CS 499/579: TRUSTWORTHY ML (CERTIFIED) DEFENSES AGAINST POISONING ATTACKS

Tu/Th 4:00 - 5:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu

Traditionally, computer security seeks to ensure a system's integrity against attackers by creating clear boundaries between the system and the outside world (Bishop, 2002). In machine learning, however, the most critical ingredient of all-the training data-comes directly from the outside world.

– Steinhardt, Koh, and Liang, NeurIPS'17

DEFENSES AGAINST DATA POISONING ATTACKS

- Existing defenses
 - RONI (Reject on Negative Impact)
 - TRIM
 - tRONI¹
 - ... (many more)
 - Problem:
 - Existing defenses empirically works
 - How can we provide "provable" defense guarantee against poisoning attacks?

¹Suciu et al., When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks, USENIX Security 2018

DEFENSES AGAINST DATA POISONING ATTACKS

- What we "provably" guarantee?
 - A model's loss over the test-set (or a subset of it) is less than a specific value
 - The above is valid when the # of poisons in the training data are less than a specific value
- What are the types of "provable" defenses?
 - Pre-training defense: data sanitization
 - Training-time defense: novel training algorithms

"PROVABLE" DATA SANITIZATION DEFENSE

Certified defenses for data poisoning attacks, Steinhardt et al., NeurIPS 2017

THREAT MODEL

- Setup [binary classification task!]
 - **Data:** $x \in X$ (ex. R^d), $y \in Y = \{-1, +1\}$
 - Clean train-set: D_c of size n / Test-set: S
 - Loss function: $l(\theta; x, y) = \max(0, 1 y\langle \theta, x \rangle)$
 - Test-loss: $L(\theta) = E_{(x,y)\sim S}[l(\theta; x, y)]$
- Data sanitization defenses
 - Goal: Examine $D_c \cup D_p$ and remove poisons (e.g., outliers)

$$\hat{\theta} \stackrel{\text{def}}{=} \underset{\theta \in \Theta}{\operatorname{argmin}} L(\theta; (\mathcal{D}_{c} \cup \mathcal{D}_{p}) \cap \mathcal{F}), \text{ where } L(\theta; S) \stackrel{\text{def}}{=} \sum_{(x,y) \in S} \ell(\theta; x, y)$$

- Methods:

- Fixed (oracle) defense: when we know the true distribution of data (unrealistic)
- Data-dependent defense: when we don't know the true distribution (real-world!)

EXAMPLE DATA SANITIZATION DEFENSES

- Data sanitization defenses
 - **Goal:** Examine $D_c \cup D_p$ and remove poisons (*e.g.*, outliers)
 - Example defenses:
 - sphere defense: removes points outside a spherical radius
 - slab defense: first project points onto the line btw. the centroids and then remove

THE WORST-CASE TEST LOSS UNDER DATA POISONING

$$\max_{D_p} \mathcal{L}(\hat{\theta}) \leq \max_{D_p \subseteq F} \min_{\theta \in \Theta} \frac{1}{n} \mathcal{L}(\theta; D_c \cup D_p) \stackrel{\text{def}}{=} \mathbf{M}$$

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive!

The worst-case test loss with a defense F

$$\max_{D_p} L(\hat{\theta}) \leq \max_{D_p \subseteq F} \min_{\theta \in \Theta} \frac{1}{n} L(\theta; D_c \cup (D_p \cap F)) \stackrel{\text{def}}{=} \mathbf{M}$$

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!
- Two defense scenarios
 - Fixed defense: when we know the true distribution of data
 - Data-dependent defense: when we don't know the true distribution of data

THE WORST-CASE TEST LOSS WITH A FIXED DEFENSE

$$\max_{D_p} L(\hat{\theta}) \leq \max_{D_p \subseteq F} \min_{\theta \in \Theta} \frac{1}{n} L(\theta; D_c \cup (D_p \cap F)) \stackrel{\text{def}}{=} \mathbf{M}$$

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!
- Two defense scenarios
 - Fixed defense: we can fix F regardless of poisoning samples
 - Data-dependent defense: when we don't know the true distribution of data

How do we compute the upper-bound for a fixed defense?

- Fixed defense scenario
 - To compute the upper-bound, you iteratively craft poisons and train models on them

Algorithm 1 Online learning algorithm for generating an upper bound and candidate attack.

 $\begin{array}{l} \text{Input: clean data } \mathcal{D}_{c} \text{ of size } n, \text{ feasible set } \mathcal{F}, \text{ radius } \rho, \text{ poisoned fraction } \epsilon, \text{ step size } \eta. \\ \text{Initialize } z^{(0)} \leftarrow 0, \lambda^{(0)} \leftarrow \frac{1}{\eta}, \theta^{(0)} \leftarrow 0, U^{*} \leftarrow \infty. \\ \text{for } t = 1, \ldots, \epsilon n \text{ do} \\ \text{Compute } (x^{(t)}, y^{(t)}) = \operatorname{argmax}_{(x,y) \in \mathcal{F}} \ell(\theta^{(t-1)}; x, y). \\ U^{*} \leftarrow \min \left(U^{*}, \frac{1}{n}L(\theta^{(t-1)}; \mathcal{D}_{c}) + \epsilon \ell(\theta^{(t-1)}; x^{(t)}, y^{(t)}) \right). \\ g^{(t)} \leftarrow \frac{1}{n} \nabla L(\theta^{(t-1)}; \mathcal{D}_{c}) + \epsilon \nabla \ell(\theta^{(t-1)}; x^{(t)}, y^{(t)}). \\ \text{Update: } z^{(t)} \leftarrow z^{(t-1)} - g^{(t)}, \quad \lambda^{(t)} \leftarrow \max(\lambda^{(t-1)}, \frac{\|z^{(t)}\|_{2}}{\rho}), \quad \theta^{(t)} \leftarrow \frac{z^{(t)}}{\lambda^{(t)}}. \end{array} \right\} \\ \begin{array}{l} \text{Iteratively craft poisons} \\ \text{to fool the } t\text{-th classifier} \end{array} \\ \text{Output: upper bound } U^{*} \text{ and candidate attack } \mathcal{D}_{p} = \{(x^{(t)}, y^{(t)})\}_{t=1}^{\epsilon n}. \end{array} \right\} \\ \end{array}$

- **Preposition:**
$$U^* - \frac{1}{n}L(\tilde{\theta}; \mathcal{D}_c \cup \mathcal{D}_p) \leq \frac{\operatorname{Regret}(\epsilon n)}{\epsilon n}$$

Any poisoning that minimizes the avg. Regret will be close to the optimal

THE WORST-CASE TEST LOSS WITH A DATA-DEPENDENT DEFENSE

$$\max_{D_p} \mathcal{L}(\hat{\theta}) \leq \max_{D_p \subseteq F} \min_{\theta \in \Theta} \frac{1}{n} \mathcal{L}(\theta; D_c \cup (D_p \cap F)) \stackrel{\text{def}}{=} \mathbf{M}$$

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!
- Two defense scenarios
 - Fixed defense: we can fix F regardless of poisoning samples
 - **Data-dependent defense:** we cannot fix *F* (and hence can be influenced by the attacker)

How do we compute the upper-bound for a data-dep. defense?

- Data-dependent defense scenario
 - ex. In Slab defense, one can use the empirical mean instead of the true mean

Algorithm 1 Online learning algorithm for generating an upper bound and candidate attack.

Input: clean data \mathcal{D}_{c} of size n, feasible set \mathcal{F} , radius ρ , poisoned fraction ϵ , step size η . Initialize $z^{(0)} \leftarrow 0, \lambda^{(0)} \leftarrow \frac{1}{\eta}, \theta^{(0)} \leftarrow 0, U^{*} \leftarrow \infty$. **for** $t = 1, ..., \epsilon n$ **do** Compute $(x^{(t)}, y^{(t)}) = \operatorname{argmax}_{(x,y)\in\mathcal{F}} \ell(\theta^{(t-1)}; x, y)$. $U^{*} \leftarrow \min(U^{*}, \frac{1}{n}L(\theta^{(t-1)}; \mathcal{D}_{c}) + \epsilon \ell(\theta^{(t-1)}; x^{(t)}, y^{(t)}))$. $g^{(t)} \leftarrow \frac{1}{n}\nabla L(\theta^{(t-1)}; \mathcal{D}_{c}) + \epsilon \nabla \ell(\theta^{(t-1)}; x^{(t)}, y^{(t)})$. Update: $z^{(t)} \leftarrow z^{(t-1)} - g^{(t)}, \quad \lambda^{(t)} \leftarrow \max(\lambda^{(t-1)}, \frac{\|z^{(t)}\|_{2}}{\rho}), \quad \theta^{(t)} \leftarrow \frac{z^{(t)}}{\lambda^{(t)}}$. **end for Output:** upper bound U^{*} and candidate attack $\mathcal{D}_{p} = \{(x^{(t)}, y^{(t)})\}_{t=1}^{\epsilon n}$.

- **Preposition:**
$$\tilde{U}(\theta) \stackrel{\text{def}}{=} \frac{1}{n} L(\theta; \mathcal{D}_{c}) + \epsilon \max_{\sup p(\pi_{p}) \subseteq \mathcal{F}(\pi_{p})} \mathbf{E}_{\pi_{p}}[\ell(\theta; x, y)]$$

Any poisoning that minimizes the avg. Regret will be close to the optimal Here we estimate the Regret over any probability distribution π_p

)regon State

EVALUATIONS: UNDER A FIXED DEFENSE F

• On DogFish and MNIST-1/7

- Notations:
 - (solid blue) the candidate attack | (dashed blue) the worst-case train loss (Prep.)
- Takeaways:
 - (a), (b), (c): the fixed defense is strong (the loss < 0.1...)
 - (a) and (b): the upper bound is *tight*
 - (c): the upper bound is tighter than what existing attacks can inflict

EVALUATIONS: UNDER A DATA-DEPENDENT DEFENSE F

• On MNIST-1/7 in 2-class SVMs

- (a): data-dependent defenses are much weaker (the bound increases exponentially...)
- (a): the upper-bound is still *tight*
- (b): in data-dependent defenses, the F is affected by the poisons

"PROVABLE" TRAINING-TIME DEFENSE

DATA POISONING AGAINST DIFFERENTIALLY-PRIVATE LEARNERS: ATTACKS AND DEFENSES, MA ET AL., IJCAI 2019

TRAINING-TIME DEFENSES

- Desiderata
 - A defense wants to reduce a model's sensitivity to the training data alterations
 - More precisely
 - *D* is a training set drawn from the data distribution
 - \widetilde{D} is a compromised training set, by an adversary
 - f is a model, and f_D and $f_{\tilde{D}}$ are the models trained on D and \widetilde{D}
 - f_D and $f_{\tilde{D}}$ behave similarly (or the same) on the test-set

DIFFERENTIAL PRIVACY

- ϵ -Differential Privacy
 - A randomized algorithm $M: D \to R$ with domain D and a range R satisfies ϵ -differential privacy if for any two adjacent inputs $d, d' \in D$ and any subset of outputs $S \subset R$ it holds

$$\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S]$$

• (ϵ, δ) -Differential Privacy

 $\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta$

- δ : Represent some catastrophic failure cases [Link, Link]
- $\delta < 1/|d|$, where |d| is the number of samples in a database

DIFFERENTIAL PRIVACY

• (ϵ, δ) -Differential Privacy [Conceptually]

 $\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta$

- You have two databases d, d' differ by one item
- You make the same query M to each and have results M(d) and M(d')
- You ensure the distinguishability between the two under a measure ϵ
 - ϵ is large: those two are distinguishable, less private
 - ϵ is small: the two outputs are similar, more private
- You also ensure the catastrophic failure probability under δ

DIFFERENTIAL PRIVACY

- (ϵ, δ) -Differential Privacy
 - Implementation: Gaussian mechanism
 - Formally:
 - Suppose properties $q = (q_1, \dots, q_k)$
 - Gaussian mechanism M_{q,σ^2} takes

» x as input (or gradients as input)

» releases $\hat{q} = (\widehat{q_1}, \dots, \widehat{q_k})$

- where each \hat{q}_i is independent sample from $N(q_i(x), \sigma^2)$,
- for an appropriate variance σ^2
- Easy-way:
 - Add Gaussian noise with a variance σ^2 to
 - \gg the output \hat{q} (output perturbation)
 - » the gradients (object perturbation)
 - such that the output satisfies ε -differential privacy guarantee

- Suppose
 - D is the training set, and its compromised version is \widetilde{D}
 - Differentially-private learner: M
- Goals
 - Minimize the objective function: $J(\tilde{D}) := \mathbf{E}_b \left[C(\mathcal{M}(\tilde{D}, b)) \right]$
 - Three attacks
 - Parameter-targeting attack: make the model $ilde{ heta}$ to be close to a target heta
 - Label-targeting attack: cause *small* prediction error on $\{z_i^*\}_{i \in [m]}$
 - Label-aversion attack: induce *large* prediction error on $\{z_i^*\}_{i \in [m]}$
- Capability
 - Modify k items in D

TRAINING-TIME DEFENSES: DIFFERENTIAL PRIVACY

- DP as a poisoning defense
 - Construct the lower-bound $J(\widetilde{D}) \ge e^{-k\epsilon}J(D)$
- One-shot kill attack (single-poison attack)
 - k = 1: the lower bound becomes $J(\widetilde{D}) \ge e^{-\epsilon}J(D)$
 - $-k \ge \lfloor 1/\epsilon \log \tau \rfloor$ modification can achieve $J(\widetilde{D}) \ge 1/\tau J(D)$

...

- Setup [binary classification tasks]
 - Dataset: Synthetic data | Real data (UCI ML Repo.)
 - Models: Logistic regression | Ridge-regression
- Crafting poisons
 - Demonstrate on 2-D synthetic data

- Results of the three attacks on 2-D artificial data
 - Set k = n
 - Each attack achieves its objective

1.0 0.5 0.0 -0.5-1.0-1ò (a) label-aversion -0.50 $J(\tilde{D})$ -0.75 -1.00-1.25-1.50-1.75Ò 200 400 600 800 1000

(d) label-aversion

- Results of the three attacks on 2-D artificial data
 - The attack cost decreases as k increases (the attack becomes easier!)

- Results of the *label-targeting* attacks on real-world datasets
 - (left) vs. logistic regression, (right) vs. ridge regression
 - The attacks work well also on the DP learners
 - The gap between the lower bound and the actual attack success exists

- Results of the *label-targeting* attacks on real-world datasets
 - In DP, the attack costs significantly higher than the case w/o DP
 - ex. with 20 poisons, the cost w/o DP is almost zero whereas with DP, it's 0.4
- Interesting Observation!
 - Attacks are much easier with weak (small epsilon) privacy

Thank You!

Tu/Th 4:00 – 5:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23

