). The gradient = number of successful orthogonal adversarial per-
aligned attack (red arrow) crosses the decision  turbations found by the GAAS method on the
boundary. The black arrows are orthogonal vec-  source DNN model, and of the number of pertur-
tors aligned with the gradient that span a sub-  bations that transfer to the target DNN model.
space of potential adversarial inputs (orange).

4 - target
h
" — source
1

:

:

o
N
wn

e
N
o

Probability Density
o
N
w

°
N
=)

0 50 100 150 200
Number of orthogonal attack directions

” Oregon State
& Universi
ty

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security



WHY DO ADVERSARIAL EXAMPLES TRANSFER?

* Inspect a model’s decision boundary: similarity
- Setup:
* Take a sample image, and gradient directions: Legit, Adv., and Rand.

e Perturb the sample along each direction and measure the distance to
the decision boundary and between two boundaries

- Results

aw’ NS Task decision boundary

Model 1 decision boundary

Model 2 decision boundary
Training points for class 1

LEG Training points for class 2

x Test point for class 1

PP @ Test point for class 2
@ Adversarial example for class 2
RAND

Figure 3: The three directions (Legitimate, Adversarial and Random) used throughout Section 4 to
measure the distance between the decision boundaries of two models. The gray double-ended arrows
illustrate the inter-boundary distance between the two models in each direction.
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

* Inspect a model’s decision boundary: similarity
- Setup:
* Take a sample image, and gradient directions: Legit, Adv., and Rand.

e Perturb the sample along each direction and measure the distance to
the decision boundary and between two boundaries

- Results

? EE Min. Dist. Inter-Boundary Dist.
86 222 LR
g5 - SVM
24 5 (2222 DNN
-3 2 s
E P AR

1 2% :’0‘

ol o M i oe . A Mo Dos

leg adv rand leg adv rand leg adv

Source is LR Source is SVM Source is DNN

Figure 4: Minimum distances and inter-boundary distances in three directions for MNIST models.
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

* Ubiquity hypothesis
- Hypothesis I:

* Suppose two models achieve low errors and low robustness to adv examples
adversarial examples crafted on one model transfer to the other

- Evaluation I:

* Train two different models on a task and find adversarial examples do not transfer
* Results: found, reject

— Hypothesis Il (xOR artifact):

* Suppose that two models trained on the same set of input features learn representations
for which adversarial examples do not transfer to each other; both are non-robust

— Evaluation IlI:

* Adversarial examples crafted one model does not transfer well to the other
* Results: does not work, reject
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WHY DO ADVERSARIAL ATTACKS TRANSFER?

* How to answer this question?
- Inspect a model’s decision boundary (Liu et al., Tramer et al.)
- Inspect the data distribution (Tramer et al.)
- Comprehensive empirical evaluation (Demotis et al.)
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

e Comprehensive empirical evaluation
- Setup:
* A strong adversarial attack
* Models
~ SVM (linear / rbf) S iniiioee ok SIS
— (logistic / ridge) Regression A T G PSS el S
- Neural networks

° D ata S ets Py A s surrogate classifier f(x) used to craft black-box adversarial examples
target classifier f(x) used to craft white-box adversarial examples

— Drebin (android malware)

@ maximum-confidence black-box adversarial example

A maximum-confidence white-box adversarial example

Figure 2: Conceptual representation of maximum-confidence
evasion attacks (within an #, ball of radius €) vs. minimum-
distance adversarial examples. Maximum-confidence attacks
tend to transfer better as they are misclassified with higher

confidence (though requiring more modifications).
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

e Comprehensive empirical evaluation
- Setup:
* Model complexity (= # of parameters) matters

* Train two models with different complexities
and measure the success rate of white-box attacks (why?)

- Resu ItS White-box evasion attack (MNIST89)
1.0
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e SVM-RBFy4
= — SVM-RBF
= NNy
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Test Error
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0.0 T T T T
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Figure 5: White-box evasion attacks on MNIST89. Test error
against increasing maximum perturbation €.
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

e Comprehensive empirical evaluation

- Setup:
(= # of parameters) matters
white box 19 60 B 17 10 31 21
* Train two models with different CompIeXIt“ sl 00 05 08 07 07 06 02 02 03 05 43 45| 12]
and measure the success rate of white-box g la 1 2 2 10 17 o0 o7 15 10 55 sal] 28
e Run transfer-based attacks between all pail logisticu { .12 .06 .11 .09 .10 .09 .03 .03 .04 .06 47 .49 |{.14
of mode|s and measure the attack success logistic, { .19 .09 .18 .15 .15 .13 .04 .04 08 .08 50 .52|{.18
ridgen{ 08 04 07 05 11 07 02 02 03 .04 43 45|].12
— Results )
) ridgeL{ 15 07 13 .10 21 .15 03 .03 .05 .06 .47 .49 |{.16
¢ _Use of Iow-compIeXIty _mOdeIS asad s_grrogate SVM-RBFy{ 10 10 17 15 13 12 06 .06 .10 .11 53 53| .19
increases the adversarial tranSferablllty SVM-RBF,{ 25 .13 23 20 .17 .16 .08 .08 .14 .14 53 .54 | .22
e Random forest classifiers are pa rticularly NN;{.20 .10 18 .15 14 .12 05 05 .11 .10 52 .53 [{.19
vulnerable to transfer-based attacks NN.{ 24 12 22 20 .16 .15 .07 .07 .13 .13 53 .53 |{.21
SR 2 il b 26l I o
U@ & é@i&* D &
(ae=1
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WHY DO ADVERSARIAL EXAMPLES TRANSFER?

e Comprehensive empirical evaluation

- Setup:

* Gradient alignment (= # of parameters) matters

* Compute the gradient from a surrogate and a target for the same x
and measure the cosine similarity metric between the two gradients

- Results ,

SVML, 4
logisticy -
logisticy,

ridgey; -

ridgey,
SVM-RBFy
SVM-RBF,
NNy

NNy,
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Figure 8: Gradient alignment and perturbation correlation
for evasion attacks on MNISTS89. Left: Gradient alignment
R (Eq. 18) between surrogate (rows) and target (columns)
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WHY DO ADVERSARIAL ATTACKS TRANSFER?

* Take aways
— If the decision boundaries of two models similar, the transferability increases
— If the transferability is high between two models, there’s a common adv. subspace
- The transferability is non-trivial

* Two models trained to achieve low-loss and low-resilience to white-box attacks
* But the adversarial examples do not transfer well between each other

— XOR artifacts

* Two models trained with the same set of features, but on disjoint datasets
* But the adversarial examples do not transfer well between each other

— If the attacker uses low-complexity models, the transferability becomes high
- If the two models have aligned gradients, the transferability is high

— ... (your contributions)

Oregon State
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CS 499/573: TRUSTWORTHY ML
ADVERSARIAL ATTACKS: USE QUERIES

Tu/Th 4:00 — 5:50 pm

Instructor: Sanghyun Hong

sanghyun.hongl@oregonstate.edu
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ADVERSARIAL EXAMPLES ATTACKS

 Test-time (evasion) attack

- Given a test-time sample x
— Craft an adversarial example x* that fools the target neural network

o
€49 Oregon State
& University




ADVERSARIAL ATTACKS

* Example: An adversary wants to upload NSFW image to the cloud

ML System

Oregon State
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[TRANSFER-BASED] BLACK-BOX ADVERSARIAL ATTACK

* Example: An adversary wants to upload NSFW image to the cloud

(Black-box) ML System

— Transfer-based attacks?? : craft adv. examples on a transfer prior

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015
[2] Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018
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& Universi
ty



[UPTIMIZATIDN-BASED] BLACK-BOX ADVERSARIAL ATTACK

* Example: An adversary wants to upload NSFW image to the cloud

+ (Black-box) ML System

— Transfer-based attacks?? : craft adv. examples on a transfer prior
- Optimization-based attacks? : craft them iteratively with query outputs and a transfer prior

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015
[2] Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018
[3] Cheng et al., Improving Black-box Adversarial Attacks with a Transfer-based Prior, NeurlPS 2019
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NOW WE TALK ABOUT OPTIMIZATION-BASED ATTACKS

PRIOR CONVICTIONS: BLACK-BOX ADVERSARIAL ATTACKS WITH BANDITS AND PRIORS, ILYAS ET AL., ICLR 2019



RECAP: THE FORMULATION

 Test-time (evasion) attack
- Goal:

* Craft human-imperceptible perturbations
that can make a test-time sample misclassified by a model

Knowledge:
* Do not know the model architecture and/or
* Do not know the trained model’s parameters and/or
* Do not know the training data
— Capability:
» Sufficient computational power to craft adversarial examples

How Can An Adversary Launch Attacks on (Black-box) Models?

Oregon State
& University

Secure-Al Systems Lab (SAIL) - CS499/579: Trustworthy ML
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OPTIMIZATION-BASED ATTACK

* How can an adversary launch black-box attacks?
- Brute-force attacks

- Query-based attacks
— Transfer attacks

Oregon State
& University
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OPTIMIZATION-BASED ATTACK

* Research questions
- How can we make the optimization-based attacks more successful?
- How effective (and successful) is this new method?

Oregon State
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REVISIT: THE FORMULATION

* Suppose:
- (x,y): a test-time sample; x € R* and y € [k]; x € [0,1]
- f:aneural network; 6: its parameters
- L(6, x,y): aloss function

* Goal (of the first order attacker)!
~ Find an x%%" = x + § such that while ||8]], < €

e PGD Crafts:

At =TI, s (2" + asgn(V,L(6,x,y))) .

T®
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OPTIMIZATION-BASED ATTACK IS THE GRADIENT ESTIMATION PROBLEM

e Zeroth-order Optimization
— Finite Difference Method (FDM):

D,f(z) = (Vo f(z),v) = (f(x + dv) — f(z)) /0.

* Compute: derivative of a function f at a point x towards a vector v

— FDM for the gradient with d-components:

d d
VoL(z,y) =Y ex (L(z + dex,y) — L(z,y)) /6 ~ Y ex(VaL(x,y), ex)

e PGD in the black-box cases:

=TI, (xt + asgn(V,L(6, x,y))) .

Jons
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OPTIMIZATION-BASED ATTACK IS THE GRADIENT ESTIMATION PROBLEM

* Toy experiment
- Setup
* Compare the fraction of correctly estimated coordinates of gradients required
e Compare top-k perturbations picked by magnitude or randomly
* Measure the transfer-attack success rate

- Results:
» Adversarial attacks are effective even with the imperfect gradient estimate

* Perturbations picked by magnitude is much effective than the random perturbations

— random-k
— top-k

adversariality rate
T
N o o 00
N
L1 1 1 |

0% 5% 10% 15% 20% 25% 30% 35% 40%

k percent of ImageNet coordinates
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OPTIMIZATION-BASED ATTACK IS THE GRADIENT ESTIMATION PROBLEM

* Prior approaches to do this estimation
— The Least Squares Method: min ||g]|2 s.t. Ag=uv.
g

— Iteratively compute the estimate g, where:
e A:Queries {1, 2, ...}
* y:the corresponding inner product values

- Natural Evolution Strategy [llyas et al.] and Least Squares equivalence

(TLsq,9) — (ZNEs,9) <O (\/I:l - log® (ﬁ)) ||9||2
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OPTIMIZATION-BASED ATTACK IS THE GRADIENT ESTIMATION PROBLEM

* Prior (= knowledge an adversary can acquire)
- Gradients are correlated in successive attack iterations
- Pixels close to each other tend to have similar values

Oregon State
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OPTIMIZATION-BASED ATTACK IS THE GRADIENT ESTIMATION PROBLEM

* Prior (= knowledge an adversary can acquire)
Gradients are correlated in successive attack iterations
Pixels close to each other tend to have similar values

Oregon State
& University
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OPTIMIZATION-BASED ATTACK IS THE GRADIENT ESTIMATION PROBLEM

* Time-dependent & Data-dependent Priors
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PUTTING ALL TOGETHER

 Formulate the Problem to the Bandit Framework
- Bandit problem

Algorithm 1 Gradient Estimation with Bandit Optimization

procedure BANDIT-OPT-L0OSS-GRAD-EST(z, yinit)
vy <+ A(¢9)
for eachround t =1,...,7 do
// Our loss in round t is 4;(g;) = —(VL(Z, Yinit), gt)

Ay — GﬁAD-EST(x,yimt, vs_1) // Estimated Gradient of £;

Vy < .A(’Ut_l, At)

g < vr

1:
2
3
4
5: t < Vi—1
6
7
8
9 return ITyx [g]

Oregon State
& University
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PUTTING ALL TOGETHER

* Formulate the Problem to the Bandit Framework
— Gradient Estimation

Algorithm 2 Single-query spherical estimate of V,(VL(z,y),v)

1:
2
3
4
5:
6
7
8

procedure GRAD-EST(z.y. v
. Ju+ N(0,51) // Query vector

191,92} < {v + 0u,v — ou} // Antithetic samples
(1) = —(VL(z,y),q1) = L(x’y)_Le(“e'QI ¥) // Gradient estimation loss at g

li(q2) = —(VL(z,y),q2) =~ L(“”y)_Le(m+€"12’y)// Gradient estimation loss at ¢
A o Gla)—=ti(a2), _ L(zteqz,y)—L(zt+eqy),,

de
// Note that due to cancellations we can actually evaluate A with only two queries to L
return A

Oregon State
University
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PUTTING ALL TOGETHER

* Formulate the Problem to the Bandit Framework
— Gradient Estimation

Algorithm 3 Adversarial Example Generation with Bandit Optimization for ¢3 norm perturbations

1: procedure ADVERSARIAL-BANDIT-L2(Zpit, Yinit)
2 [/ C(.) returns top class
3 vo < 0144 // If data prior, d < dim(z); v; (A¢) up (down)-sampled before (after) line 8
4: Zo < Tinit // Adversarial image to be constructed

5: while C(z) = yinit do
6
7
8
9

i w1 S|
Iit —x41+h- e e —2— // Boundary projection - oy standard PGD: c.f. [Rig15|

JAVIR = GRAD- bST(mt 1, Yinit, Vt—1) // Estimated Gradient of £

Ve U1+ Ay

10: t—t+1
return x;_;

Oregon State
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HOwW EFFECTIVE IS THIS NEW ATTACK (= METHOD)?

* Setup

— Dataset: ImageNet (10k randomly chosen samples)

- Model: Inception-v3

- Baseline: NES

- - - Banditsy (time prior)

—— Banditsrp (time + data)

* Results
‘‘‘‘‘‘‘‘ NES
Avg. queries by success %
5 2% -
ES ¢
:
=0 2T

success rate
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OPTIMIZATION-BASED ATTACK

* Take aways
- How should we estimate a gradient for successful attacks?

* PGD can be quite successful with imperfect gradient estimates
* Query-efficiency is bounded by the prior work [llyas et al.] in practical scenarios

- How can we estimate gradient accurately with ?
* Use two priors: time- and data-dependent priors
* Formulate the estimation into the bandit framework

- How is this new method?
* Require 2.5 — 5x less queries for successful attacks compared to NES

Oregon State
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Thank You!

Tu/Th 10:00 — 11:50 am (Recorded lecture)

Instructor: Sanghyun Hong
https://secure-ai.systems/courses/MLSec/Sp23

e
OregonState  SAIL
e UI‘llVEI'Slty Secure Al Systems Lab



https://secure-ai.systems/courses/MLSec/Sp23

