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MEMBERSHIP INFERENCE ATTACKS

* Threat model
- An adversary A wants to know
— if a sample (x, y)~ D is the member of
— the training set S of an ML model f or not

mmmmmmmmmmmm o _predict(data) (
' (data record, class label) | » Target Model

d

prediction
Attack Model

data € training set ?
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MEMBERSHIP INFERENCE ATTACKS

* Threat model
- Suppose
* (x,y) ~ D; x is a set of features, y is a response
* Sisatraining set drawn from D"
* Ais alearning algorithm, [ is the loss function
* A is amodel trained on §
A is an adversary

Oregon State Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

* Threat model
- Suppose
* (x,y) ~ D; x is a set of features, y is a response
* Sisatraining set drawn from D"
* Ais alearning algorithm, [ is the loss function
* A is amodel trained on §
* A isan adversary

— Membership experiment?
* Sample S ~ D", and let A, = A(S)
* Choose b « {0, 1} uniformly at random
* Drawz~Sifb=0,0orz~Difb=1
« ExpM(A,A,n,D)is1ifA(z,As,n,D) = b and 0 otherwise. A must output 0 or 1

Oregon State Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

* Threat model
— Membership experiment?
* Sample S ~ D", and let A, = A(S)
* Choose b « {0, 1} uniformly at random
* Drawz~Sifb=0,0orz~Difb=1
« ExpM(A,A,n,D)is1if A(z,As,n,D) = b and 0 otherwise. A must output 0 or 1

- Membership advantage!

« AdvM(A,A,n,D) = Pr[A = 0|b = 0] — Pr[A = O|b = 1]
= 2 Pr[Exp™ (A, 4,n,D) = 1] — 1
gg?é(;;ts;ate Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

* Yeom et al. attack
- A,: Bounded loss function
* Suppose the loss function is bounded on B
* Forz = (x,y)
- The attacker returns 1 with the probability [(4s,2) /B
- Otherwise, the attacker outputs O

Oregon State Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

* Yeom et al. attack
- A,: Bounded loss function

* Suppose the loss function is bounded on B

* Forz = (x,y)

— The attacker returns 1 with the probability [(As,z)/B

- Otherwise, the attacker outputs O
A4’s advantage is /B
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MEMBERSHIP INFERENCE ATTACKS

* Yeom et al. attack
- A,: Bounded loss function
* Suppose the loss function is bounded on B
* Forz = (x,y)
- The attacker returns 1 with the probability [(4s,2) /B
- Otherwise, the attacker outputs O

- A,: Threshold
* Suppose the attacker knows
- The conditional probability density functions of the error
- f(elb=0)and f(e|b=1)
- such as the avg. loss over the training data (and over the test data)
* Forz = (x,y)
- Llete =y — As(x)
— The attacker outputs argmaxye(o 13/ (€ | b)

Oregon State Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

* Evaluation
Our work Shokri et al. [7]
Att&?Ck Makes only one query to the model Must train hundreds of shadow models
complexity
Required - Ability to train shadow models, e.g., input
knowledge civeaEsraining.loss 43 distribution and type of model
0.505 (MNIST) 0.517 (MNIST)
Precision | 0.694 (CIFAR-10) 0.72-0.74 (CIFAR-10)
0.874 (CIFAR-100) > 0.99 (CIFAR-100)
Recall | > 0.99 > 0.99

Table 1: Comparison of our membership inference attack with that presented by Shokri et al. While our
attack has slightly lower precision, it requires far less computational resources and background knowledge.

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting

9



HOW CAN WE ENHANCE THE THRESHOLD ATTACK?

MEMBERSHIP INFERENCE ATTACKS AGAINST MACHINE LEARNING MODELS, SHOKRI ET AL., OAKLAND 2017

Secure-Al Systems Lab (SAIL) - CS499/599: Trustworthy ML
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REVISITING YEOM ET AL. ATTACK

* Yeom et al. attack
- A,: Bounded loss function
* Suppose the loss function is bounded on B
* Forz = (x,y)
- The attacker returns 1 with the probability [(4s,2) /B
- Otherwise, the attacker outputs O

- A,: Threshold
* Suppose the attacker knows

- f(elb=0)and f(e|b=1)

- such as the avg. loss over the training data (and over the test data)
* Forz = (x,y)

- Llete =y — As(x)

— The attacker outputs argmaxye(o 13/ (€ | b)
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REVISITING YEOM ET AL. ATTACK

* Yeom et al. attack
- A,: Threshold

* Suppose the attacker knows
- The conditional probability density functions of the error
- f(elb=0)and f(e| b =1)
- such as the avg. loss over the training data (and over the test data)

b FOrZ == (x, y) 0.08 B Member
- Lete = y — As(x) e Non-Member

— The attacker outputs argmaxye(o 13/ (€ | b) 0.06

§0.05

* Challenge: £0.04
. 0.03

- How to compute an optimal threshold? 0.0

0.01

0.00°

1076 10~* 1072 100 102
Cross-Entropy Loss

Oregon State 1Song et al., Privacy Risks of Securing Machine Learning Models against Adversarial Examples
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MEMBERSHIP INFERENCE ATTACKS

» Shokri et al. attack
- Key idea:
* The attacker has some data samples from D
* If the attacker trains models with those samples, we know their memberships!
* |If shadow models are trained similarity, we can exploit the membership info.!

- Attacker’s data:

. o = -
Private Training Set Target Model
* Know the labeled records: (x, y)

* Query them to the target model
and collect its predictions: ((x, y),;”/)

train()
Shadow Training Set 1 Shadow Model 1
- HOW to traln? train()
. . Shadow Training Set 2 Shadow Model 2
* Create a train and test split
* Use the train data to train the shadow models eratal)
Shadow Training Set & Shadow Model &
ML APIT

T®
Oregon State
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Secure-Al Systems Lab (SAIL) - C5499/599: Machine Learning Security 14



MEMBERSHIP INFERENCE ATTACKS

* Shokri et al. attack
- What if the attacker does not have data?

* (x,y) from a distribution like the victim’s...

- Data generation strategies:

Oregon State
University

* Model-based synthesis
* Statistics-based synthesis
* Noisy real-data

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

Algorithm 1 Data synthesis using the target model

1: procedure SYNTHESIZE(class : c)

2 X < RANDRECORD() b initialize a record randomly
3 yr <0

4: j+<0

L3 k < kmaz

6 for iteration = 1---iteryq, do

7 y < ftarget (x) D> query the target model
8 if y. > y» then > accept the record
9 if y. > conf,,;, and ¢ = arg max(y) then

10: if rand() < y. then > sample
11: return x > synthetic data
12: end if

13: end if

14: x* +—x

15: Yn < Ye

16: 7«0

17: else

18: i g o

19: ifj > rejmaz then © many consecutive rejects
20: k « max(kmin, [k/2])
21: 7¢0
22: end if
23: end if
24: X < RANDRECORD(X*, k) > randomize k features
25: end for
26: return L D failed to synthesize

27: end procedure

15



MEMBERSHIP INFERENCE ATTACKS

* Shokri et al. attack
- Attack model

» Data format ((x, y),f/)

* Some of them are “IN” the shadow train, otherwise “OUT”
* Combine three info. (y, ¥,IN) or (y,y,OUT)

* Make the attack model predict IN or OUT

predict(data)

Oregon State
University

Shadow Test Set 1

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

e — e —
Shadow Training Set 1 - Shadow Model 1 “in” Prediction Set 1
S— s ——

“out” Prediction Set 1

——
Shadow Training Set & Shadow Model k “in” Prediction Set k train()
(T -
Shadow Test Set k “out” Prediction Set k
Attack Training Set Attack Model
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EVALUATION

* Setup
— Datasets:
* MNIST | CIFAR-10/100
* Purchases | Locations | Texas-100 | UCI Adult

- Models
* MLaaS: Google Prediction APl | Amazon ML | NNs

- MI Attack
 Shadow models: 20 — 100 models

- Defenses
 Heuristics: Top-k | Precision | Regularization
* [?!] In theory: DP

Oregon State
& University

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security
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EVALUATION

* MI Attacks on CIFAR
- Shadow models: 100
— Training set (for targets):
* CIFAR-10:{2.5,5, 10, 15}k samples
* CIFAR-100: {4.5, 10, 20, 30}k samples

- In-short: Ml attacks work with a pretty reasonable acc.

CIFAR-10, CNN, Membership Inference Attack

CIFAR-10, CNN, Membership Inference Attack
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EVALUATION

* MI Attacks w. Different Models ML Platform Training  Test

_ ) ) Google 0.999 0.656
Dataset: Purchase-100 Amazon (10,1e-6) 0941  0.468

— Models (trained on 10k records): Amazon (100,1e-4) 1.00  0.504
* Amazon ML Neural network 0.830 0.670

* Google’s Prediction API
- In-short: across all models, Ml attacks work with a pretty reasonable acc.

Purchase Dataset, Amazon (10,1e-6), Membership Inference Attack Purchase Dataset, Amazon (100,1e-4), Membership Inference Attack Purchase Dataset, Google, Membership Inference Attack
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EVALUATION

* Ml Attacks w. Different Shadow Models
- Dataset: Location
- Modification:
* Noisy shadow training data
* No data (synthesize it!)
- In-short: Ml attacks show robust acc. under the weak approximation of the dist.

Location Dataset, Google, Membership Inference Attack Purchase Dataset, Google, Membership Inference Attack
1 T T 1 T T
Real Data HE Real Data
0.9 || Noisy Data 10% -« Sl . 09 | Marginal-Based Synthetic ==+ .
Noisy Data 20% - i Model-Based Synthetic - H j
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EVALUATION

« MI Attacks w. Different # classes Dataset Jraining - Testing - Attack
ccuracy Accuracy Precision
S MNIST 0.984 0.928 0.517
- Modification: Location 1.000 0.673 0.678
. Purchase (2) 0.999 0.984 0.505
[ ] —
# Classes: 10 — 100 classes (keep N(D,,.) the same Purchaso (10) 0,959 0.866 0.550
o Google Prediction API Purchase (20) 1.000 0.781 0.590
] ] Purchase (50) 1.000 0.693 0.860
— In-short: More supporting data samples in the c|  pyrchase (100) 0.999 0.659 0.935
TX hospital stays 0.668 0.517 0.657
Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack
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Fraction of the Training Set for a Class Target Model (Train-Test) Accuracy Gap Fraction of the Training Set For a Class
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EVALUATION

e Ml Attacks, Why Do They Work?
- Dataset: Purchase
- Modification:
* # Classes: 10 — 100 classes (keep N(D;,-) the same)
* Google Prediction API
- In-short: It may depend on a model’s ability to distinguish members and non-members

” Oregon State
& Universi
ty
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EVALUATION

e Ml Attacks, Why Do They Work?
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Purchase Dataset, 10 Classes, Google, Membership Inference Attack

Purchase Dataset, 20 Classes, Google, Membership Inference Attack
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EVALUATION

Purchase dataset Testing Attack Attack Attack
b DEfe nses Accuracy  Total Accuracy  Precision  Recall
No Mitigation 0.66 0.92 0.87 1.00
- Top-k Top k = 3 0.66 0.92 0.87 0.99
.. Topk=1 0.66 0.89 0.83 1.00
— Precision (round-ups) Top k = 1 label 0.66 0.66 0.60 0.99
. . Rounding d = 3 0.66 0.92 0.87 0.99
— Regularization (L) Rounding d = 1 0.66 0.89 0.83 1.00
Temperature t = 5 0.66 0.88 0.86 0.93
Temperature t = 20 0.66 0.84 0.83 0.86
e Results (on NNs) 2A=1le—4 0.68 0.87 0.81 0.96
[2A=1le—3 0.72 0.77 0.73 0.86
— Still MI attack works [2X=1le—2 0.63 0.53 0.54 0.52
cink=1 (Iabel) Hospital dataset Testing Attack Attack Attack
. . . _ Accuracy  Total Accuracy  Precision  Recall
* with less precision (d = 1) No Mitigation 0.55 0.83 0.77 0.95
— Regularization somewhat effective $gg b= 022 o o o
but care must be taken for a model’s acc. Top k = 1 label 0.55 0.73 0.67 0.93
Rounding d = 3 0.55 0.83 0.77 0.95
Rounding d =1 0.55 0.81 0.75 0.96
Temperature t = 5 0.55 0.79 0.77 0.83
Temperature t = 20 0.55 0.76 0.76 0.76
[2A=1le—4 0.56 0.80 0.74 0.92
[2X=5e—14 0.57 0.73 0.69 0.86
[2A=1le—3 0.56 0.66 0.64 0.73
I2A=5e—3 0.35 0.52 0.52 0.53

” Oregon State
& Universi
ty
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HOW SHOULD WE MEASURE MEMBERSHIP INFERENCE SUCCESS?

MEMBERSHIP INFERENCE ATTACKS FROM FIRST PRINCIPLE, CALINI ET AL., OAKLAND 2022

Secure-Al Systems Lab (SAIL) - CS499/599: Trustworthy ML
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REVISITING YEOM ET AL. AND SHOKRI ET AL. ATTACK

* Metrics for measuring the attack success 1’
— Membership advantage (Yeom et al.) o 107
— Precision (Shokri et al.) 3 1077 — Qus feccmea )
= —— Sablayrolles et al. (acc=56.1%)
- AUROC (Jaya raman et al) &€ 1073 - — Long :t al. (acc=53.5%)
[} ~——— Watson et al. (acc=59.1%)
_ 2 —— Shokri et al. (acc=59.5%)
1074 4 Song et al. (acc=59.5%)
—— Yeom et al. (acc=59.5%)
Jayaraman et al. (acc=59.0%)
10-5 |

10-5 10~ 1073 1072 10-1 100
False Positive Rate
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REVISITING YEOM ET AL. AND SHOKRI ET AL. ATTACK

* Metrics for measuring the attack success
— Problem of existing metrics
* Symmetric: equal cost to false-positives and false-negatives
* Average-case metric: often in security, we are interested in a certain subset

— LOSS attack
* Metrics:
- Membership advantage
- Precision
- AUROC
* Problem: perform at random at low-FPR
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(a) linear scale (b) log scale

Fig. 2: ROC curve for the LOSS baseline membership infer-
ence attack, shown with both linear scaling (left), also and
log-log scaling (right) to emphasize the low-FPR regime.

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 27



REVISITING YEOM ET AL. AND SHOKRI ET AL. ATTACK

* Metrics for measuring the attack success
— Problem of existing metrics
* Symmetric: equal cost to false-positives and false-negatives
* Average-case metric: often in security, we are interested in a certain subset

— LOSS attack

* Metrics: membership advantage or precision
* Problem: perform at random at low-FPR ]
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Fig. 2: ROC curve for the LOSS baseline membership infer-
ence attack, shown with both linear scaling (left), also and
log-log scaling (right) to emphasize the low-FPR regime.
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MEMBERSHIP INFERENCE ATTACK

* LiRA (The likelihood ratio attack)
— Per-sample hardness score

Not all examples are equal
* Some samples are easier to fit

* Some samples have a larger separability
* |t does not matter if it is an inlier or outlier

” Oregon State
& Universi
ty
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Fig. 3: Some examples are easier to fit than others, and some
have a larger separability between their losses when being
a member of the training set or not. We train 1024 models
on random subsets of CIFAR-10 and plot the losses for four
examples when the example is a member of the training set
(Qun(z, ), in red) or not (Qou(z,y), in blue).

29



MEMBERSHIP INFERENCE ATTACK

* LiRA (The likelihood ratio attack)
— Per-sample hardness score

Not all examples are equal
* Some samples are easier to fit

* Some samples have a larger separability
* |t does not matter if it is an inlier or outlier

- Proposed attack
* Compute per-sample hardness scores
* Use parametric modeling

200 - confidence || | CE loss logit scaling

f(@)y —log(f(2)y) B(f(2)y)

0 T T T — ‘ I“ T T . ‘ ‘ .
00 05 1.0 10771072 10' —20 0 20

Fig. 4: The model’s confidence, or its logarithm (the cross-
entropy loss) are not normally distributed. Applying the logit
function yields values that are approximately normal.

g Oregon State
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Algorithm 1 Our online Likelihood Ratio Attack (LiRA).
We train shadow models on datasets with and without the
target example, estimate mean and variance of the loss dis-
tributions, and compute a likelihood ratio test. (In our offline
variant, we omit lines 5, 6, 10, and 12, and instead return
the prediction by estimating a single-tailed distribution, as is
shown in Equation (4).)
Require: model f, example (z,y), data distribution D

1: confsi, = {}

2: confsyy = {}

3: for N times do

4 Dy <D > Sample a shadow dataset
5 fin < T (Daack U {(z,9)}) > train IN model
6:  confsy, < confsy, U {¢(fin(z)y)}

70 fout & T (Damack \{(z,y)}) > train OUT model
8:  confsoy — confSoy U {@(fou(z)y)}

9: end for

10: fin < mean(confs;,)
11: pon < mean(confsyy)
12: 02 « var(confs,)

13: 02, < var(confsyy)

14: confops = ¢(f(z)y) > query target model

p(confobs | N(,u'imo'izn))
p(confObs | N(:u'ouho'gut))

15: return A =

30



EVALUATION

* Setup
- Datasets: CIFAR-10, CIFAR-100, ImageNet and WikiText
- Models
* Wide-ResNet (CIFAR-10 and -100)
* ResNet-50 (ImageNet)
e GPT-2 small (WikiText)

- LiRA setup
» Shadow models: 65 for ImageNet and 256 for others
* Repeat the attack 10 times

- Metric
e TPR at 1% FPR
e ROC curve

Oregon State
& University

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security
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EVALUATION

LiRA (online) attack vs others

Q 2 934

§ s 8 & 5 g TPR @ 0.001% FPR TPR @ 0.1% FPR Balanced Accuracy

S = Q a2
Method S8 B <2 52 Ci10 C-100 WTIO3 C-10 C-100 WTI03 C-10 C-100 WTI103
Yeom et al. [70] O O O O 00% 00% 000% 00% 00% 01% 594% 780%  50.0%
Shokri et al. [60] e O e O 00% 00% — 03%  1.6% — 59.6% 74.5% -
Jayaramanetal.[25] O @ O O 00%  0.0% ~ 00%  0.0% ~ 594%  76.9% -
Song and Mittal [61] @ O @ O 00%  0.0% —01%  14% — 595% 77.3% _
Sablayrolles etal. [56] @ ©O @ @ 01% 08% 001% 17% 74%  10% 563% 69.1% 65.7%
Long et al. [37] e O e e 00% 00% —22%  47% _ 535% 54.5% -
Watson et al, [68] ® O e o 01% 09% 002% 13% 54%  11% 59.1% 701%  654%
Ye et al. [69] e O o o i - - - - - 603% 769%  65.5%
Ours e © o o 22% 112% 009% 84% 21.6% 14% 638% 82.6%  65.6%

TABLE I: Comparison of prior membership inference attacks under the same settings for well-generalizing models on
CIFAR-10, CIFAR-100, and WikiText-103 using 256 shadow models. Accuracy is only presented for completeness; we do not
believe this is a meaningful metric for evaluating membership inference attacks. Full ROC curves are presented in Appendix A.
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EVALUATION

* LiRA (online) attack vs others
— 10x more successful than the prior attacks at the low-FPR region (0.001 - 0.1 FPR)

100 5
1071 5
@ 1
9 3
© ]
< —— Ours. (acc=63.7%)
o 107° 5
> —— Ye et al. (acc=60.0%)
ﬁ —— Sablayrolles et al. (acc=56.1%)
S 10-3 4 —— Long et al. (acc=53.5%)
(0] 3 —— Watson et al. (acc=59.1%)
e ] —— Shokri et al. (acc=59.5%)
1074 5 ——— Song et al. (acc=59.5%)
] —— Yeom et al. (acc=59.5%)
Jayaraman et al. (acc=59.0%)
10-° T T - —rrr——r]

10-3 104 10-3 1072 1071 100
False Positive Rate
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EVALUATION

* LiRA (online) attack and the generalization gap
- Overfitted models tend to vulnerable to the attack
— There are models with the identical gaps 100x times vulnerable
- More accurate models are more vulnerable to the attack

10° 3
& ]
w ]
5 1072 4
3 " ® CNN1, CNN2, CNN4
x ] :. o @ mm cnns, onns
F sl e ® BN CNN32, CNNG4
107 5 WRN28-1
] BN WRN28-2
1 BN \WRN28-10
1074 T r : T
0.0 0.1 0.2 0.3 0.4 0.5

Train Test Gap

Fig. 7: Attack true-positive rate versus model train-test gap for
a variety of CIFAR-10 models.
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EVALUATION

* LiRA (online) attack with different settings
- While the training configurations are different from shadow models to the target
- LiRA attack performs consistently; the attack is agnostic to the training setups

Target model architecture

(a) Vary model architecture.

Target model optimizer

(b) Vary training optimizer.

! 3
« o Shadow model architecture . o Shadow model optimizer o 0] Shadow model augmentation
& 1077 vonni6 €cNN6s @ WRN2s-2 & 1077 vsep ®@scom Madam & 10 3 'V None ® +Mirror Ml +Shift ® +Cutout
to CNN-32 P> WRN28-1 B WRN28-10 to tc 1w o
S} 101 - ] S} 101 - S 1071 4 v ]
: 4 % 2 p A0 0 ®YY, L L2
© v © @ 1 v
© 102 ] M v z 1072 4 x 1072 * v
o " o o T
o = o
1034 ® 1073 1073
T T T T T T T T T T T T T
CNN-16 CNN-32 CNN-64 WRN28-1 WRN28-2 WRN28-10 SGD SGDM Adam None +Mirror +Shift +Cutout

Target model augmentation

(c) Vary data augmentation.

Fig. 11: Our attack succeeds when the adversary is uncertain of the target model’s training setup. We vary the target model’s
architecture (a), the training optimizer (b) and the data augmentation (c), as well as the adversary’s guess of each of these
properties when training shadow models. The attack performs best when the adversary guesses correctly (black-lined markers).

T®
Oregon State
& University - - -

: Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security



Thank You!

Tu/Th 4:00 — 5:50 pm
Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23
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