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HEADS-UP!

* Due dates
— 4/15: Checkpoint presentation |

* Announcement
— 4/25: Checkpoint presentation |
* 15-20 min presentation + 3-5 min Q&A
* Presentation MUST cover:
— A research problem your team chose
- A review of the prior work relevant to your problem
»> How is your team’s work different from the prior work?
»> What’s the paper your team picked and the results your team will reproduce?
- Next steps
— 4/25: Checkpoint review assignments are out!
» Check the Canvas for your assignment (you will be assigned to one project)
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RECAP

* Research questions
- How can we find adversarial examples?
* Threat model for evasion (test-time) attacks
* White-box attacks: FGSM, BIM, C&W and PGD
* Properties to exploit: linearity by computing input gradients
- How can a real-world attacker exploit them in practice?
* Black-box attacks:
- Transfer attacks
- Query-based attacks
* Properties to exploit:
- Transfer attacks: surrogate models (often ensembled)
- Query-based attacks: data-dependent and time-dependent priors
- How can we remove adversarial examples?
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TOPICS FOR TODAY

* How can we remove adversarial examples?
- Systems approach
* Training-time defense: “Adversarial Training”
* Post-training defense: “Feature Squeezing”
— Certified approach (next lecture)
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MOTIVATION

* Initial adversarial example research
- FGSM1...

How Can We Train Models Robust to Adversarial Examples?

Or(_egonState Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015
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THE KEY IDEA

* Adversarial training
— Deep neural networks (DNNs) are universal function approximators?
— DNNs may learn to be resistant to adversarial examples (a desirable function)
— Adversarial training (AT):

~

J(0,z,y) =aJ(@,z,y) + (1 —a)J (0, +esign(VoJ(0,z,y))

OregonState Hornik et al., Multilayer feedforward networks are universal approximators, Neural Networks 1989
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THE KEY IDEA - CONT'D

* Adversarial training
— Deep neural networks (DNNs) are universal function approximators?
— DNNs may learn to be resistant to adversarial examples (a desirable function)
— Adversarial training (AT):

* |[n MNIST, AT reduces an error rate from 89.4% to 17.9% on FGSM
« AT with FGSM don’t increase the robustness to strong attacks?
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CIFAR10
Simple|Wide  Simple| Wide Simple| Wide Simple| Wide
Natural 92.7% |95.2% 87.4% 90.3% 79.4% |87.3% 0.00357|0.00371
FGSM  27.5% |32.7% 90.9% |95.1% 51.7% |56.1% 0.0115 |0.00557
PGD 0.8% |3.5% 0.0% | 0.0% 43.7% |45.8% 1.11 |0.0218
(a) Standard training (b) FGSM training (c) PGD training (d) Training Loss Jersal approximators, Neural Networks 1989
s Oregon State 2Madry et al., Toward Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018
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THE KEY IDEA - CONT'D

* Adversarial training
— Deep neural networks (DNNs) are universal function approximators?
— DNNs may learn to be resistant to adversarial examples (a desirable function)
— Adversarial training (AT):
* In MNIST, AT reduces an error rate from 89.4% to 17.9% on FGSM
» AT with FGSM don’t increase the robustness to strong attacks?
* AT with strong attacks (e.g., PGD) require a large capacity model
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ADVERSARIAL TRAINING

* Sub-research questions:

- SRQ 1: What does it mean by your model is ?
- SRQ 2: What is the of the robustness?
- SRQ 2: How can you that your model is robust?

- SRQ 3: How can we make the certification

Oregon State
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SRO 1: WHAT DOES IT MEAN BY YOUR MODEL IS ROBUST?

* Suppose:
- (x,y): a test-time input and its oracle label
- x + &: an adversarial example of x with small [,—bounded (¢) perturbation §
- f:aneural network

* Robustness

I n-confidence intervals

- For any 6 where ||5][, < ¢ T stability bounds
— The most probable class y,, for f(x + ) 101
- Make f tobe P[f(x +6) = yy] > max P[f(x + &) = y] g Certifiably
Y#FYMm 2 robust!
% 0.5
A % i i
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(b) Robustness Test Example
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SRO 1: WHAT DOES IT MEAN BY YOUR MODEL IS ROBUST?

* Smoothing:
- In image processing: reduce noise (high frequency components)

— In neural networks: make f less sensitive to noise
.

* Randomized: Original

— In statistics: the practice of using chance methods (random)
— In this work: add Gaussian random noise ~N (0, a2I) to the input x

* Randomized Smoothing?:

— [Train w. Gaussian noise to f’s input]
[to make it less sensitive to adversarial perturbations]

g9(z) = argmax P(f(z +¢) = ¢
cey
where ¢ ~ N(0,0%1) S0
jaN Tconen et al., Certified Adversarial Robustness via Randomized Smoothing, ICML 2019
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SR0O 2: WHAT IS THE UPPER-BOUND OF THE ROBUSTNESS?

* Suppose
- f:a base classifier (e.g., a NN) B
- Plf(x+6) =cal = P4 o
- max P[f(x +6) = y] = Pp -
Y#FYM
* Certified robustness ]

— The smoothed classifier g is robust around x with the [, radius

R= (87 (pa) - 7' (PB))

* Observations
— f can be any classifier, e.g., convolutional neural networks, ...
- R (Guarantee) is large when we use high noise, ¢4 is high, or cg is low
- R (Guarantee) is infinite as P4 = 1 and Pz = 0
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SR0O 3: How YOU CAN CERTIFY A MODEL IS ROBUST?

e Certification and classification with the robustness

Pseudocode for certification and prediction

# evaluate g at x
function PREDICT(f, o, z, n, @)

counts < SAMPLEUNDERNOISE(f, z, n, o)

Ca, Cp < top two indices in counts

na,np < counts|[éal], counts|ég]

if BINOMPVALUE(n 4, na + np, 0.5) < areturn ¢4
else return ABSTAIN

# certify the robustness of g around x
function CERTIFY(f, o, x, ng, n, )

counts0 < SAMPLEUNDERNOISE( f, z, ng, o)

Ca ¢ top index in counts0

counts < SAMPLEUNDERNOISE(f,z,n, o)

pa < LOWERCONFBOUND(counts[é], n, 1 — )
if pa > 1 return prediction ¢4 and radius ¢ ®~*(p4)
else return ABSTAIN

Oregon State
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Guarantee the probability of PREDICT
returning a class other than g(x) is

CERTIFY returns a class ¢4 and a radius
R for the g(x) with the probability «
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SR0O 3: How YOU CAN CERTIFY A MODEL IS ROBUST?

e Certification and classification with the robustness

5
3 —— ours
(Lecuyer et al, 2018) 4
—— (Lietal, 2018)
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SR0O 3: How YOU CAN CERTIFY A MODEL IS ROBUST?

* Setup
— CIFAR10: ResNet-110 and its full test-set
- ImageNet: ResNet-50 and 500 random chosen test-set samples

* Measure
- (approximate) Certified test-set accuracy

Oregon State
& University

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

15



SR0O 3: How YOU CAN CERTIFY A MODEL IS ROBUST?

* Radius R vs. certified accuracy (by smoothing with o)

certified accuracy
o o o
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SR0O 3: How YOU CAN CERTIFY A MODEL IS ROBUST?

* Certified accuracy compared to prior work

1.0
—— ours

0.8 (Lecuyer et al, 2018)
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<& ImageNet, smoothed by 0 = 0.25
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SR0O 3: How YOU CAN CERTIFY A MODEL IS ROBUST?

* Certified accuracy vs. { # samples or confidence }
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— 99.999% confidence
- 99.99% confidence

— 99.9% confidence

— 99% confidence

radius
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SR0O 4: How CAN WE MAKE THIS COMPUTATIONALLY FEASIBLE?

* Conversion to a robust classifier

— Train a base classifier f with x’s oracle label
- Train that removes the input perturbations for f
* Problem:

- Should we re-train all the classifiers, already trained and on-service?
- How much would it be practical? [Consider ImageNet models]

* Solution:
: add a denoiser on top of a pre-trained classifier

1Salman et al., Denoised Smoothing: A Provable Defense for Pretrained Classifiers, NeurlPS 2020
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SR0O 4: How CAN WE MAKE THIS COMPUTATIONALLY FEASIBLE?

* Conversion to a robust classifier
— Train a base classifier f with noised samples ~N (x, 0“1) with x’s oracle label
— Train a denoiser Dy: R — R? that removes the input perturbations for f

Our Framework h

\ (G
— | m
——— R
o ©
me b >
re= e D L5
Custom-trained b S Google C|°Ud» | .
: S
Denoiser .p s |
<> clarifai aws | 58
c =h
g H
I IRE
- A
/

" Oregon State

o University 2

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security



SR0O 4: How CAN WE MAKE THIS COMPUTATIONALLY FEASIBLE?

e Goal

- Not to train f on noise
- But, to provide certification to f

* Formally, We want
— This: g(z) = argmax P[f(z +6) =c] where § ~ N(0,0°I)
cey

~ To be this: 9(z) = arg max P[f(Do(z +8)) = c| where § ~ N(0,0°I)
ce

* Train Dg
objective: Just train Dy to remove Gaussian noise  Luse = E [|Do(z; +6) — zil3
objective: (White-box) Preserve f’s predictions Lga, = E Lex(F(Do(i + ), f(z2)

Jons
K48 Oregon State
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SR0O 4: How CAN WE MAKE THIS COMPUTATIONALLY FEASIBLE?

* Setup
- ImageNet:
* Pre-trained classifiers: ResNet-18/34/50 (white-box)
» Baseline: ResNet-110 certified with 0 = 1.0
— Denoisers: DnCNN and MemNet trained with ¢ = 0.25, 0.5, 1.0
— Objectives: MSE / Stab / Stab+MSE
* White-box (as-is) | Black-box (14-surrogate models)

* Measure
- (approximate) Certified test-set accuracy

Oregon State
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SR0O 4: How CAN WE MAKE THIS COMPUTATIONALLY FEASIBLE?

* Radius R vs. certified accuracy (train denoisers with ¢ = 0.25)
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SR0O 4: How CAN WE MAKE THIS COMPUTATIONALLY FEASIBLE?

* Radius R vs. certified accuracy (train denoisers with ¢ = 0.25)

1.0 1.0
—— Cohen et al. —— Cohen et al.

(b) MSE (c) Stab+MSE
& o

Secure-Al Systems Lab (SAIL) - C5499/599: Machine Learning Security 24



SR0O 4: How CAN WE MAKE THIS COMPUTATIONALLY FEASIBLE?

* Radius R vs. certified accuracy (train denoisers with ¢ = 0.25)
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TOPICS FOR TODAY

* How can we remove adversarial examples?
- Systems approach
* Training-time defense: “Adversarial Training”
* Post-training defense: “Feature Squeezing”

T®
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MOTIVATION

* Existing Defenses
robust models:

(Gradient masking) Defensive distillation
Adversarial training

adversarial examples:
Sample statistics
Train a detector model
Prediction inconsistency (majority vote...)

Can We Make Adversarial Perturbation Ineffective?

Oregon State
& University

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

27



MOTIVATION - CONT'D

* Information-theoretical Perspective
— Compression!

g Oregon State
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THE KEY IDEA: FEATURE SQUEEZING

* FeatureSqueezing

Prediction, Adversarial

édl yes
o “\

2 ..
Legitimate

0

Prediction,

|
\ 1azaanbg /

Input

l
\ Z1azaanbg /

Prediction,

- (Goal) To detect whether an input is adversarial example or not
- (Idea) A model should return similar predictions over squeezed samples
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FEATURE SQUEEZING

* Sub-research questions:
- SRQ 1: What are the squeezers a defender can choose?
- SRQ 2: How effective are they in defeating adversarial attacks?
- SRQ 3: How effective are they when combined with existing defenses?
- SRQ 4: How effective is feature-squeezing against adaptive attacks?

Oregon State
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SR0O 1: WHAT ARE THE SQUEEZERS A DEFENDER CAN CHOOSE?

* H-space
— Reduce the color depth (8-bit: 0-255 to lower-bit widths)

— Reduce the variation among pixels
* Local smoothing (e.g., median filter)

-

* Non-local smoothing (e.g., denoiser filters)
- More

* JPEG compression [Kurakin et al.]

* Dimensionality reduction [Turk and Pentland]

StDev = 10
G Oregon State Local Smoothing

o7 University
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SR0O 2: HOW EFFECTIVE ARE THEY IN DEFEATING ADV. ATTACKS?

* Empirical approach (Baseline)
- Setup

* MNIST, CIFAR10, ImageNet
» 7-layer CNN, DenseNet, and MobileNet

* 100 images correctly classified by them

- Attacks
* FGSM, BIM, C&W, JISMA
* LO, L2, and L-inf distances

T®
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Configration Cost (s) Success | Prediction Distortion
Attack [ Mode Rate | Confidence | L, L, Ly
FGSM 0.002 46% | 93.89% | 0.302 | 5.905 | 0.560
I BIM 0.01 91% | 99.62% | 0.302 | 4.758 | 0.513
0 cw Next | 51.2 100% | 99.99% | 0.251 | 4.091 | 0.491
= © LL 50.0 100% | 99.98% | 0.278 | 4.620 | 0.506
E L | cw Next 0.3 99% | 99.23% | 0.656 | 2.866 | 0.440
S 2 LL 0.4 100% | 99.99% | 0.734 | 3.218 | 0.436
cw Next | 68.8 100% | 99.99% | 0.996 | 4.538 | 0.047
0 LL 74.5 100% | 99.99% | 0.996 | 5.106 | 0.060
Lo JSMA Next 0.8 71% | 74.52% 1.000 | 4.328 | 0.047
LL 1.0 48% | 74.80% 1.000 | 4.565 | 0.053
FGSM 0.02 85% | 84.85% |0.016 | 0.863 | 0.997
I BIM 0.2 92% | 95.29% | 0.008 | 0.368 | 0.993
e cw Next | 225 100% | 98.22% | 0.012 | 0.446 | 0.990
o © LL |225 100% | 97.79% | 0.014 | 0.527 | 0.995
‘; DeepFool 0.4 98% | 73.45% |0.028 | 0.235 | 0.995
g L, cw Next | 10.4 100% | 97.90% | 0.034 | 0.288 | 0.768
5 2 [LL | 120 100% | 97.35% | 0.042]0.358 | 0.855
W, Next | 367 100% | 98.19% | 0.650 | 2.103 | 0.019
LL |426 100% | 97.60% | 0.712 | 2.530 | 0.024
Lo ISMA Next 8.4 100% | 43.29% | 0.896 | 4.954 | 0.079
LL 13.6 98% | 39.75% |0.904 | 5.488 | 0.098
FGSM 0.02 9% | 63.99% | 0.008 | 3.009 | 0.994
L BIM 0.2 100% | 99.71% | 0.004 | 1.406 | 0.984
- e CcW Next | 211 99% | 90.33% |0.006 | 1.312 | 0.850
Z, °° LL |269 99% | 81.42% |0.010 | 1.909 | 0.952
gu DeepFool 60.2 89% | 79.59% | 0.027 | 0.726 | 0.984
E| L cw Next | 20.6 90% | 76.25% |0.019 | 0.666 | 0.323
2 LL 29.1 97% | 76.03% |0.031 | 1.027 | 0.543
L | cw Next | 608 100% | 91.78% | 0.898 | 6.825 | 0.003
0 LL |979 100% | 80.67% | 0.920 | 9.082 | 0.005




SR0O 2: HOW EFFECTIVE ARE THEY IN DEFEATING ADV. ATTACKS?

* Empirical approach (Feature Squeezing)

Squeezer L., Attacks - L, Attacks Lo Attacks All
Dataset CW, eep- CWw, CW, JSMA Legitimate
Name Parameters | FGSM | BIM |\t 77— pgo [Next | LL | Next | LL | Next | LL | ~tacks
None 54% 9% 0% 0% - 0% 0% 0% 0% | 27% | 40% | 13.00% 99.43%
MNIST Bit Depth 1-bit 92% | 87% | 100% | 100% - 83% | 66% 0% 0% | 50% | 49% | 62.70% 99.33%
Median Smoothing 2x2 61% | 16% 70% 55% - 51% | 35% | 39% | 36% | 62% | 56% | 48.10% 99.28%
3x3 59% | 14% 43% 46% - 51% | 53% | 67% | 59% | 82% | 79% | 55.30% 98.95%
None 15% 8% 0% 0% 2% 0% 0% 0% 0% 0% 0% 2.27% 94.84%
Bit Depth 5-b§t 17% | 13% 12% 19% 40% | 40% | 47% 0% 0% | 21% | 17% | 20.55% 94.55%
CIFAR-10 4-bit 21% | 29% 69% 74% 72% | 84% | 84% 7% | 10% | 23% | 20% | 44.82% 93.11%
Median Smoothing 2x2 38% | 56% 84% | 86% 83% | 87% | 83% | 88% | 85% | 84% | 76% | 77.27% 89.29%
Non-local Means 11-3-4 27% | 46% 80% 84% 76% | 84% | 8% | 11% | 11% | 44% | 32% | 53.00% 91.18%
None 1% 0% 0% 0% 11% | 10% 3% 0% 0% - - 2.78% 69.70%
Bit Depth 4-b§t 5% 4% 66% 79% 44% | 84% | 82% | 38% | 67% - - 52.11% 68.00%
ImageNet 5-bit 2% 0% 33% 60% 21% | 68% | 66% 7% | 18% - - 30.56% 69.40%
Median Smoothing 2x2 22% | 28% 75% 81% | 72% | 81% | 84% | 85% | 85% - - 68.11% 65.40%
3x3 33% | 41% 73% 76% 66% | 77% | 79% | 81% | 79% - - 67.22% 62.10%
Non-local Means 11-3-4 10% | 25% | 77% | 82% 57% | 87% | 86% | 43% | 47% - - 57.11% 65.40%
8rt_3g0n_ State
T mver51ty 313
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SR0O 2: HOW EFFECTIVE ARE THEY IN DEFEATING ADV. ATTACKS?

* Detection:
- Metric:

» Used with a single squeezer “score = ||f (x) — f(xSqueezedy) l1,”

 Used with multiple squeezer “score = max(score14€¢%€"1 scoresqueezerz

L)

Configuration L, Attacks L, Attacks L, Attacks Overall
CW,, Deep CwW, CW, JSMA Detection
Squeezer Parameters Threshold | FGSM | BIM Next | LL | Fool [ Next | LL | Next | LL | Next | LL Rate
1-bit 1.9997 0.063 | 0.075 | 0.000 | 0.000 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013
2-bit 1.9967 0.083 | 0.175 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.018 | 0.000 | 0.000 | 0.022
Bit Depth 3-bit 1.7822 0.125 | 0.250 | 0.755 | 0.977 | 0.170 | 0.787 | 0.939 | 0.365 | 0.214 | 0.000 | 0.000 | 0.409
4-bit 0.7930 0.125 | 0.150 | 0.811 | 0.886 | 0.642 | 0.936 | 0.980 | 0.192 | 0.179 | 0.041 [ 0.000 | 0.446
o 5-bit 0.3301 0.000 | 0.050 | 0.377 | 0.636 | 0.509 | 0.809 | 0.878 | 0.096 | 0.018 | 0.041 [ 0.038 [ 0.309
; Median Smoothing 2x2 1.1296 0.188 | 0.550 | 0.981 | 1.000 | 0.717 | 0.979 | 1.000 | 0.981 | 1.000 | 0.837 | 0.885 | 0.836
§ 3x3 1.9431 0.042 | 0.250 | 0.660 | 0.932 | 0.038 | 0.681 [ 0.918 [ 0.750 [ 0.929 [ 0.041 [ 0.077 | 0.486
3 11-3-2 0.2770 0.125 | 0.400 | 0.830 | 0.955 | 0.717 | 0.915 [ 0.939 [ 0.077 | 0.054 | 0.265 | 0.154 | 0.484
Non-local Mean 11-3-4 0.7537 0.167 [ 0.525 [ 0.868 | 0.977 | 0.679 | 0.936 | 1.000 | 0.250 | 0.232 | 0.245 [ 0.269 | 0.551
13-3-2 0.2910 0.125 [ 0.375 [ 0.849 | 0.977 | 0.717 | 0.915 [ 0.939 | 0.077 | 0.054 [ 0.286 | 0.173 | 0.490
13-3-4 0.8290 0.167 | 0.525 | 0.887 | 0.977 | 0.642 | 0.936 | 1.000 | 0.269 | 0.232 [ 0.224 | 0.250 | 0.547
Best Attack-Specific Single Squeezer - 0.188 | 0.550 | 0.981 | 1.000 | 0.717 | 0.979 | 1.000 | 0.981 | 1.000 | 0.837 | 0.885 -
Best Joint Detection (5-bit, 2x2, 13-3-2) [ 1.1402 0.208 | 0.550 | 0.981 | 1.000 | 0.774 | 1.000 | 1.000 | 0.981 | 1.000 | 0.837 | 0.885 | 0.845
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SRO 3: How EFFECTIVE IS THIS WHEN COMBINED WITH OTHER DEFENSES?

* FeatureSqueezing + AT

- Setup
* MNIST

* AT (with epsilon 0.3) + Use 2-bit for Pixels
* Use FGSM and PGD attacks (epsilon 0.1 — 0.4)

1.00 9862
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9783

0.95 Adversarial Training
2
£
= 9055
S
< 0.90 . . s

Binary Filter
8685
0.85
0 0.1 0.2 0.3 0.4

Adversary Strength (¢ for FGSM)
(a) FGSM attacks.
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(b) PGD attacks.
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SR0O 4: HoOw EFFECTIVE IS FEATURE SQUEEZING AGAINST ADAPTIVE ATT.?

* (Adaptive) attack
— Attackers who know this feature squeezing is deployed
- Adaptive attack (using C&W + L2 or L-inf):
* Reduce the prediction difference between x and x
* Set the threshold is the one used by the detector
— Result on MNIST:

0.6

adv ynder a threshold

0.5

0.44

0.4

03 Targeted

0.2 (Next)

0.1 001 _owrm"

0.0 — —
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Fig. 7: Adaptive adversary success rates.
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MOTIVATION

* Research Questions
- SRQ 1: What are the a defender can choose?
 Bit-width reduction
e Smoothing (local or non-local)

- SRQ 2: How are they in defeating adversarial attacks?
* Reduce the attack success rate by 87—100%
e Detection rate is up to 100% when squeezers are jointly used

- SRQ 3: How are they when ?
* On MNIST, it improves the robustness over what AT can provides

- SRQ 4: How is feature-squeezing against adaptive attacks?
* On MNIST, the attack success rate increases to 0-68%
* One can choose a filter size randomly to defeat adaptive attacks (68% to 17%)

Oregon State
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Thank You!

Tu/Th 10:00 — 11:50 am

Sanghyun Hong
https://secure-ai.systems/courses/MLSec/Sp23
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