CS 499/579: TRUSTWORTHY ML 04.18: BLACK-BOX (ADVERSARIAL ATTACKS)

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

sanghyun.hong@oregonstate.edu

SAIL Secure Al Systems Lab

HEADS-UP!

- Due dates
 - 4/13: HW 1 due
 - 4/18: Written paper critique
- Announcement
 - 4/13: Homework 2 is out
 - 4/25: Checkpoint presentation I
 - 15-20 min presentation + 3-5 min Q&A
 - Presentation MUST cover:
 - A research problem your team chose
 - A review of the prior work relevant to your problem
 - » How is your team's work different from the prior work?
 - » What's the paper your team picked and the results your team will reproduce?
 - Next steps
- Call for actions

TOPICS FOR TODAY

- Research questions
 - How can we find adversarial examples?
 - What is the attack scenario (threat model)?
 - What are the goals for the attacker (under the threat model)?
 - What is the right method for finding adversarial examples?
 - What properties do an adversarial examples exploit?
 - How can a real-world attacker exploit them in practice?
 - How effective adversarial attacks in real-world scenarios?
 - What can an adversary do to make adversarial attack effective?
 - How can we remove adversarial examples?

RECAP: THREAT MODEL FOR EVASION ATTACKS

- Evasion (test-time) attack
 - Goal:
 - Craft human-imperceptible perturbations that can make a test-time sample misclassified by a model
 - Knowledge:
 - (Trivial) Test-time samples to attack
 - Training data
 - Model architecture and parameters
 - Two cases:
 - White-box: knows training data and model internals
 - Black-box: does not know both
 - Capability:
 - Sufficient computational power to craft adversarial examples

RECAP: THREAT MODEL FOR **BLACK-BOX** EVASION ATTACKS

- Black-box evasion attack
 - Goal:
 - Craft human-imperceptible perturbations that can make a test-time sample misclassified by a model
 - (Black-box) Knowledge:
 - Do not know the model architecture and/or
 - Do not know the trained model's parameters and/or
 - Do not know the training data
 - Capability:
 - Sufficient computational power to craft adversarial examples

How Can An Adversary Launch Attacks on (Black-box) Models?

BLACK-BOX ATTACKS

- How can an adversary launch black-box attacks?
 - Brute-force attacks
 - Query-based attacks
 - Transfer attacks

IN-CLASS PRESENTATION AND DISCUSSION PRIOR CONVICTIONS:

BLACK-BOX ADVERSARIAL ATTACKS WITH BANDITS AND PRIORS

Apurva Dilip Kokate

• Sub-research questions

- SRQ 1: How accurate should we estimate a gradient for successful attacks?
 - PGD can be quite successful with imperfect gradient estimates
 - Query-efficiency is bounded by the prior work [Ilyas *et al.*] in practical scenarios
- SRQ 2: How can we estimate gradient accurately with smaller queries?
 - Use two priors: time- and data-dependent priors
 - Formulate the estimation into the bandit framework
- SRQ 3: (If we find a method) How effective (and successful) is this new method?
 - Require 2.5 5x less queries for successful attacks compared to NES

BLACK-BOX ATTACKS

- How can an adversary launch black-box attacks?
 - Brute-force attacks
 - Query-based attacks
 - Transfer attacks¹

¹Liu et al., Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017

BLACK-BOX (TRANSFER) ATTACKS

- Sub-research questions
 - SRQ 1: How well do adversarial examples transfer between models?
 - SRQ 2: What factors influence the transferability of adversarial examples?
 - SRQ 3: How well do adversarial examples transfer in practice?

• Empirical approach

- Train two models on a dataset
- Craft adversarial examples on a model A (targeted and non-targeted)
- Measure the success of these examples on the other model B
- Setup
 - Choose 100 images randomly from the ImageNet test-set
 - Use ResNet-50/-101/-152, GoogleNet, and VGG-16 models
 - Matching rate and distortion (l_2 -distance)
- Adversarial attacks
 - Optimization-based attack (similar to C&W)
 - Fast Gradient-based attack (similar to PGD)

• Results from non-targeted attacks

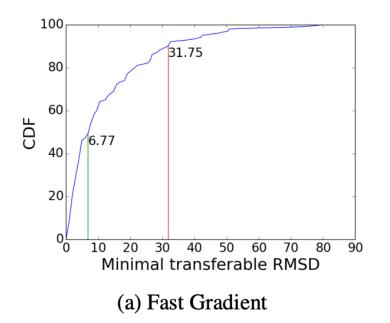
	RMSD	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152	22.83	0%	13%	18%	19%	11%
ResNet-101	23.81	19%	0%	21%	21%	12%
ResNet-50	22.86	23%	20%	0%	21%	18%
VGG-16	22.51	22%	17%	17%	0%	5%
GoogLeNet	22.58	39%	38%	34%	19%	0%

Panel A: Optimization-based approach

	RMSD	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152	23.45	4%	13%	13%	20%	12%
ResNet-101	23.49	19%	4%	11%	23%	13%
ResNet-50	23.49	25%	19%	5%	25%	14%
VGG-16	23.73	20%	16%	15%	1%	7%
GoogLeNet	23.45	25%	25%	17%	19%	1%

Panel B: Fast gradient approach

- Distortion vs. Matching Rate
 - VGG-16 to ResNet-152



• Results from targeted attacks

	RMSD	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152	23.13	100%	2%	1%	1%	1%
ResNet-101	23.16	3%	100%	3%	2%	1%
ResNet-50	23.06	4%	2%	100%	1%	1%
VGG-16	23.59	2%	1%	2%	100%	1%
GoogLeNet	22.87	1%	1%	0%	1%	100%

• Attacks that work on multiple models?

- Ensemble of models: use multiple surrogate models to craft adversarial examples

• Ensemble approach results (optimization-based attacks)

	RMSD	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
-ResNet-152	30.68	38%	76%	70%	97%	76%
-ResNet-101	30.76	75%	43%	69%	98%	73%
-ResNet-50	30.26	84%	81%	46%	99%	77%
-VGG-16	31.13	74%	78%	68%	24%	63%
-GoogLeNet	29.70	90%	87%	83%	99%	11%

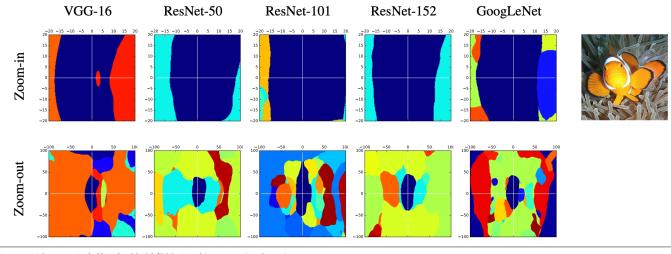
	RMSD	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
-ResNet-152	17.17	0%	0%	0%	0%	0%
-ResNet-101	17.25	0%	1%	0%	0%	0%
-ResNet-50	17.25	0%	0%	2%	0%	0%
-VGG-16	17.80	0%	0%	0%	6%	0%
-GoogLeNet	17.41	0%	0%	0%	0%	5%

- Why the ensemble approach works?
 - Hypothesis: gradients between two models are not aligned
 - Evaluation approach
 - Compute the gradients of inputs from the models
 - Compute the cosine similarity between the gradients from two different models
 - Results

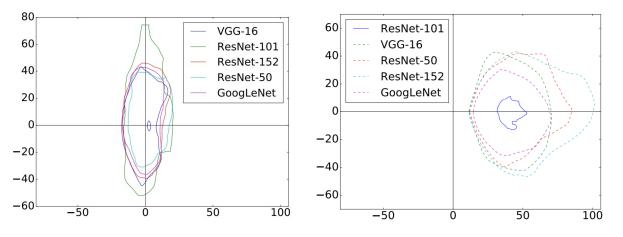
	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152	1.00	—	—	_	—
ResNet-101	0.04	1.00	_	_	
ResNet-50	0.03	0.03	1.00	—	—
VGG-16	0.02	0.02	0.02	1.00	_
GoogLeNet	0.01	0.01	0.01	0.02	1.00

- Why adversarial examples transfer?
 - Hypothesis: transferability may be related to decision boundary characteristics
 - Evaluation:
 - Take a sample image, and two orthogonal gradient directions
 - Perturb the sample along each direction and measure the labels
 - Results

Oregon State



- Why adversarial examples transfer more in the ensemble approach?
 - Hypothesis: a common decision boundary characteristics
 - Evaluation:
 - Take a sample image, and two orthogonal gradient directions
 - Perturb the sample along each direction and measure the labels
 - Results



SRQ 3: How well do adversarial examples transfer in practice?

Method

- Craft adversarial examples on ImageNet models
- Use them to fool the object recognition service in Clarifai.com (You can do as well)
- Setup
 - Choose 100 images randomly from the ImageNet test-set
 - Use models: ResNet-50/-101, GoogleNet and VGG-16
 - Matching rate
- Attacks
 - Optimization-based attack (similar to C&W)

SRQ 3: How well do adversarial examples transfer in practice?

- Transfer attack results
 - Non-targeted:
 - Most attacks transfer (= fooled Clarifai.com)
 - 57% AEs crafted on VGG-16 transfer
 - 76% AEs crafted on the ensemble transfer
 - Targeted:
 - Misclassification towards a target label
 - 2% AEs crafted on VGG-16 transfer
 - 18% AEs crafted on the ensemble transfer

Thank You!

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/Sp23

