CS 499/579: TRUSTWORTHY ML 04.20: DEFENSES I

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

sanghyun.hong@oregonstate.edu

HEADS-UP!

- Due dates
 - 4/15: Checkpoint presentation I
- Announcement
 - 4/25: Checkpoint presentation I
 - 15-20 min presentation + 3-5 min Q&A
 - Presentation MUST cover:
 - A research problem your team chose
 - A review of the prior work relevant to your problem
 - » How is your team's work different from the prior work?
 - » What's the paper your team picked and the results your team will reproduce?
 - Next steps
 - 4/25: Checkpoint review assignments are out!
 - Check the Canvas for your assignment (you will be assigned to one project)

RECAP

- Research questions
 - How can we find adversarial examples?
 - Threat model for evasion (test-time) attacks
 - White-box attacks: FGSM, BIM, C&W and PGD
 - Properties to exploit: linearity by computing input gradients
 - How can a real-world attacker exploit them in practice?
 - Black-box attacks:
 - Transfer attacks
 - Query-based attacks
 - Properties to exploit:
 - Transfer attacks: surrogate models (often ensembled)
 - Query-based attacks: data-dependent and time-dependent priors
 - How can we remove adversarial examples?

TOPICS FOR TODAY

- How can we remove adversarial examples?
 - Systems approach
 - Training-time defense: "Adversarial Training"
 - Post-training defense: "Feature Squeezing"
 - Certified approach (next lecture)

MOTIVATION

- Initial adversarial example research
 - FGSM¹...

How Can We Train Models Robust to Adversarial Examples?

Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015

THE KEY IDEA

- Adversarial training
 - Deep neural networks (DNNs) are universal function approximators¹
 - DNNs may learn to be resistant to adversarial examples (a desirable function)
 - Adversarial training (AT):

$$\tilde{J}(\boldsymbol{\theta}, \boldsymbol{x}, y) = \alpha J(\boldsymbol{\theta}, \boldsymbol{x}, y) + (1 - \alpha)J(\boldsymbol{\theta}, \boldsymbol{x} + \epsilon \operatorname{sign}\left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)$$

Hornik et al., Multilayer feedforward networks are universal approximators, Neural Networks 1989

THE KEY IDEA - CONT'D

- Adversarial training
 - Deep neural networks (DNNs) are universal function approximators¹
 - DNNs may learn to be resistant to adversarial examples (a desirable function)
 - Adversarial training (AT):
 - In MNIST, AT reduces an error rate from 89.4% to 17.9% on FGSM
 - AT with FGSM don't increase the robustness to strong attacks²

versal approximators, Neural Networks 1989

Oregon State University ²Madry *et al.*, Toward Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018

THE KEY IDEA - CONT'D

• Adversarial training

Dregon State

- Deep neural networks (DNNs) are universal function approximators¹
- DNNs may learn to be resistant to adversarial examples (a desirable function)
- Adversarial training (AT):
 - In MNIST, AT reduces an error rate from 89.4% to 17.9% on FGSM
 - AT with FGSM don't increase the robustness to strong attacks²
 - AT with strong attacks (e.g., PGD) require a large capacity model

ADVERSARIAL TRAINING

- Sub-research questions:
 - SRQ 1: What does it mean by your model is robust?
 - SRQ 2: What is the upper-bound of the robustness?
 - SRQ 2: How can you certify that your model is robust?
 - SRQ 3: How can we make the certification computationally feasible?

SRQ 1: WHAT DOES IT MEAN BY YOUR MODEL IS ROBUST?

- Suppose:
 - (x, y): a test-time input and its oracle label
 - $x + \delta$: an adversarial example of x with small l_p -bounded (ε) perturbation δ
 - *f*: a neural network
- Robustness
 - For any δ where $||\delta||_p \leq \varepsilon$
 - The most probable class y_M for $f(x + \delta)$
 - Make f to be $P[f(x + \delta) = y_M] > \max_{y \neq y_M} P[f(x + \delta) = y]$

- Smoothing:
 - In image processing: reduce noise (high frequency components)
 - In neural networks: make f less sensitive to noise
- Randomized:
 - In statistics: the practice of using chance methods (random)
 - In this work: add Gaussian random noise $\sim N(0, \sigma^2 I)$ to the input x
- Randomized Smoothing¹:
 - [Train w. Gaussian noise to f's input]
 [to make it less sensitive to adversarial perturbations]

$$g(x) = \operatorname*{arg\,max}_{c \in \mathcal{Y}} \mathbb{P}(f(x + \varepsilon) = c)$$

where $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

SRQ 2: WHAT IS THE UPPER-BOUND OF THE ROBUSTNESS?

Suppose

- f: a base classifier (e.g., a NN)
- $\mathbf{P}[f(x + \delta) = c_A] \approx P_A$
- $-\max_{y\neq y_M} \mathbb{P}[f(x+\delta)=y] \approx P_B$
- Certified robustness

$$R = \frac{\sigma}{2} (\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}))$$

- Observations
 - f can be any classifier, e.g., convolutional neural networks, ...
 - R (Guarantee) is large when we use high noise, c_A is high, or c_B is low
 - R (Guarantee) is infinite as $P_A \approx 1$ and $P_B \approx 0$

 \bar{p}_{A}

 $\overline{p_B}$

Certification and classification with the robustness

Dregon State

• Certification and classification with the robustness

- Setup
 - CIFAR10: ResNet-110 and its full test-set
 - ImageNet: ResNet-50 and 500 random chosen test-set samples
- Measure
 - (approximate) Certified test-set accuracy

• Radius R vs. certified accuracy (by smoothing with σ)

• Certified accuracy compared to prior work

 \leftarrow ImageNet, smoothed by $\sigma=0.25$

• Certified accuracy vs. { # samples or confidence }

Oregon State

- Conversion to a robust classifier
 - Train a base classifier f with noised samples $\sim N(x, \sigma^2 I)$ with x's oracle label
 - Train a denoiser $D_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ that removes the input perturbations for f
- Problem:
 - Should we re-train all the classifiers, already trained and on-service?
 - How much would it be practical? [Consider ImageNet models]
- Solution:
 - Denoised smoothing¹: add a denoiser on top of a pre-trained classifier

¹Salman *et al.*, Denoised Smoothing: A Provable Defense for Pretrained Classifiers, NeurIPS 2020

- Conversion to a robust classifier
 - Train a base classifier f with noised samples $\sim N(x, \sigma^2 I)$ with x's oracle label
 - Train a denoiser $D_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ that removes the input perturbations for f

- Goal
 - Not to train *f* on noise
 - But, to provide certification to f
- Formally, We want
 - This: $g(x) = \underset{c \in \mathcal{Y}}{\operatorname{arg\,max}} \mathbb{P}[f(x + \delta) = c]$ where $\delta \sim \mathcal{N}(0, \sigma^2 I)$
 - To be this: $g(x) = \underset{c \in \mathcal{Y}}{\operatorname{arg\,max}} \mathbb{P}[f(\mathcal{D}_{\theta}(x+\delta)) = c] \text{ where } \delta \sim \mathcal{N}(0, \sigma^2 I)$
- Train D_{θ}
 - MSE objective: Just train D_{θ} to remove Gaussian noise $L_{\text{MSE}} = \mathop{\mathbb{E}}_{\mathcal{S},\delta} \|\mathcal{D}_{\theta}(x_i + \delta) x_i\|_2^2$
 - + Stability objective: (White-box) Preserve f's predictions $L_{\text{Stab}} = \mathbb{E}_{\mathcal{S},\delta}^{\mathcal{S},\delta} \ell_{\text{CE}}(F(\mathcal{D}_{\theta}(x_i + \delta)), f(x_i))$

- Setup
 - ImageNet:
 - Pre-trained classifiers: ResNet-18/34/50 (white-box)
 - Baseline: ResNet-110 certified with $\sigma = 1.0$
 - Denoisers: DnCNN and MemNet trained with $\sigma = 0.25, 0.5, 1.0$
 - Objectives: MSE / Stab / Stab+MSE
 - White-box (as-is) | Black-box (14-surrogate models)
- Measure
 - (approximate) Certified test-set accuracy

• Radius R vs. certified accuracy (train denoisers with $\sigma = 0.25$)

(a) White-box

(b) Black-box

• Radius R vs. certified accuracy (train denoisers with $\sigma = 0.25$)

• Radius R vs. certified accuracy (train denoisers with $\sigma = 0.25$)

TOPICS FOR TODAY

- How can we remove adversarial examples?
 - Systems approach
 - Training-time defense: "Adversarial Training"
 - Post-training defense: "Feature Squeezing"
 - Certified approach (next lecture)

MOTIVATION

- Existing Defenses
 - Make robust models:
 - (Gradient masking) Defensive distillation
 - Adversarial training
 - ...
 - **Detect** adversarial examples:
 - Sample statistics
 - Train a detector model
 - Prediction inconsistency (majority vote...)
 - ...

Can We Make Adversarial Perturbation Ineffective?

MOTIVATION - CONT'D

- Information-theoretical Perspective
 - Compression!

THE KEY IDEA: FEATURE SQUEEZING

• FeatureSqueezing

- (Goal) To detect whether an input is adversarial example or not
- (Idea) A model should return similar predictions over squeezed samples

FEATURE SQUEEZING

- Sub-research questions:
 - SRQ 1: What are the squeezers a defender can choose?
 - SRQ 2: How effective are they in defeating adversarial attacks?
 - SRQ 3: How effective are they when combined with existing defenses?
 - SRQ 4: How effective is feature-squeezing against adaptive attacks?

SRQ 1: What are the squeezers a defender can choose?

- H-space
 - Reduce the color depth (8-bit: 0-255 to lower-bit widths)
 - Reduce the variation among pixels
 - Local smoothing (e.g., median filter)
 - Non-local smoothing (e.g., denoiser filters)
 - More
 - JPEG compression [Kurakin et al.]
 - Dimensionality reduction [Turk and Pentland]

SRQ 2: How effective are they in defeating adv. Attacks?

- Empirical approach (Baseline)
 - Setup
 - MNIST, CIFAR10, ImageNet
 - 7-layer CNN, DenseNet, and MobileNet
 - 100 images correctly classified by them
 - Attacks
 - FGSM, BIM, C&W, JSMA
 - L0, L2, and L-inf distances

		Configrat	tion	Cost (c)	Success	Prediction	Distortion					
		Attack	Mode	COSL(S)	Rate	Confidence	L_{∞}	L_2	L_0			
		FGSM		0.002	46%	93.89%	0.302	5.905	0.560			
ANIST	, T	BIM		0.01	91%	99.62%	0.302	4.758	0.513			
	L_{∞}	CW	Next	51.2	100%	99.99%	0.251	4.091	0.491			
		Cw∞	LL	50.0	100%	99.98%	0.278	4.620	0.506			
	7	CW	Next	0.3	99%	99.23%	0.656	2.866	0.440			
	L_2	Cw_2	LL	0.4	100%	99.99%	0.734	3.218	0.436			
		CW	Next	68.8	100%	99.99%	0.996	4.538	0.047			
	L ₀	Cw_0	LL	74.5	100%	99.99%	0.996	5.106	0.060			
		JSMA	Next	0.8	71%	74.52%	1.000	4.328	0.047			
			LL	1.0	48%	74.80%	1.000	4.565	0.053			
		1										
	L_{∞}	FGSM		0.02	85%	84.85%	0.016	0.863	0.997			
		BIM		0.2	92%	95.29%	0.008	0.368	0.993			
		CIV	Next	225	100%	98.22%	0.012	0.446	0.990			
		Cw∞	LL	225	100%	97.79%	0.014	0.527	0.995			
-T	<i>L</i> ₂	DeepFool		0.4	98%	73.45%	0.028	0.235	0.995			
IFAR		CW ₂	Next	10.4	100%	97.90%	0.034	0.288	0.768			
			LL	12.0	100%	97.35%	0.042	0.358	0.855			
	L ₀	CW ₀	Next	367	100%	98.19%	0.650	2.103	0.019			
			LL	426	100%	97.60%	0.712	2.530	0.024			
		TEMA	Next	8.4	100%	43.29%	0.896	4.954	0.079			
		JSMA	LL	13.6	98%	39.75%	0.904	5.488	0.098			
	L_{∞}	FGSM		0.02	99%	63.99%	0.008	3.009	0.994			
		BIM		0.2	100%	99.71%	0.004	1.406	0.984			
ImageNet		CIV	Next	211	99%	90.33%	0.006	1.312	0.850			
		C₩∞	LL	269	99%	81.42%	0.010	1.909	0.952			
	<i>L</i> ₂	Deep	Fool	60.2	89%	79.59%	0.027	0.726	0.984			
		CIV	Next	20.6	90%	76.25%	0.019	0.666	0.323			
		CW_2	LL	29.1	97%	76.03%	0.031	1.027	0.543			
	L ₀	CIV	Next	608	100%	91.78%	0.898	6.825	0.003			
		CW_0	LL	979	100%	80.67%	0.920	9.082	0.005			

SRQ 2: How effective are they in defeating adv. attacks?

• Empirical approach (Feature Squeezing)

	Squeezer		L_{∞} Attacks				L ₂ Attacks			L ₀ Attacks				A 11		
Dataset	Nama	Parameters	FGSM	BIM	CW_∞		Deep-	Deep- CW ₂		CV	CW ₀		МА	Attacks	Legitimate	
	Itallic				Next	LL	Fool	Next	LL	Next	LL	Next	LL	Allachs		
MNIST	None		54%	9%	0%	0%	-	0%	0%	0%	0%	27%	40%	13.00%	99.43%	
	Bit Depth	1-bit	92%	87%	100%	100%	-	83%	66%	0%	0%	50%	49%	62.70%	99.33%	
	Median Smoothing	2x2	61%	16%	70%	55%	-	51%	35%	39%	36%	62%	56%	48.10%	99.28%	
	Median Shioothing	3x3	59%	14%	43%	46%	-	51%	53%	67%	59%	82%	79%	55.30%	98.95%	
	None		15%	8%	0%	0%	2%	0%	0%	0%	0%	0%	0%	2.27%	94.84%	
	Bit Depth	5-bit	17%	13%	12%	19%	40%	40%	47%	0%	0%	21%	17%	20.55%	94.55%	
CIFAR-10	Dit Deptil	4-bit	21%	29%	69%	74%	72%	84%	84%	7%	10%	23%	20%	44.82%	93.11%	
	Median Smoothing	2x2	38%	56%	84%	86%	83%	87%	83%	88%	85%	84%	76%	77.27%	89.29%	
	Non-local Means	11-3-4	27%	46%	80%	84%	76%	84%	88%	11%	11%	44%	32%	53.00%	91.18%	
	None		1%	0%	0%	0%	11%	10%	3%	0%	0%	-	-	2.78%	69.70%	
	Dit Donth	4-bit	5%	4%	66%	79%	44%	84%	82%	38%	67%	-	-	52.11%	68.00%	
ImageNet	Bit Deptil	5-bit	2%	0%	33%	60%	21%	68%	66%	7%	18%	-	-	30.56%	69.40%	
imageivet	Median Smoothing	2x2	22%	28%	75%	81%	72%	81%	84%	85%	85%	-	-	68.11%	65.40%	
	Moutan Shioouning	3x3	33%	41%	73%	76%	66%	77%	79%	81%	79%	-	-	67.22%	62.10%	
	Non-local Means	11-3-4	10%	25%	77%	82%	57%	87%	86%	43%	47%	-	-	57.11%	65.40%	

SRQ 2: How effective are they in defeating adv. attacks?

- Detection:
 - Metric:
 - Used with a single squeezer "score = $||f(x) f(x^{squeezed})||_{l_1}$ "
 - Used with multiple squeezer "score = max(score^{squeezer1}, score^{squeezer2}, ...)"

	Configuration				L_{∞} Attacks				L ₂ Attacks			L ₀ Attacks				
	Saucozon	Parameters	Threshold	FGSM	BIM	CW_{∞}		Deep CW ₂		CW ₀		JSMA		Detection		
	Squeezer					Next	LL	Fool	Next	LL	Next	LL	Next	LL	Rate	
CIFAR-10		1-bit	1.9997	0.063	0.075	0.000	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0.013	
		2-bit	1.9967	0.083	0.175	0.000	0.000	0.000	0.000	0.000	0.000	0.018	0.000	0.000	0.022	
	Bit Depth	3-bit	1.7822	0.125	0.250	0.755	0.977	0.170	0.787	0.939	0.365	0.214	0.000	0.000	0.409	
		4-bit	0.7930	0.125	0.150	0.811	0.886	0.642	0.936	0.980	0.192	0.179	0.041	0.000	0.446	
		5-bit	0.3301	0.000	0.050	0.377	0.636	0.509	0.809	0.878	0.096	0.018	0.041	0.038	0.309	
	Median Smoothing	2x2	1.1296	0.188	0.550	0.981	1.000	0.717	0.979	1.000	0.981	1.000	0.837	0.885	0.836	
	Wiedian Shioouning	3x3	1.9431	0.042	0.250	0.660	0.932	0.038	0.681	0.918	0.750	0.929	0.041	0.077	0.486	
		11-3-2	0.2770	0.125	0.400	0.830	0.955	0.717	0.915	0.939	0.077	0.054	0.265	0.154	0.484	
	Non local Maan	11-3-4	0.7537	0.167	0.525	0.868	0.977	0.679	0.936	1.000	0.250	0.232	0.245	0.269	0.551	
	Non-iocai Micali	13-3-2	0.2910	0.125	0.375	0.849	0.977	0.717	0.915	0.939	0.077	0.054	0.286	0.173	0.490	
		13-3-4	0.8290	0.167	0.525	0.887	0.977	0.642	0.936	1.000	0.269	0.232	0.224	0.250	0.547	
	Best Attack-Specific Single Squeezer -			0.188	0.550	0.981	1.000	0.717	0.979	1.000	0.981	1.000	0.837	0.885	-	
	Best Joint Detection (5-bit, 2x2, 13-3-2) 1.1402			0.208	0.550	0.981	1.000	0.774	1.000	1.000	0.981	1.000	0.837	0.885	0.845	

SRQ 3: How effective is this when combined with other defenses?

- FeatureSqueezing + AT
 - Setup
 - MNIST
 - AT (with epsilon 0.3) + Use 2-bit for Pixels
 - Use FGSM and PGD attacks (epsilon 0.1 − 0.4)

SRQ 4: How effective is feature squeezing against adaptive att.?

- (Adaptive) attack
 - Attackers who know this feature squeezing is deployed
 - Adaptive attack (using C&W + L2 or L-inf):
 - Reduce the prediction difference between x and x^{adv} under a threshold
 - Set the threshold is the one used by the detector
 - Result on MNIST:

Fig. 7: Adaptive adversary success rates.

MOTIVATION

- Research Questions
 - SRQ 1: What are the squeezers a defender can choose?
 - Bit-width reduction
 - Smoothing (local or non-local)
 - SRQ 2: How effective are they in defeating adversarial attacks?
 - Reduce the attack success rate by 87—100%
 - Detection rate is up to 100% when squeezers are jointly used
 - SRQ 3: How effective are they when combined with existing defenses?
 - On MNIST, it improves the robustness over what AT can provides
 - SRQ 4: How effective is feature-squeezing against adaptive attacks?
 - On MNIST, the attack success rate increases to 0-68%
 - One can choose a filter size randomly to defeat adaptive attacks (68% to 17%)

Thank You!

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/Sp23

SAIL Secure Al Systems Lab