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Traditionally, computer security seeks to ensure a system’s integrity against attackers
by creating clear boundaries between the system and the outside world (Bishop,
2002). In machine learning, however, the most critical ingredient of all-the training
data—comes directly from the outside world.

— Steinhardt, Koh, and Liang, NeurlPS'17
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DEFENSES AGAINST DATA POISONING ATTACKS

* Existing defenses
— RONI (Reject on Negative Impact)
- TRIM
- tRONI1
- ... (many more)

- Problem:
* Existing defenses empirically works
* How can we provide “provable” defense guarantee against poisoning attacks?

OrggonState Suciu et al., When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks, USENIX Security 2018
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DEFENSES AGAINST DATA POISONING ATTACKS

* What we “provably” guarantee?
over the test-set (or a subset of it) is less than a specific value
— The above is valid when in the training data are less than a specific value

* What are the types of “provable” defenses?
- Pre-training defense: data sanitization
— Training-time defense: novel training algorithms
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“PROVABLE” DATA SANITIZATION DEFENSE

CERTIFIED DEFENSES FOR DATA POISONING ATTACKS, STEINHARDT ET AL., NEURIPS 2017
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THREAT MODEL

* Setup [ classification task!]
- Data:x € X (ex. R%),y €Y = {—1,+1}
— Clean train-set: D, of size n / Test-set: S
— Loss function: [(6; x,y) = max(0,1 — y(6, x))
- Test-loss: L(6) = E(y)~s[l(6; x,y)]

* Data sanitization defenses
- Goal: Examine D, U D,, and remove poisons (e.g., outliers)

6L argmin L(0; (D, UD,) N F), where L(6;5) = Z £6;2,y)
6cO (z,y)ES

- Methods:
* Fixed (oracle) defense: when we know the true distribution of data (unrealistic)
* Data-dependent defense: when we don’t know the true distribution (real-world!)
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EXAMPLE DATA SANITIZATION DEFENSES

 Data sanitization defenses
- Goal: Examine D, U D,, and remove poisons (e.g., outliers)
- Example defenses:
* sphere defense: removes points outside a spherical radius
* slab defense: first project points onto the line btw. the centroids and then remove

Oregon State
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(a) MNIST-1-7 (with € = 0.3 poisoning) (b) 1 IMDB (with & = 0.05 poisoning)
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THE WORST-CASE TEST LOSS UNDER DATA POISONING

* Upper—bou nd [refer to the paper for its derivation]

~ 1
max L(§) < maxmin—L(6;D,UD,) & M
Dy D,CF 6€0 n

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive!
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THE WORST-CASE TEST LOSS WITH A DEFENSE F

* Upper-bou nd [refer to the paper for its derivation]

~ 1
< in—L(08; def
r%apx L(O) < {)I;é)lg renelgn L(H, D, U (D,N F)) M

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!

* Two defense scenarios
- Fixed defense: when we know the true distribution of data
- Data-dependent defense: when we don’t know the true distribution of data
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THE WORST-CASE TEST LOSS WITH A FIXED DEFENSE

* Upper-bou nd [refer to the paper for its derivation]

~ 1
< in—L(08; def
r%apx L(O) < {)I;é)lg renelgn L(H, D, U (D,N F)) M

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!

* Two defense scenarios
— Fixed defense: we can regardless of poisoning samples
- Data-dependent defense: when we don’t know the true distribution of data
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How DO WE COMPUTE THE UPPER-BOUND FOR A FIXED DEFENSE?

* Fixed defense scenario
— To compute the upper-bound, you iteratively craft poisons and train models on them

Algorithm 1 Online learning algorithm for generating an upper bound and candidate attack.

Input: clean data D, of size n, feasible set F, radius p, poisoned fraction e, step size 7.
Initialize 2% < 0, X(?) 1,6 « 0, U* + co.
fort=1,...,endo

Compute (z(*), y*)) = argmax ,, ,yc 7 £(0¢~; z,y).

U* « min (U*, L(6¢~1; D) + e£(6¢1; 2, y1))).

9® « LVLOED; D) + eVe(9t—D; 2 y®),

Update: 2 ¢ 20D — g, A®) ¢ max(A¢=D, 12002y g®) ¢ 20
end for
Output: upper bound U* and candidate attack D, = {(z®,y®))}¢n .

- Preposition: U* — lL(é;pc uUD,) < Regret(en)
n

en

Any poisoning that minimizes the avg. Regret will be close to the optimal
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THE WORST-CASE TEST LOSS WITH A DATA-DEPENDENT DEFENSE

* Upper-bou nd [refer to the paper for its derivation]

~ 1
< in—L(08; def
r%apx L(O) < {)I;é)lg renelgn L(H, D, U (D,N F)) M

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!

* Two defense scenarios
— Fixed defense: we can regardless of poisoning samples
- Data-dependent defense: we (and hence can be influenced by the attacker)
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How DO WE COMPUTE THE UPPER-BOUND FOR A DATA-DEP. DEFENSE?

* Data-dependent defense scenario
- ex. In Slab defense, one can use the instead of the true mean

Algorithm 1 Online learning algorithm for generating an upper bound and candidate attack.

Input: clean data D, of size n, feasible set F, radius p, poisoned fraction e, step size 7.
Initialize 2% < 0, X(?) 1,6 « 0, U* + co.
fort=1,...,endo

Compute (z(*),y®)) = argmax , ,\er 2001 2, y).

U* « min (U*, 2L(6%; D;) + e£(6¢~; 2, y®)).

g LULO®D;D,) + eVe(Ot—D; 2, y(®),

Update: z(®) « 20D — g X(®) « max(\¢-1 ||Z(t)||2

! p

end for
Output: upper bound U* and candidate attack D, = {(z®,y®))}¢n .

2
), 0® Z3.

~ 1
— Preposition: 7() & —L ;D max 200;x
O LO:D+e max  Byll0z,y)
Any poisoning that minimizes the avg. Regret will be close to the optimal

Here we estimate the Regret over any probability distribution m,,
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EVALUATIONS: UNDER A FIXED DEFENSE F

* On DogFish and MNIST-1/7

(a) Dogfish: upper bounds vs. attack (b) MNIST: upper bounds vs. attack (c) MNIST: baseline comparison
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- Notations:
* (solid blue) the candidate attack | (dashed blue) the worst-case train loss (Prep.)
- Takeaways:

* (a), (b), (c): the fixed defense is strong (the loss < 0.1...)
* (a) and (b): the upper bound is tight
* (c): the upper bound is tighter than what existing attacks can inflict
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EVALUATIONS: UNDER A DATA-DEPENDENT DEFENSE F

* On MNIST-1/7 in 2-class S\VMs
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- (a): data-dependent defenses are much weaker (the bound increases exponentially...)

(a) MNIST-1-7: attack on data-dep defense
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(b) MNIST-1-7: effect of shifting centroids
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- (a): the upper-bound is still tight
- (b): in data-dependent defenses, the F is affected by the poisons
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“PROVABLE” TRAINING-TIME DEFENSE

DATA POISONING AGAINST DIFFERENTIALLY-PRIVATE LEARNERS: ATTACKS AND DEFENSES, MA ET AL., IJCAI 2019
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TRAINING-TIME DEFENSES

* Desiderata
- A defense wants to reduce a model’s sensitivity to the training data alterations
- More precisely
* D is atraining set drawn from the data distribution
« D is a compromised training set, by an adversary
* fisamodel, and f, and f5 are the models trained on D and D
* fp and f5 behave similarly (or the same) on the test-set

T®
Oregon State
& University - -
Secure-Al Systems Lab (SAIL) - CS499/579: Trustworthy Machine Learning

20



DIFFERENTIAL PRIVACY

* e-Differential Privacy

- A randomized algorithm M: D — R with domain D and a range R satisfies e-differential
privacy if for any two adjacent inputs d,d’ € D and any subset of outputs S C R it holds

Pr[M(d) € S] < e Pr[M(d') € S]

* (g, 6)-Differential Privacy
Pr[M(d) € S] < e° Pr[M(d’) € S] + 6

- 0: Represent some catastrophic failure cases [Link, Link]
- 6 <1/|d]|, where |d]| is the number of samples in a database

Jons
K48 Oregon State
& University
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https://desfontain.es/privacy/almost-differential-privacy.html
https://desfontain.es/privacy/privacy-loss-random-variable.html

DIFFERENTIAL PRIVACY

* (g, 6)-Differential Privacy
Pr[M(d) € S] < e° Pr[M(d') € S]+ 6

- You have two databases d, d’ differ by one item
- You make the same query M to each and have results M(d) and M(d")
- You ensure the distinguishability between the two under a measure €
e €is large: those two are distinguishable, less private
e €is small: the two outputs are similar, more private
- You also ensure the catastrophic failure probability under 6

Oregon State
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DIFFERENTIAL PRIVACY

* (g, 6)-Differential Privacy
- Implementation: Gaussian mechanism
* Formally:

— Suppose properties ¢ = (qy, ..., qx)

- Gaussian mechanism M, 2 takes
» x as input (or gradients as input)
> releases § = (G4, -, Q)

— where each §; is independent sample from N(g;(x), 0%),

— for an appropriate variance o2

* Easy-way:
— Add Gaussian noise with a variance o2 to
» the output § (output perturbation)
» the gradients (object perturbation)
- such that the output satisfies e-differential privacy guarantee

T®
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TRAINING-TIME DEFENSES: THREAT MODEL

* Suppose
— D is the training set, and its compromised version is D
— Differentially-private learner: M

* Goals
— Minimize the objective function: J(D) := E, [C(M(D, b))]
— Three attacks

* Parameter-targeting attack: make the model 8 to be close to a target 6
* Label-targeting attack: cause small prediction error on {z; };e[m

* Label-aversion attack: induce large prediction error on {Z;}ie[m]

e Capability
- Modify k itemsin D

Oregon State
& University
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TRAINING-TIME DEFENSES: DIFFERENTIAL PRIVACY

* DP as a poisoning defense
— Construct the lower-bound J(D) = e~*¢J(D)

* One-shot kill attack (single-poison attack)
- k = 1: the lower bound becomes](ﬁ) >e (D)
- k = [/elogT] modification can achieve J(D) = /7] (D)

o
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EVALUATION

* Setup [ classification tasks]
- Dataset: Synthetic data | Real data (UCI ML Repo.)
- Models: Logistic regression | Ridge-regression

 Crafting poisons
- Demonstrate on 2-D synthetic data
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(b) training set (c) evaluation set
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EVALUATION

e Results of the three attacks on 2-D artificial data

-Setk=n
- Each attack achieves its objective
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EVALUATION

* Results of the three attacks on 2-D artificial data
— The attack cost decreases as k increases (the attack becomes easier!)
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EVALUATION

* Results of the label-targeting attacks on real-world datasets
— (left) vs. logistic regression, (right) vs. ridge regression
— The attacks work well also on the DP learners
— The gap between the lower bound and the actual attack success exists
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EVALUATION

* Results of the label-targeting attacks on real-world datasets
— In DP, the attack costs significantly higher than the case w/o DP
— ex. with 20 poisons, the cost w/o DP is almost zero whereas

* Interesting Observation!
— Attacks are much easier with weak (small epsilon) privacy
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Thank You!

Tu/Th 4:00 — 5:50 pm
Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23
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