CS 499/599: MACHINE LEARNING SECURITY 04.27: DEFENSE II

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

sanghyun.hong@oregonstate.edu

Checkpoint Presentation II

Group 6 and Group 7

HEADS-UP!

- Note
 - Great job for introducing intriguing mini-research ideas!
 - Do not forget to write reviews for others
 - SH will collect all the feedback from us and anonymously send to each group
- Due dates
 - 4/27: Homework 2
 - 5/02: Written paper critique (we will start looking at data poisoning!)
 - 5/04: SH's business travel; no lecture
- Recommendation
 - Discuss slides with SH for in-class paper presentation

RECAP

- Defenses
 - How can we remove adversarial examples?
 - Systems approach
 - Training-time defense: "adversarial-training"
 - Post-training defense: "feature squeezing"
 - Certified approach
 - (Revisit) Training-time defense: "adversarial-training"

Towards Deep Learning Models Resistant to Adversarial Attacks Amelia and Maha!

MOTIVATION

- Questions:
 - What does it mean by "robust" in ML?
 - How can we make ML models "robust"?

MOTIVATION

- Questions:
 - What does it mean by "robust" in ML?
 - How can we make ML models "robust"?
- Problems in the previous defenses
 - Are they "really" robust?
 - Are these solutions "scalable"?

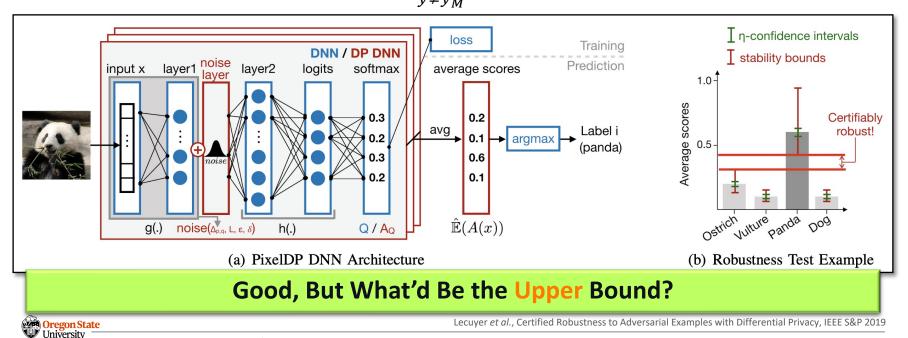
MOTIVATION - CONT'D

- Research Questions:
 - RQ 1: What is the "upper-bound" of the robustness?
 - RQ 2: How can you "certify" that yours is the upper-bound?
 - RQ 3: How can we make the certification "computationally feasible"?

ROBUSTNESS

- Suppose:
 - (x, y): a test-time input and its oracle label
 - $x + \delta$: an adversarial example of x with small l_p -bounded (ε) perturbation δ
 - *f*: a neural network
- Robustness
 - For any δ where $||\delta||_p \leq \varepsilon$ and the most probable class y_M for $f(x + \delta)$
 - Make f to be $P[f(x + \delta) = y_M] > \max_{y \neq y_M} P[f(x + \delta) = y]$

- Robustness with certificates
 - For any δ where $||\delta||_p \leq \varepsilon$ and the most probable class y_M for $f(x + \delta)$
 - Make f to be $P[f(x + \delta) = y_M] > \max_{y \neq y_M} P[f(x + \delta) = y] + \eta$



• Smoothing:

- In image processing: reduce noise (high frequency components)
- In neural networks: make f less sensitive to noise

• Randomized:

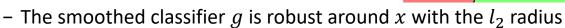
- In statistics: the practice of using chance methods (random)
- In this work: add Gaussian random noise $\sim N(0, \sigma^2 I)$ to the input x
- Randomized Smoothing:
 - [Train w. Gaussian noise to f's input]
 [to make it less sensitive to adversarial perturbations]

$$g(x) = \underset{c \in \mathcal{Y}}{\arg \max} \ \mathbb{P}(f(x + \varepsilon) = c)$$

where $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

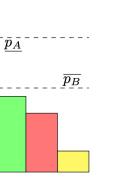
RANDOMIZED SMOOTHING: GUARANTEE

- Suppose
 - f: a base classifier (e.g., a NN)
 - $\mathbf{P}[f(x + \delta) = c_A] \approx P_A$
 - $-\max_{y\neq y_M} \mathbb{P}[f(x+\delta)=y] \approx P_B$
- Certified robustness



$$R = \frac{\sigma}{2} (\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}))$$

- Observations
 - f can be any classifier, e.g., convolutional neural networks, ...
 - R (Guarantee) is large when we use high noise, c_A is high, or c_B is low
 - R (Guarantee) is infinite as $P_A \approx 1$ and $P_B \approx 0$



RANDOMIZED SMOOTHING: PRACTICALITY

• Conversion to a robust classifier

```
Pseudocode for certification and prediction# evaluate g at xfunction PREDICT(f, \sigma, x, n, \alpha)counts \leftarrow SAMPLEUNDERNOISE(f, x, n, \sigma)\hat{c}_A, \hat{c}_B \leftarrow top two indices in countsn_A, n_B \leftarrow counts[\hat{c}_A], counts[\hat{c}_B]if BINOMPVALUE(n_A, n_A + n_B, 0.5) \leq \alpha return \hat{c}_Aelse return ABSTAIN
```

```
# certify the robustness of g around x

function CERTIFY(f, \sigma, x, n_0, n, \alpha)

counts0 \leftarrow SAMPLEUNDERNOISE(f, x, n_0, \sigma)

\hat{c}_A \leftarrow top index in counts0

counts \leftarrow SAMPLEUNDERNOISE(f, x, n, \sigma)

\underline{p}_A \leftarrow LOWERCONFBOUND(counts[\hat{c}_A], n, 1 - \alpha)

if \underline{p}_A > \frac{1}{2} return prediction \hat{c}_A and radius \sigma \Phi^{-1}(\underline{p}_A)

else return ABSTAIN
```

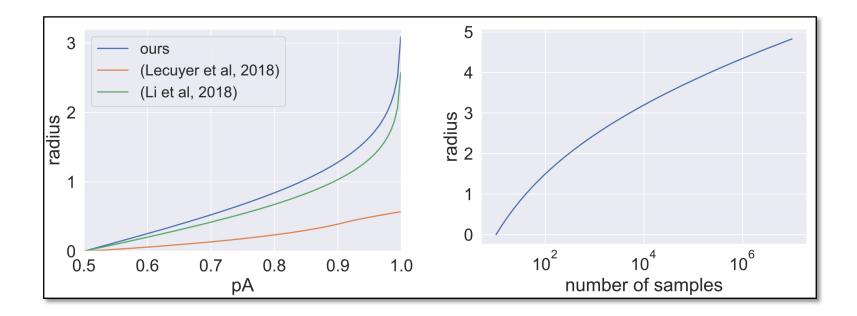
Guarantee the probability of *PREDICT* returning a class other than g(x) is α

CERTIFY returns a class c_A and a radius R for the g(x) with the probability α

Oregon State

RANDOMIZED SMOOTHING: PRACTICALITY

• Conversion to a robust classifier

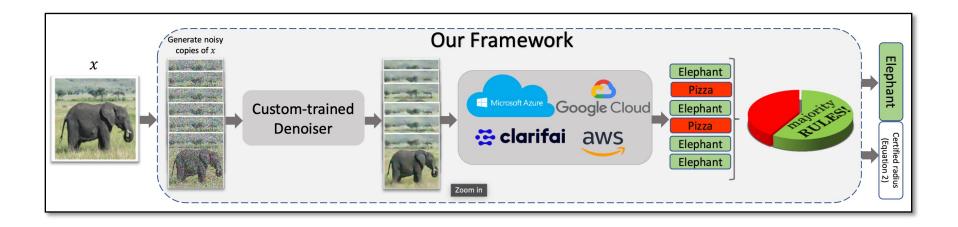


RANDOMIZED SMOOTHING: IMPLEMENTATIONS

- Conversion to a robust classifier
 - Train a base classifier f with noised samples $\sim N(x, \sigma^2 I)$ with x's oracle label
 - Train a denoiser $D_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ that removes the input perturbations for f
- Problem:
 - Should we re-train all the classifiers, already trained and on-service?
 - How much would it be practical? [Consider ImageNet models]
- Solution:
 - Denoised smoothing: add a denoiser on top of a pre-trained classifier

RANDOMIZED SMOOTHING: IMPLEMENTATIONS

- Conversion to a robust classifier
 - Train a base classifier f with noised samples $\sim N(x, \sigma^2 I)$ with x's oracle label
 - Train a denoiser $D_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ that removes the input perturbations for f

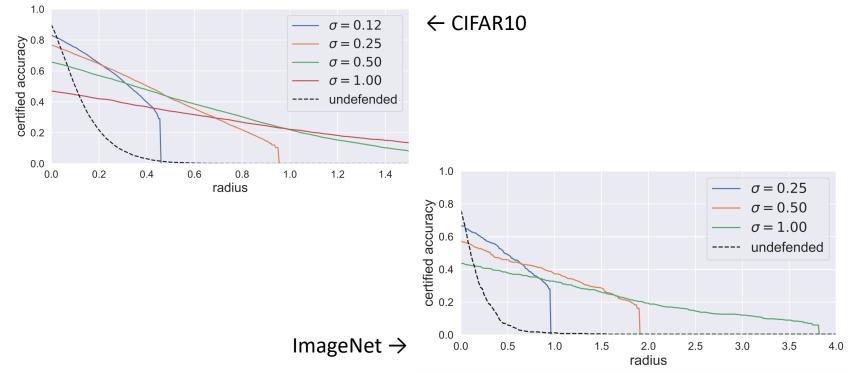


DENOISED SMOOTHING

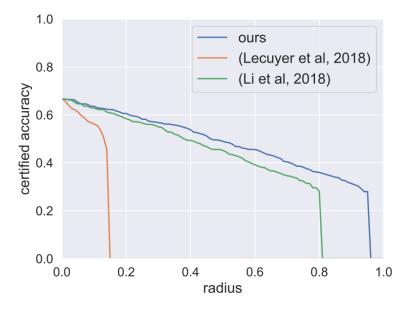
- Goal
 - Not to train *f* on noise
 - But, to provide certification to f
- Formally, We want
 - This: $g(x) = \underset{c \in \mathcal{Y}}{\operatorname{arg\,max}} \mathbb{P}[f(x + \delta) = c]$ where $\delta \sim \mathcal{N}(0, \sigma^2 I)$
 - To be this: $g(x) = \operatorname*{arg\,max}_{c \in \mathcal{Y}} \mathbb{P}[f(\mathcal{D}_{\theta}(x+\delta)) = c]$ where $\delta \sim \mathcal{N}(0, \sigma^2 I)$
- Train D_{θ}
 - MSE objective: Just train D_{θ} to remove Gaussian noise $L_{\text{MSE}} = \mathop{\mathbb{E}}_{S,\delta} \|\mathcal{D}_{\theta}(x_i + \delta) x_i\|_2^2$
 - + Stability objective: (White-box) Preserve f's predictions $L_{\text{Stab}} = \mathbb{E}_{\mathcal{S},\delta}^{\mathcal{S},\delta} \ell_{\text{CE}}(F(\mathcal{D}_{\theta}(x_i + \delta)), f(x_i))$

- Setup
 - CIFAR10: ResNet-110 and its full test-set
 - ImageNet: ResNet-50 and 500 random chosen test-set samples
- Measure
 - (approximate) Certified test-set accuracy

• Radius R vs. certified accuracy (by smoothing with σ)

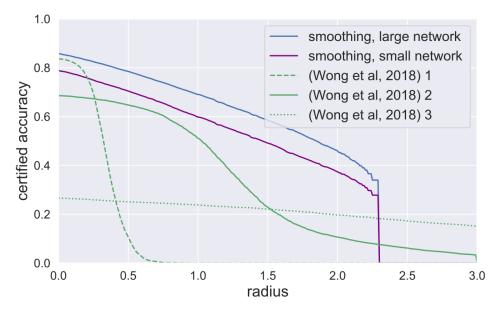


• Certified accuracy compared to prior work

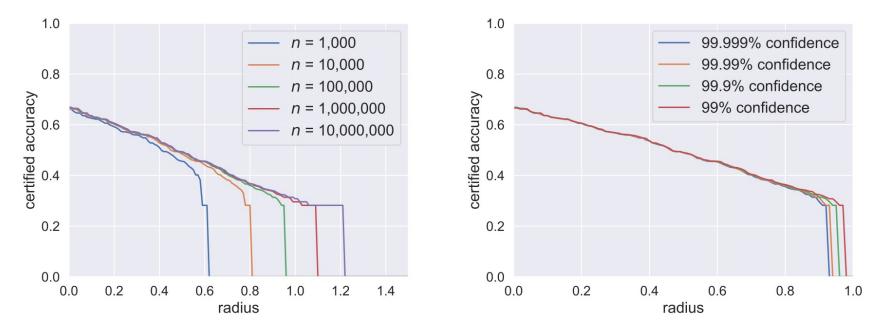


 \leftarrow ImageNet, smoothed by $\sigma = 0.25$

• Certified accuracy vs. other baselines



• Certified accuracy vs. { # samples or confidence }

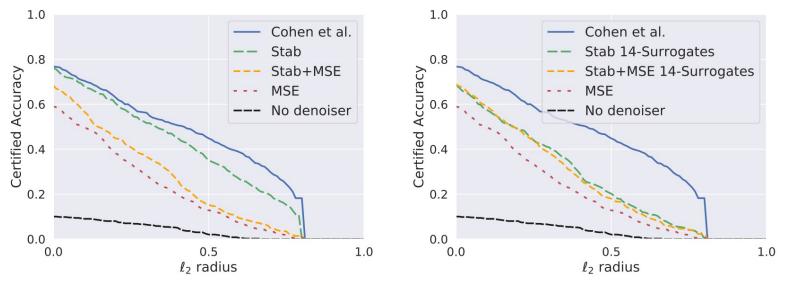


EVALUATION: DENOISED SMOOTHING

- Setup
 - ImageNet:
 - Pre-trained classifiers: ResNet-18/34/50 (white-box)
 - Baseline: ResNet-110 certified with $\sigma = 1.0$
 - Denoisers: DnCNN and MemNet trained with σ = 0.25, 0.5, 1.0
 - Objectives: MSE / Stab / Stab+MSE
 - White-box (as-is) | Black-box (14-surrogate models)
- Measure
 - (approximate) Certified test-set accuracy

EVALUATION: DENOISED SMOOTHING

• Radius R vs. certified accuracy (train denoisers with $\sigma = 0.25$)

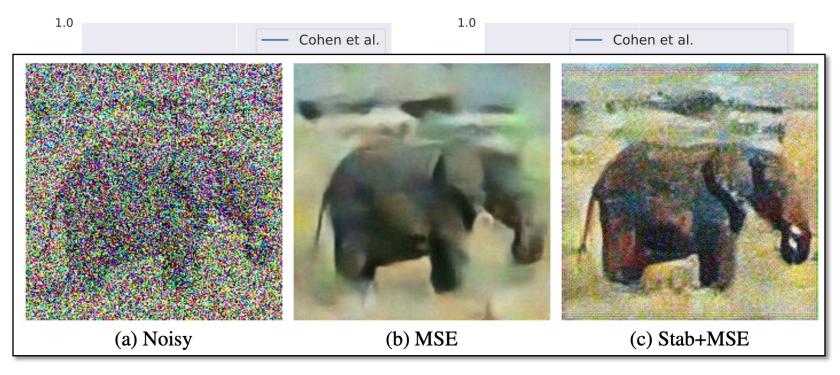


(a) White-box

(b) Black-box

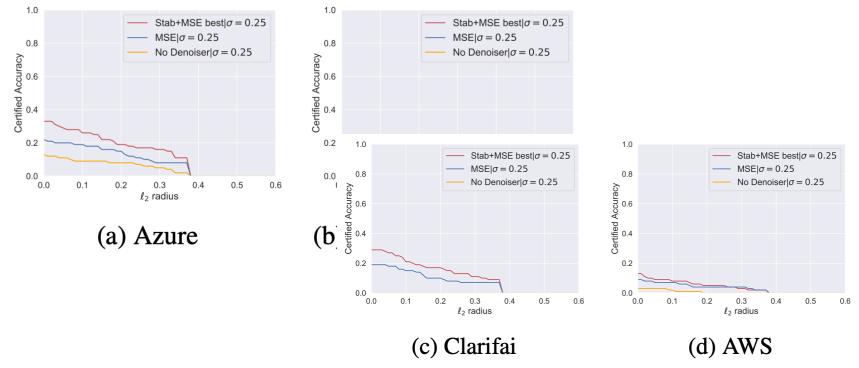
EVALUATION: DENOISED SMOOTHING

• Radius R vs. certified accuracy (train denoisers with $\sigma = 0.25$)



EVALUATION: DENOISED SMOOTHING IN THE REAL-WORLD

• Radius R vs. certified accuracy (train denoisers with $\sigma = 0.25$)



Conclusion so far

- Research Questions:
 - RQ 1: What is the "upper-bound" of the robustness?
 - Certified accuracy offered by randomized smoothing
 - RQ 2: How can you "certify" that yours is the upper-bound?
 - Predict and Certify functions
 - RQ 3: How can we make the certification "computationally feasible"?
 - Train a base classifier with smoothing
 - Train a denoiser with a base classifier, and attach it to the input

(Certified!!) Adversarial Robustness for Free!

Ethan Nechanicky!

Thank You!

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

