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Traditionally, computer security seeks to ensure a system’s integrity against attackers 
by creating clear boundaries between the system and the outside world (Bishop, 
2002). In machine learning, however, the most critical ingredient of all–the training 
data–comes directly from the outside world. 

– Steinhardt, Koh, and Liang, NeurIPS’17



DEFENSES AGAINST DATA POISONING ATTACKS

Secure-AI Systems Lab (SAIL) - CS499/579: Trustworthy Machine Learning

• Existing defenses
− RONI (Reject on Negative Impact)
− TRIM
− tRONI1

− … (many more)

− Problem:
• Existing defenses empirically works
• How can we provide “provable” defense guarantee against poisoning attacks?
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1Suciu et al., When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks, USENIX Security 2018



DEFENSES AGAINST DATA POISONING ATTACKS
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• What we “provably” guarantee?
− A model’s loss over the test-set (or a subset of it) is less than a specific value
− The above is valid when the # of poisons in the training data are less than a specific value

• What are the types of “provable” defenses?
− Pre-training defense: data sanitization
− Training-time defense: novel training algorithms
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“PROVABLE” DATA SANITIZATION DEFENSE
CERTIFIED DEFENSES FOR DATA POISONING ATTACKS, STEINHARDT ET AL., NEURIPS 2017
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THREAT MODEL
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• Setup [binary classification task!]
− Data: 𝑥 ∈ 𝑋 (ex. 𝑅!), 𝑦 ∈ 𝑌 = {−1,+1}
− Clean train-set: 𝐷" of size 𝑛 / Test-set: 𝑆
− Loss function: 𝑙 𝜃; 𝑥, 𝑦 = max(0, 1 − 𝑦 𝜃, 𝑥 )
− Test-loss: L 𝜃 = E #,% ~'[𝑙 𝜃; 𝑥, 𝑦 ]

• Data sanitization defenses
− Goal: Examine 𝐷" ∪ 𝐷( and remove poisons (e.g., outliers)

− Methods:
• Fixed (oracle) defense: when we know the true distribution of data (unrealistic)
• Data-dependent defense: when we don’t know the true distribution (real-world!)

A filtered dataset



EXAMPLE DATA SANITIZATION DEFENSES
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• Data sanitization defenses
− Goal: Examine 𝐷" ∪ 𝐷( and remove poisons (e.g., outliers)
− Example defenses:

• sphere defense: removes points outside a spherical radius
• slab defense: first project points onto the line btw. the centroids and then remove



THE WORST-CASE TEST LOSS UNDER DATA POISONING
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• Upper-bound [refer to the paper for its derivation]

max
)!

L( ?𝜃) ≤ max
)!⊆+

min
,∈.

1
𝑛
L 𝜃; 𝐷" ∪ 𝐷( ≝ 𝐌

− M: the minimax loss
− It means: the attack is bounded to a scenario where all poisons are alive!



THE WORST-CASE TEST LOSS WITH A DEFENSE 𝐹
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• Upper-bound [refer to the paper for its derivation]

max
)!

L( ?𝜃) ≤ max
)!⊆+

min
,∈.

1
𝑛
L 𝜃; 𝐷" ∪ (𝐷(∩ 𝐹) ≝ 𝐌

− M: the minimax loss
− It means: the attack is bounded to a scenario where all poisons are alive under 𝐹!

• Two defense scenarios
− Fixed defense: when we know the true distribution of data
− Data-dependent defense: when we don’t know the true distribution of data



THE WORST-CASE TEST LOSS WITH A FIXED DEFENSE
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• Upper-bound [refer to the paper for its derivation]

max
)!

L( ?𝜃) ≤ max
)!⊆+

min
,∈.

1
𝑛
L 𝜃; 𝐷" ∪ (𝐷(∩ 𝐹) ≝ 𝐌

− M: the minimax loss
− It means: the attack is bounded to a scenario where all poisons are alive under 𝐹!

• Two defense scenarios
− Fixed defense: we can fix 𝐹 regardless of poisoning samples
− Data-dependent defense: when we don’t know the true distribution of data



HOW DO WE COMPUTE THE UPPER-BOUND FOR A FIXED DEFENSE?
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• Fixed defense scenario
− To compute the upper-bound, you iteratively craft poisons and train models on them 

− Preposition:

Any poisoning that minimizes the avg. Regret will be close to the optimal

Iteratively craft poisons
to fool the 𝑡-th classifier



THE WORST-CASE TEST LOSS WITH A DATA-DEPENDENT DEFENSE
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• Upper-bound [refer to the paper for its derivation]

max
)!

L( ?𝜃) ≤ max
)!⊆+

min
,∈.

1
𝑛
L 𝜃; 𝐷" ∪ (𝐷(∩ 𝐹) ≝ 𝐌

− M: the minimax loss
− It means: the attack is bounded to a scenario where all poisons are alive under 𝐹!

• Two defense scenarios
− Fixed defense: we can fix 𝐹 regardless of poisoning samples
− Data-dependent defense: we cannot fix 𝐹 (and hence can be influenced by the attacker)



HOW DO WE COMPUTE THE UPPER-BOUND FOR A DATA-DEP. DEFENSE?
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• Data-dependent defense scenario
− ex. In Slab defense, one can use the empirical mean instead of the true mean

− Preposition:

Any poisoning that minimizes the avg. Regret will be close to the optimal
Here we estimate the Regret over any probability distribution 𝜋(



EVALUATIONS: UNDER A FIXED DEFENSE 𝐹

Secure-AI Systems Lab (SAIL) - CS499/579: Trustworthy Machine Learning 15

• On DogFish and MNIST-1/7

− Notations:
• (solid blue) the candidate attack | (dashed blue) the worst-case train loss (Prep.)

− Takeaways:
• (a), (b), (c): the fixed defense is strong (the loss < 0.1…)
• (a) and (b): the upper bound is tight
• (c): the upper bound is tighter than what existing attacks can inflict



EVALUATIONS: UNDER A DATA-DEPENDENT DEFENSE 𝐹
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• On MNIST-1/7 in 2-class SVMs

− (a): data-dependent defenses are much weaker (the bound increases exponentially…)
− (a): the upper-bound is still tight
− (b): in data-dependent defenses, the 𝐹 is affected by the poisons



“PROVABLE” TRAINING-TIME DEFENSE
DATA POISONING AGAINST DIFFERENTIALLY-PRIVATE LEARNERS: ATTACKS AND DEFENSES, MA ET AL., IJCAI 2019
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TRAINING-TIME DEFENSES
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• Desiderata
− A defense wants to reduce a model’s sensitivity to the training data alterations
− More precisely

• 𝐷 is a training set drawn from the data distribution
• "𝐷 is a compromised training set, by an adversary
• 𝑓 is a model, and 𝑓! and 𝑓"# are the models trained on 𝐷 and "𝐷
• 𝑓! and 𝑓"# behave similarly (or the same) on the test-set
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DIFFERENTIAL PRIVACY
• 𝜖-Differential Privacy

− A randomized algorithm 𝑀:𝐷 → 𝑅 with domain 𝐷 and a range 𝑅 satisfies 𝜖-differential 
privacy if for any two adjacent inputs 𝑑, 𝑑′ ∈ 𝐷 and any subset of outputs 𝑆 ⊂ 𝑅 it holds

• (𝜖, 𝛿)-Differential Privacy

− 𝛿: Represent some catastrophic failure cases [Link, Link]
− 𝛿 < 1/|d|, where |d| is the number of samples in a database
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https://desfontain.es/privacy/almost-differential-privacy.html
https://desfontain.es/privacy/privacy-loss-random-variable.html


DIFFERENTIAL PRIVACY

• (𝜖, 𝛿)-Differential Privacy [Conceptually]

− You have two databases 𝑑, 𝑑′ differ by one item
− You make the same query 𝑀 to each and have results 𝑀(𝑑) and 𝑀(𝑑/)
− You ensure the distinguishability between the two under a measure 𝜖

• 𝜖 is large: those two are distinguishable, less private
• 𝜖 is small: the two outputs are similar, more private

− You also ensure the catastrophic failure probability under 𝛿
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DIFFERENTIAL PRIVACY

• (𝜖, 𝛿)-Differential Privacy
− Implementation: Gaussian mechanism

• Formally:
− Suppose properties 𝑞 = 𝑞", … , 𝑞#
− Gaussian mechanism 𝑀$,&! takes 

≫ 𝑥 as input (or gradients as input)
≫ releases )𝑞 = (+𝑞", … , +𝑞#)

− where each -𝑞' is independent sample from 𝑁(𝑞' 𝑥 , 𝜎(), 
− for an appropriate variance 𝜎(

• Easy-way:
− Add Gaussian noise with a variance 𝜎$ to

≫ the output %𝑞 (output perturbation)
≫ the gradients (object perturbation)

− such that the output satisfies 𝜀-differential privacy guarantee
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TRAINING-TIME DEFENSES: THREAT MODEL

• Suppose
− 𝐷 is the training set, and its compromised version is P𝐷
− Differentially-private learner: 𝑀

• Goals
− Minimize the objective function:
− Three attacks

• Parameter-targeting attack: make the model 0𝜃 to be close to a target 𝜃
• Label-targeting attack: cause small prediction error on {𝑧'∗}'∈[,]
• Label-aversion attack: induce large prediction error on {𝑧'∗}'∈[,]

• Capability
− Modify 𝑘 items in 𝐷
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TRAINING-TIME DEFENSES: DIFFERENTIAL PRIVACY

• DP as a poisoning defense
− Construct the lower-bound 𝐽(P𝐷) ≥ 𝑒012𝐽(𝐷)

• One-shot kill attack (single-poison attack)
− 𝑘 = 1: the lower bound becomes 𝐽 P𝐷 ≥ 𝑒02𝐽(𝐷)
− 𝑘 ≥ ⁄3 2 log 𝜏 modification can achieve 𝐽 P𝐷 ≥ ⁄3 4 𝐽(𝐷)
− …
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EVALUATION

• Setup [binary classification tasks]
− Dataset: Synthetic data | Real data (UCI ML Repo.)
− Models: Logistic regression | Ridge-regression

• Crafting poisons
− Demonstrate on 2-D synthetic data
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EVALUATION

• Results of the three attacks on 2-D artificial data
− Set 𝑘 = 𝑛
− Each attack achieves its objective
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EVALUATION

• Results of the three attacks on 2-D artificial data
− The attack cost decreases as 𝑘 increases (the attack becomes easier!)
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EVALUATION
• Results of the label-targeting attacks on real-world datasets

− (left) vs. logistic regression, (right) vs. ridge regression
− The attacks work well also on the DP learners
− The gap between the lower bound and the actual attack success exists
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EVALUATION
• Results of the label-targeting attacks on real-world datasets

− In DP, the attack costs significantly higher than the case w/o DP
− ex. with 20 poisons, the cost w/o DP is almost zero whereas with DP, it’s 0.4

• Interesting Observation!
− Attacks are much easier with weak (small epsilon) privacy
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