Notes

- Call for actions
 - 11/09 Lecture: Recording will be offered (on 11/16)
 - 11/20: Checkpoint II review deadline (on HotCRP)

CS 499/579: TRUSTWORTHY ML PRELIMINARIES ON PRIVACY

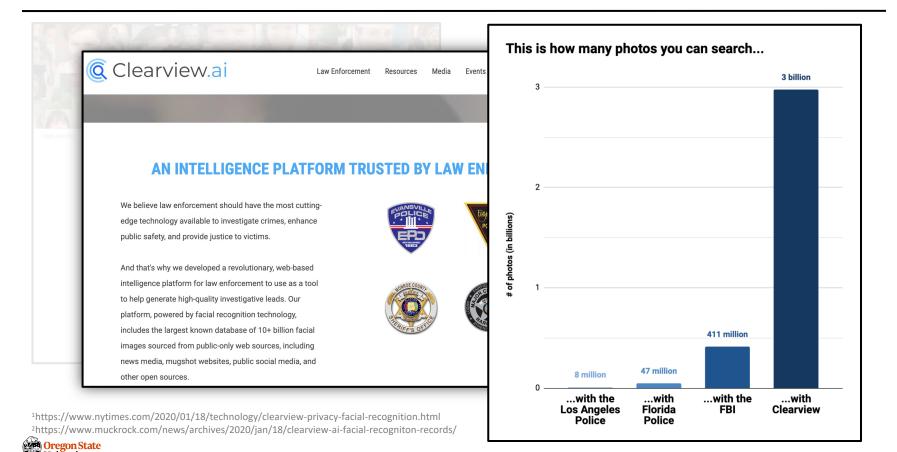
Tu/Th 4:00 - 5:50 pm

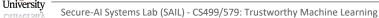
Sanghyun Hong

sanghyun.hong@oregonstate.edu

PRIVACY, PRIVACY...

WHY PRIVACY MATTERS?





WHY PRIVACY MATTERS?

- Let's discuss
 - What is privacy?
 - What does privacy matter?
 - How is it different from security?

- A perfect, yet not interesting solution:
 - No learning ... but this is not what we want
 - Hold-on, what if we anonymize some records?

DE-ANONYMIZATION

- Setup
 - Attacker: de-anonymize anonymized records
 - Victim : anonymize sensitive data records
- Knowledge
 - Additional (or auxiliary information) about the data
- Capability
 - Query your data with some techniques
 - Perform post-processing computations on q (outputs)
 - ... (many more)

DE-ANDNYMIZATION

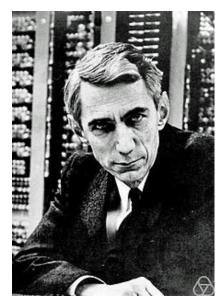
In ML

- We train statistical models
- It does not matter whether data is anonymized or not
- Some examples
 - Cancer data
 - Demographics
 - Data about people's financial information
 - ...

Note:

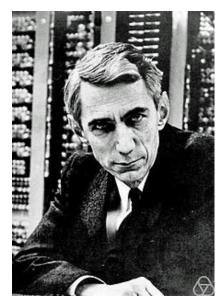
 "Anonymization of a data record might seem easy to implement. Unfortunately, it is increasingly easy to defeat anonymization by the very techniques that are being developed for many legitimate applications of big data." [1]

- Shannon's perfect security
 - An adversary should not distinguish a message M from a random text R



Claude Shannon (1916 ~ 2001)
A Father of Information Theory and Modern Cryptography

- Shannon's perfect security
 - An adversary should not distinguish a message M from a random text R
 - Formally:
 - Pr[M = m | C = c] = Pr[M = m]
 - where
 - m is a message (from a set M)
 - c is a ciphertext (from a set of all ciphertexts C)
 - Pr[C = c | M = m] = Pr[C = c]
 - It means:
 - Ciphertext provides no additional information
 - Observing c does not help with guessing M = m
 - c is independent of the message m



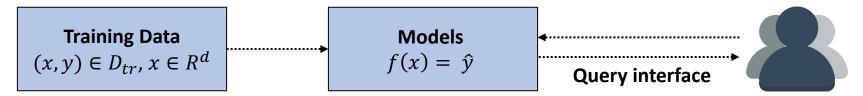
Claude Shannon (1916 ~ 2001)
A Father of Information Theory
and Modern Cryptography

Perfect security in model training

- Potential solutions:
 - Encrypt-decrypt: encrypt the training data and decrypt it to train a model
 - Homomorphic encryption: encrypt the training data and train a model on it

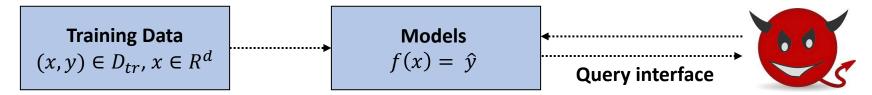
- ...

• Inferences with such model(s)



- Potential problems:
 - Perfect security-based solutions are computationally expensive (than vanilla training)
 - Only a limited number of users (who has a key) may use these models

Inferences with such model(s)

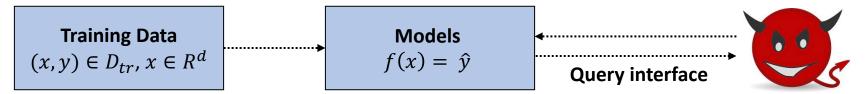


- Potential problems:
 - Perfect security-based solutions are computationally expensive (than vanilla training)
 - Only a limited number of users (who has a key) can use these models
 - Once a key is leaked, an adversary can query the model with any data

WHAT AN ADVERSARY CAN DO WITH THE QUERY ACCESS?

PRIVACY THREAT MODEL

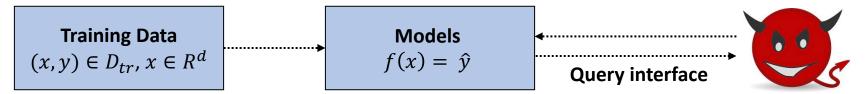
ML Pipeline



- Privacy risks
 - Identify your membership in the training data
 - Identify (sensitive) properties of your training data
 - Identify (sensitive) attribute of a person that you know
 - Reconstruct a sample completely
 - Reconstruct a model behind the query interface
 - **–** ...

PRIVACY THREAT MODEL

ML Pipeline



• Privacy risks (from the view of the work by Dwork et al.)

Tracing attack : Identify your membership in the training data

- Reconstruction : Identify (sensitive) properties of your training data

- De-anonymization: Identify (sensitive) attribute of a person that you know

Reconstruction : Reconstruct a sample completely

- Reconstruction : Reconstruct a model behind the guery interface

– ...

PRIVACY THREAT MODEL

- The attack considers non-trivial cases
 - ex. Smoking causes cancer
 - Revealing this information is *not* a privacy attack
 - We know this is correlated without interacting with the target model
 - ex. A model trained on a dataset of lung cancer patients
 - ex. The model gets a patient information and returns the probability of getting the cancer
 - ex. We know the Person A is smoking
 - ex. We identify that A is in the dataset (defer the details to later on)
 - It's a non-trivial attack as we identify the information about an individual

MEMBERSHIP INFERENCE: TRACING

Setup

- Victim:

- Has a dataset $x = \{x_1, ..., x_n\}$ with n-i.i.d samples where each x_i is drawn from P over $\{\pm 1\}^d$
- For each query M, the victim returns the sample mean q over given sample x_i 's

- Attacker:

• Perform an attack A(y,q,z) that identify whether a target instance $y \in \{\pm 1\}^d$ **IN** the dataset x or not (**OUT**) with m-i.i.d reference samples $z = \{z_1, ..., z_n\}$ and the sample mean q

- Procedure:

RECONSTRUCTION ATTACK I: ATTRIBUTE INFERENCE

Setup

- Victim:

- For each *i*-th instance, the victim has (x_i, s_i) information
- $x_i \in \{0, 1\}^d$: public info. accessible by an adversary and s_i : is the one-bit secret

- Attacker:

• Perform an attack A that reconstructs s_i by exploiting query outputs \hat{q} and the public information A(x, M(x, s)), where the attacker knows k > 1 public attributes

Formally

RECONSTRUCTION ATTACK I: ATTRIBUTE INFERENCE

Setup

- Victim:

- For each *i*-th instance, the victim has (x_i, s_i) information
- $x_i \in \{0, 1\}^d$: public info. accessible by an adversary and s_i : is the one-bit secret

- Attacker:

• Perform an attack A that reconstructs s_i by exploiting query outputs \hat{q} and the public information A(x, M(x, s)), where the attacker knows k > 1 public attributes

- Approximation:

- Linear statistics (e.g., linear SVM, linear regression, ...)
- Practical constraints (# Queries)
 - Ideally 2^n queries to solve the subset-sum problem
 - Practically, considering the tradeoff btw error and accuracy, we can do it in polynomial time

RECONSTRUCTION ATTACK II: MODEL EXTRACTION

Setup

- Victim:

- Has a model f(x) = y trained on a confidential data
- For each query M, the victim returns the output y_i over given sample x_i 's

- Attacker:

• Perform an attack (i.e., trains a surrogate model f' that is functionally equivalent to f

Thank You!

Tu/Th 4:00 - 5:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23

