Notes

- Call for actions
 - Homework 2 due (on 11/07, 1-week extension)
 - Switch to online from 11/07
 - Checkpoint Presentation II (online, on 11/07)
 - 12-min presentation + 3 min Q&A
 - Presentation MUST cover:
 - 1 slide on your research topic
 - 1-2 slides on your goals and ideas (how do you plan to achieve your goals)
 - 1-2 slides on your experimental design
 - 1-2 slides on your preliminary results [very important]
 - 1 slide on your next steps until the final presentation

CS 499/579: Trustworthy ML Indiscriminate Poisoning attacks

Tu/Th 4:00 – 5:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu

• Goal

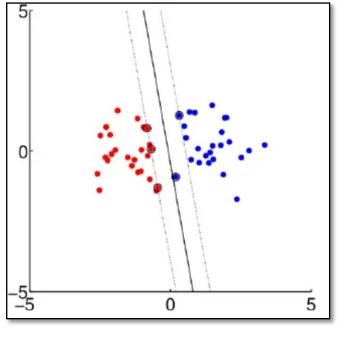
- Manipulate a ML model's behavior by compromising the training data
- Harm the integrity of the training data
- Capability
 - Perturb a subset of samples (D_p) in the training data
 - Inject a few malicious samples (D_p) into the training data
- Knowledge
 - D_{train} : training data
 - *D*_{test}: test-set data
 - f: a model architecture and its parameters heta
 - A: training algorithm (e.g., SGD)

• Goal

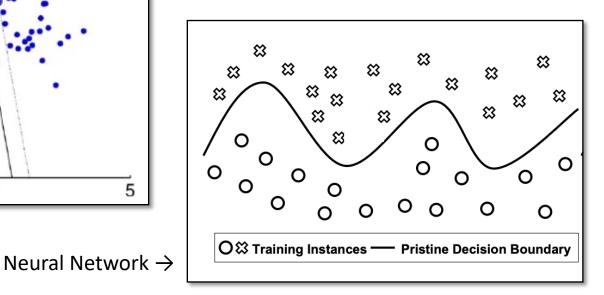
- Manipulate a ML model's behavior by contaminating the training data
- Harm the integrity of the training data
- Two well-studied objectives
 - Indiscriminate attack: I want to degrade a model's accuracy!
 - Targeted attack: I want misclassification of a specific test-time data!

- Research questions
 - What are some examples of poisoning attacks?
 - How can we generate indiscriminate poisoning examples?
 - How can we synthesize poisoning samples for targeted attacks?
 - How can we mitigate data poisoning attacks?

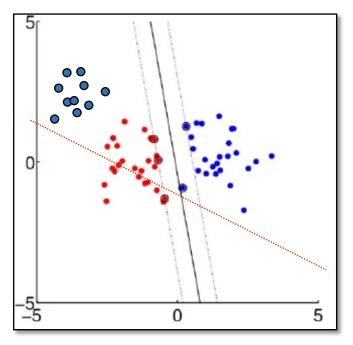
CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY



 \leftarrow Linear model (SVM)

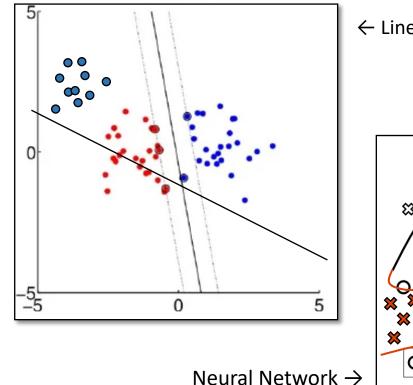


CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY

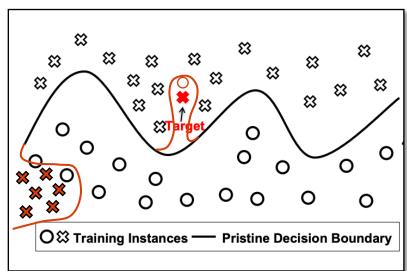


← Linear model (SVM)

CONCEPTUAL ILLUSTRATION OF THE VULNERABILITY TO POISONING



 \leftarrow Linear model (SVM)



HOW CAN WE PERFORM INDISCRIMINATE ATTACKS?

POISONING ATTACKS AGAINST SUPPORT VECTOR MACHINES, BIGGIO ET AL., ICML 2012

• DIT [<u>Link</u>]

- 1: let's put green points
- 2: let's put red points on the other side
- 3: let's put red points closer to the green cluster
- 4: let's put red points in the middle of the green cluster
- 5: let's use another kernel.

Goal

- Manipulate a ML model's accuracy by compromising the training data
- In short: indiscriminate attack
- Capability
 - Pick a set of test-time samples and craft poisons (x_c, y_c)
 - Inject them into the training data
- Knowledge
 - D_{tr} : training data
 - *D_{test}*: test-set data (validation data)
 - f: a linear SVM and its parameters heta
 - A: training algorithm (e.g., Sub-gradient descent)

POISONING THREAT MODEL

• Label noise in ImageNet¹

Old label: pier ReaL: dock; pier; speedboat: sandbar: seashore

Old label: quill ReaL: feather boa

Old label: sunglass ReaL: sunglass; sunglasses

Old label: water jug ReaL: water bottle

Old label: sunglasses

ReaL: sunglass:

sunglasses

ReaL: necklace

Old label: monitor

ReaL: mouse: desk:

desktop computer; lamp;

studio couch; monitor;

Old label: laptop ReaL: notebook:

orange; lemon; banana

Old label: zucchini

zucchini: cucumber:

ReaL: broccoli:

Old label: purse ReaL: wallet

Old label: notebook ReaL: notebook: laptop; computer keyboard laptop; computer keyboard laptop

Old label: laptop

Old label: ant

ReaL: ant: ladybug

ReaL: school bus

Figure 2: Example failures of the ImageNet labeling procedure. Red: original ImageNet label, green: proposed ReaL labels. Top row: ImageNet currently assigns a single label per image, yet these often contain several equally prominent objects. Middle row: Even when a single object is present, ImageNet labels present systematic inaccuracies due to their labeling procedure. Bottom row: ImageNet classes contain a few unresolvable distinctions.

PROPOSED ATTACK ON SUPPORT VECTOR MACHINE

- Indiscriminate attack procedure
 - Draw a set of poison candidates from the validation data
 - Craft poisoning samples
 - Inject them into the original training data
 - Increase the loss of the model trained on the compromised data

PROPOSED ATTACK ON SUPPORT VECTOR MACHINE

Algorithm 1 Poisoning attack against SVM **Input:** \mathcal{D}_{tr} , the training data; \mathcal{D}_{val} , the validation data; y_c , the class label of the attack point; $x_c^{(0)}$, the initial attack point; t, the step size. **Output:** x_c , the final attack point. 1: $\{\alpha_i, b\} \leftarrow$ learn an SVM on \mathcal{D}_{tr} . // train an SVM on the clean data 2: $k \leftarrow 0$. 3: repeat Re-compute the SVM solution on $\mathcal{D}_{tr} \cup \{x_c^{(p)}, y_c\}$ // train an SVM with the poison 4: using incremental SVM (e.q., Cauwenberghs & Poggio, 2001). This step requires $\{\alpha_i, b\}$. Compute $\frac{\partial L}{\partial u}$ on \mathcal{D}_{val} according to Eq. (10). // compute the gradient 5: Set u to a unit vector aligned with $\frac{\partial L}{\partial u}$. 6: 7: $k \leftarrow k+1 \text{ and } x_c^{(p)} \leftarrow x_c^{(p-1)} + tu$ // update the poison, to increase the loss 8: until $L\left(x_{c}^{\left(p\right)}\right) - L\left(x_{c}^{\left(p-1\right)}\right) < \epsilon$ // stop if the loss doesn't increase more than ϵ 9: return: $x_c = x_c^{(p)}$

PROPOSED ATTACK ON SUPPORT VECTOR MACHINE

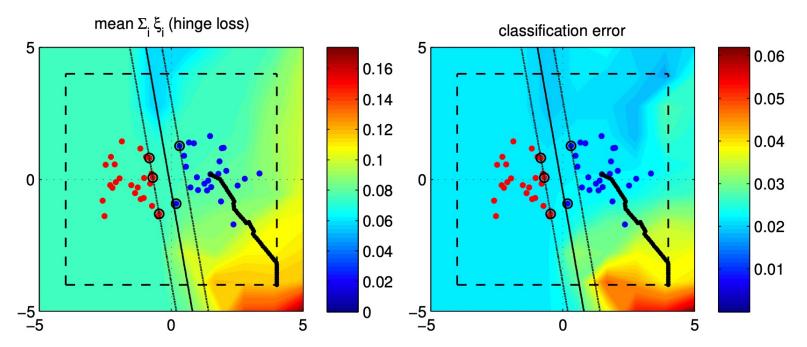
- Indiscriminate attack procedure
 - Draw a set of poison candidates from the validation data
 - Craft poisoning samples
 - Inject them into the original training data
 - Increase the loss of the model trained on the compromised data

EVALUATION

- Setup
 - Datasets
 - Artificial data:
 - Binary classification: Gaussian dist. $[N(-1.5, 0.6^2) \text{ and } N(1.5, 0.6^2)]$
 - Training data : 50 samples, 25 per class
 - Validation data: 1k samples, 500 per class
 - Real data: MNIST
 - Model(s)
 - SVM [Linear vs. RBF-Kernel]

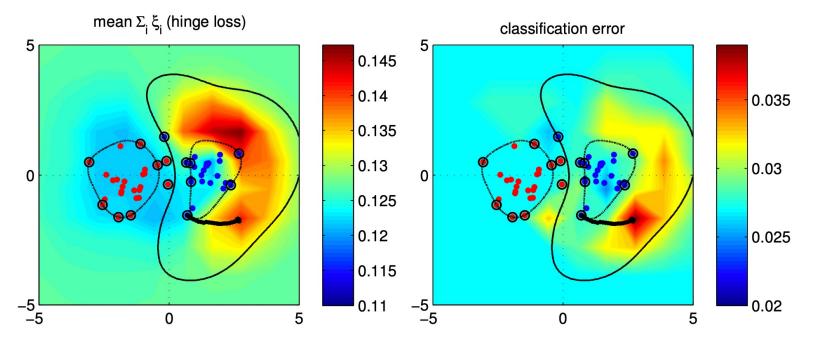
EVALUATION: POISON CRAFTING IN ARTIFICIAL DATA

• Linear SVM



EVALUATION: POISON CRAFTING IN ARTIFICIAL DATA

• SVM with RBF Kernel

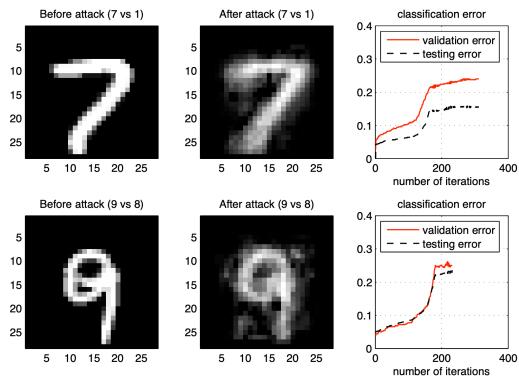


EVALUATION

- Setup
 - Datasets
 - Artificial data:
 - Binary classification: Gaussian dist. $[N(-1.5, 0.6^2) \text{ and } N(1.5, 0.6^2)]$
 - Training data : 50 samples, 25 per class
 - Validation data: 1k samples, 500 per class
 - Real data: MNIST
 - 7 vs 1 | 9 vs 8 | 4 vs 0
 - Training data : 200 samples, 100 per class
 - Validation data: 1k samples, 500 per class
 - Testing data : 4k samples, 2k per class
 - Model(s)
 - SVM [Linear vs. RBF-Kernel]

EVALUATION: REAL-DATA (MNIST)

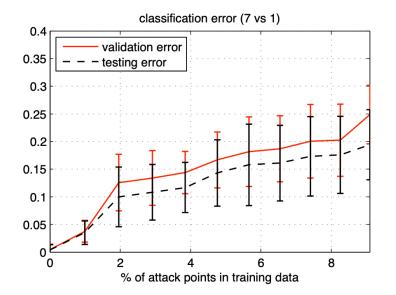
• Linear SVM



- Results
 - Use a single poison
 - Error increases by 15 20%

EVALUATION: REAL-DATA (MNIST)

• Linear SVM



- Results
 - Use a *single* poison
 - Error increases by 15 20%
 - Increasing # poisons leads to a higher error

How can we perform indiscriminate attacks?

MANIPULATING MACHINE LEARNING: POISONING ATTACKS AND COUNTERMEASURES FOR REGRESSION LEANING, JAGIELSKI ET AL., IEEE SECURITY AND PRIVACY SYMPOSIUM 2018

Thank You!

Tu/Th 4:00 – 5:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23

