CS 499/579: TRUSTWORTHY ML DEFENSE AGAINST ADVERSARIAL ATTACKS

Tu/Th 4:00 – 5:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu

Notes

- Call for actions
 - In-class presentation sign-ups
 - Checkpoint presentation I (on the 19th)
 - 15 min presentation + 3-5 min Q&A
 - Presentation MUST cover:
 - A research problem your team chose
 - A review of the prior work relevant to your problem
 - » How is your team's work different from the prior work?
 - » What's the paper your team picked and the results your team will reproduce?
 - Next steps (+ how each member will contribute to the work)

HOW CAN WE DEFEAT ADVERSARIAL ATTACKS?

- Possible approaches
 - Reduce the information an adversary can access
 - Model architecture and/or model parameters
 - Model outputs (softmax probabilities)
 - ... (more)
 - Detect and filter out adversarial examples
 - Remove adversarial perturbations (from inputs)
 - Make models resilient to adversarial attacks

- Obfuscated gradients
 - Gradient masking (Papernot et al. 2017)
 - Hide "useful gradients" needed to generate adversarial examples
- PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+\mathcal{S}} \left(x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$

- Multi-step adversary; much stronger than FGSM attack
- Hyper-parameters
 - *t*: number of iterations
 - *α*: step-size
 - ε : perturbation bound $|x^* x|_p$
- Notation: PGD-t, bounded by ε , used the step-size of α

- Defense approaches
 - Shattered gradients
 - Stochastic gradients
 - Vanishing and exploding gradients
- (vs. shattered gradients) BPDA
 - Make the approximation of non-differentiable layers used by defensive approaches

- Defense approaches
 - Shattered gradients
 - Stochastic gradients
 - Vanishing and exploding gradients
- (vs. stochastic gradients) EOT
 - Compute gradients over the expected transformations

• Defense approaches

- Shattered gradients
- Stochastic gradients
- Vanishing and exploding gradients
- (vs. vanishing gradients) Reparameterization
 - Change-of-variables like C&W attacks

• Defense approaches

- Shattered gradients
- Stochastic gradients
- Vanishing and exploding gradients

Defense	Dataset	Distance	Accuracy
Buckman et al. (2018)	CIFAR	$0.031(\ell_\infty)$	0%*
Ma et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	5%
Guo et al. (2018)	ImageNet	$0.005 \ (\ell_2)$	0%*
Dhillon et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	0%
Xie et al. (2018)	ImageNet	$0.031~(\ell_{\infty})$	0%*
Song et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	9%*
Samangouei et al.	MNIST	$0.005~(\ell_2)$	55%**
(2018)			
Madry et al. (2018)	CIFAR	$0.031(\ell_\infty)$	47%
Na et al. (2018)	CIFAR	$0.015(\ell_{\infty})$	15%

CAN WE "DETECT" ADVERSARIAL PERTURBATIONS?

FEATURE SQUEEZING: DETECTING ADVERSARIAL EXAMPLES IN DEEP NEURAL NETWORKS, XU ET AL., NDSS 2018

MOTIVATION

- Information-theoretical Perspective
 - Compression!

THE KEY IDEA: FEATURE SQUEEZING

• FeatureSqueezing

- (Goal) To detect whether an input is adversarial example or not
- (Idea) A model should return similar predictions over squeezed samples

FEATURE SQUEEZING

- Research questions:
 - What are the **squeezers** a defender can choose?
 - How effective are they in defeating adversarial attacks?
 - How effective are they when combined with existing defenses?
 - How effective is feature-squeezing against adaptive attacks?

- H-space
 - Reduce the color depth (8-bit: 0-255 to lower-bit widths)
 - Reduce the variation among pixels
 - Local smoothing (e.g., median filter)
 - Non-local smoothing (e.g., denoiser filters)
 - More
 - JPEG compression [Kurakin et al.]
 - Dimensionality reduction [Turk and Pentland]

How effective are they in defeating adversarial attacks?

- Empirical approach (Baseline)
 - Setup
 - MNIST, CIFAR10, ImageNet
 - 7-layer CNN, DenseNet, and MobileNet
 - 100 images correctly classified by them
 - Attacks
 - FGSM, BIM, C&W, JSMA
 - L0, L2, and L-inf distances

		Configrat	tion	Cost (c)	Success	Prediction	Distortion					
		Attack	Mode	COSL(S)	Rate	Confidence	L_{∞}	L_2	L_0			
		FGSM BIM		0.002	46%	93.89%	0.302	5.905	0.560			
	, T			0.01	91%	99.62%	0.302	4.758	0.513			
	L_{∞}	CW	Next	51.2	100%	99.99%	0.251	4.091	0.491			
		C₩∞	LL	50.0	100%	99.98%	0.278	4.620	0.506			
IS	L ₂	CW	Next	0.3	99%	99.23%	0.656	2.866	0.440			
ĮĘ		Cw_2	LL	0.4	100%	99.99%	0.734	3.218	0.436			
		CW	Next	68.8	100%	99.99%	0.996	4.538	0.047			
	, T	CW_0	LL	74.5	100%	99.99%	0.996	5.106	0.060			
	L_0	TOPAA	Next	0.8	71%	74.52%	1.000	4.328	0.047			
		JSMA	LL	1.0	48%	74.80%	1.000	4.565	0.053			
		1				I						
	L_{∞}	FGS	SM	0.02	85%	84.85%	0.016	0.863	0.997			
		BI	М	0.2	92%	95.29%	0.008	0.368	0.993			
		CIV	Next	225	100%	98.22%	0.012	0.446	0.990			
		CW∞	LL	225	100%	97.79%	0.014	0.527	0.995			
1	L ₂	DeepFool		0.4	98%	73.45%	0.028	0.235	0.995			
AR		CW ₂	Next	10.4	100%	97.90%	0.034	0.288	0.768			
١Ħ			LL	12.0	100%	97.35%	0.042	0.358	0.855			
	_	CW ₀	Next	367	100%	98.19%	0.650	2.103	0.019			
			LL	426	100%	97.60%	0.712	2.530	0.024			
	L_0	TOPAA	Next	8.4	100%	43.29%	0.896	4.954	0.079			
		JSMA	LL	13.6	98%	39.75%	0.904	5.488	0.098			
						I						
		FGSM		0.02	99%	63.99%	0.008	3.009	0.994			
		BIM		0.2	100%	99.71%	0.004	1.406	0.984			
	L_{∞}		Next	211	99%	90.33%	0.006	1.312	0.850			
geNet		C₩∞	LL	269	99%	81.42%	0.010	1.909	0.952			
		Deep	Fool	60.2	89%	79.59%	0.027	0.726	0.984			
ma	L_2	GU	Next	20.6	90%	76.25%	0.019	0.666	0.323			
	- Î	CW_2	LL	29.1	97%	76.03%	0.031	1.027	0.543			
		GIU	Next	608	100%	91.78%	0.898	6.825	0.003			
	L_0	CW_0	LL	979	100%	80.67%	0.920	9.082	0.005			

How effective are they in defeating adversarial attacks?

• Empirical approach (Feature Squeezing)

	Squeezer		L_{∞} Attacks			L ₂ Attacks			L ₀ Attacks				A 11		
Dataset	Nama	Parameters	FGSM	BIM	CV	CW_∞		- CW ₂		CW_0		JSMA		Attacks	Legitimate
	Ivallie				Next	LL	Fool	Next	LL	Next	LL	Next	LL	Attacks	
	None		54%	9%	0%	0%	-	0%	0%	0%	0%	27%	40%	13.00%	99.43%
MNIST	Bit Depth	1-bit	92%	87%	100%	100%	-	83%	66%	0%	0%	50%	49%	62.70%	99.33%
MINIS I	Median Smoothing	2x2	61%	16%	70%	55%	-	51%	35%	39%	36%	62%	56%	48.10%	99.28%
	Median Shioouning	3x3	59%	14%	43%	46%	-	51%	53%	67%	59%	82%	79%	55.30%	98.95%
	None		15%	8%	0%	0%	2%	0%	0%	0%	0%	0%	0%	2.27%	94.84%
	Bit Depth	5-bit	17%	13%	12%	19%	40%	40%	47%	0%	0%	21%	17%	20.55%	94.55%
CIFAR-10		4-bit	21%	29%	69%	74%	72%	84%	84%	7%	10%	23%	20%	44.82%	93.11%
	Median Smoothing	2x2	38%	56%	84%	86%	83%	87%	83%	88%	85%	84%	76%	77.27%	89.29%
	Non-local Means	11-3-4	27%	46%	80%	84%	76%	84%	88%	11%	11%	44%	32%	53.00%	91.18%
	None		1%	0%	0%	0%	11%	10%	3%	0%	0%	-	-	2.78%	69.70%
	Bit Depth	4-bit	5%	4%	66%	79%	44%	84%	82%	38%	67%	-	-	52.11%	68.00%
ImageNet		5-bit	2%	0%	33%	60%	21%	68%	66%	7%	18%	-	-	30.56%	69.40%
	Median Smoothing	2x2	22%	28%	75%	81%	72%	81%	84%	85%	85%	-	-	68.11%	65.40%
		3x3	33%	41%	73%	76%	66%	77%	79%	81%	79%	-	-	67.22%	62.10%
	Non-local Means	11-3-4	10%	25%	77%	82%	57%	87 %	86%	43%	47%	-	-	57.11%	65.40%

How effective are they in defeating adversarial attacks?

- Detection:
 - Metric (adv. or not):
 - Used with a single squeezer "score = $||f(x) f(x^{squeezed})||_{l_1}$ "
 - Used with multiple squeezer "score = max(score^{squeezer1}, score^{squeezer2}, ...)"

	(Configuration					L_{∞} Attacks					L ₀ Attacks			
	Squeezer	Donomotors	Threshold	FGSM	GSM BIM	CW_{∞}		Deep	Deep CW ₂		CW ₀		JSMA		Detection
		rarameters	1 III esiioiu			Next	LL	Fool	Next	LL	Next	LL	Next	LL	Rate
		1-bit	1.9997	0.063	0.075	0.000	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0.013
	Bit Depth	2-bit	1.9967	0.083	0.175	0.000	0.000	0.000	0.000	0.000	0.000	0.018	0.000	0.000	0.022
		3-bit	1.7822	0.125	0.250	0.755	0.977	0.170	0.787	0.939	0.365	0.214	0.000	0.000	0.409
AR-10		4-bit	0.7930	0.125	0.150	0.811	0.886	0.642	0.936	0.980	0.192	0.179	0.041	0.000	0.446
		5-bit	0.3301	0.000	0.050	0.377	0.636	0.509	0.809	0.878	0.096	0.018	0.041	0.038	0.309
	Median Smoothing	2x2	1.1296	0.188	0.550	0.981	1.000	0.717	0.979	1.000	0.981	1.000	0.837	0.885	0.836
		3x3	1.9431	0.042	0.250	0.660	0.932	0.038	0.681	0.918	0.750	0.929	0.041	0.077	0.486
Ħ		11-3-2	0.2770	0.125	0.400	0.830	0.955	0.717	0.915	0.939	0.077	0.054	0.265	0.154	0.484
0	Non local Mean	11-3-4	0.7537	0.167	0.525	0.868	0.977	0.679	0.936	1.000	0.250	0.232	0.245	0.269	0.551
	Non-iocai Micali	13-3-2	0.2910	0.125	0.375	0.849	0.977	0.717	0.915	0.939	0.077	0.054	0.286	0.173	0.490
		13-3-4	0.8290	0.167	0.525	0.887	0.977	0.642	0.936	1.000	0.269	0.232	0.224	0.250	0.547
	Best Attack-Specific Single Squeezer -		_	0.188	0.550	0.981	1.000	0.717	0.979	1.000	0.981	1.000	0.837	0.885	-
	Best Joint Detection (5-bit, 2x2, 13-3-2) 1.1402		0.208	0.550	0.981	1.000	0.774	1.000	1.000	0.981	1.000	0.837	0.885	0.845	

How effective is this when combined with other defenses?

- FeatureSqueezing + AT
 - Setup
 - MNIST
 - AT (with epsilon 0.3) + Use 2-bit for Pixels
 - Use FGSM and PGD attacks (epsilon 0.1 − 0.4)

- (Adaptive) attack
 - Attackers who know this feature squeezing is deployed
 - Adaptive attack (using C&W + L2 or L-inf):
 - Reduce the prediction difference between x and x^{adv} under a threshold
 - Set the threshold is the one used by the detector
 - Result on MNIST:

Fig. 7: Adaptive adversary success rates.

SUMMARY

- Research questions
 - What are the squeezers a defender can choose?
 - Bit-width reduction
 - Smoothing (local or non-local)
 - How effective are they in defeating adversarial attacks?
 - Reduce the attack success rate by 87—100%
 - Detection rate is up to 100% when squeezers are jointly used
 - How effective are they when combined with existing defenses?
 - On MNIST, it improves the robustness over what AT can provides
 - How effective is feature-squeezing against adaptive attacks?
 - On MNIST, the attack success rate increases to 0-68%
 - One can choose a filter size randomly to defeat adaptive attacks (68% to 17%)

CAN WE MAKE MODELS "ROBUST" TO ADVERSARIAL PERTURBATIONS?

TOWARD DEEP LEARNING MODELS RESISTANT TO ADVERSARIAL ATTACKS, MADRY ET AL., ICLR 2018

REVISITING THE FORMULATION

- Test-time (evasion) attack
 - Suppose
 - A test-time input (*x*, *y*)
 - $(x, y) \sim D$, D: data distribution; $x \in \mathbb{R}^d$ and $y \in [k]$; $x \in [0, 1]$
 - A NN model f and its parameters θ
 - $L(\theta, x, y)$: a loss function
 - Objective
 - Find an $x^{adv} = x + \delta$ such that $f(x^{adv}) \neq y$ while $||\delta||_p \leq \varepsilon$

REVISITING THE FORMULATION

- Test-time (evasion) attack
 - Suppose
 - A test-time input (*x*, *y*)
 - $(x, y) \sim D$, D: data distribution; $x \in \mathbb{R}^d$ and $y \in [k]$; $x \in [0, 1]$
 - A NN model f and its parameters θ
 - $L(\theta, x, y)$: a loss function
 - Attacker's objective
 - Find an $x^{adv} = x + \delta$ such that $\max_{\delta \in S} L(\theta, x^{adv}, y)$ while $||\delta||_p \le \varepsilon$

REVISITING THE FORMULATION

- Test-time (evasion) attack
 - Suppose
 - A test-time input (*x*, *y*)
 - $(x, y) \sim D$, D: data distribution; $x \in \mathbb{R}^d$ and $y \in [k]$; $x \in [0, 1]$
 - A NN model f and its parameters θ
 - $L(\theta, x, y)$: a loss function
 - Attacker's objective
 - Find an $x^{adv} = x + \delta$ such that $\max_{\delta \in S} L(\theta, x^{adv}, y)$ while $||\delta||_p \le \varepsilon$
 - Defender's objective
 - Train a neural network f robust to adversarial attacks
 - Find θ such that $\min_{\theta} \rho(\theta)$ where $\rho(\theta) = \mathbb{E}_{(x,y)\sim D} [L(\theta, x^{adv}, y)]$

PUTTING ALL TOGETHER

- (Models resilient to) test-time (evasion) attack
 - Suppose
 - A test-time input (*x*, *y*)
 - $(x, y) \sim D$, D: data distribution; $x \in \mathbb{R}^d$ and $y \in [k]$; $x \in [0, 1]$
 - A NN model f and its parameters heta
 - $L(\theta, x, y)$: a loss function
 - Min-max optimization (between attacker's and defender's objectives)
 - Find $\min_{\theta} \rho(\theta)$ where $\rho(\theta) = \mathbb{E}_{(x,y)\sim D} \left[\max_{\delta \in S} L(\theta, x + \delta, y) \right]$ while $||\delta||_p \le \varepsilon$
 - s: a set of test-time samples

SADDLE POINT PROBLEM: INNER MAXIMIZATION AND OUTER MINIMIZATION

• PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+\mathcal{S}} \left(x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$

- Multi-step adversary; much stronger than FGSM attack
- Hyper-parameters
 - *t*: number of iterations
 - *α*: step-size
 - ε : perturbation bound $|x^* x|_p$
- Notation: PGD-*t*, bounded by ε , used the step-size of α

OUTER MINIMIZATION

• PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+\mathcal{S}} \left(x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$

- Multi-step adversary; much stronger than FGSM attack
- Robust (adversarial) training
 - Make a model do correct prediction on adversarial examples
 - Training procedure
 - At each iteration of training
 - Craft PGD-*t* adversarial examples
 - Update the model towards making it correct on those adv examples

THE INTUITION BEHIND

- Robust training
 - Deep neural networks (DNNs) are universal function approximators¹
 - DNNs may learn to be resistant to adversarial examples (a desirable function)
 - Adversarial training (AT):

Repeat:

- 1. Select minibatch B, initialize gradient vector g := 0
- 2. For each (x, y) in B:

a. Find an attack perturbation δ^{\star} by (approximately) optimizing

$$\delta^\star = rgmax_{\|\delta\| \leq \epsilon} \ell(h_ heta(x+\delta),y)$$

b. Add gradient at δ^{\star}

$$g := g +
abla_ heta \ell(h_ heta(x+\delta^\star),y)$$

3. Update parameters θ

$$heta:= heta-rac{lpha}{|B|}g$$

Hornik *et al.*, Multilayer feedforward networks are universal approximators, Neural Networks 1989 https://adversarial-ml-tutorial.org/adversarial_training/

- Findings
 - (1, 3) PGD increases the loss values in a fairly consistent way
 - (2, 4) Models trained with PGD attacks are resilient to the same attacks

• Findings

- PGD increases the loss values in a fairly consistent way
- Models trained with PGD attacks are resilient to the same attacks
- Final loss of PGD attacks are concentrated (both for defended/undefended models)

- Why adversarial training (AT) works?
 - Capacity is crucial for the robustness: robust models need complex decision boundary
 - Capacity alone helps: high-capacity models show more robustness w/o AT

• ... Cont'd

Oregon State

University

- Capacity is crucial for the robustness: robust models need complex decision boundary
- Capacity alone helps: high-capacity models show more robustness w/o AT
- AT with weak attacks (like FGSM) can't defeat a strong one like PGD
- (optional) Robustness may be at odds with accuracy

Thank You!

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

