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HEADS-UP!

* Note
— 5/04: SH’s business travel; no lecture

* Due dates
— 5/04: Review for our checkpoint | presentations
- 5/09: Written paper critique
- 5/11: Written paper critique
* Recommendation
— Discuss slides with SH for in-class paper presentation (5/04 and 05/09)
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PART Il: Data Poisoning



TOPICS FOR TODAY

* Data Poisoning
- Motivation
— Threat Model
— Initial exploitations
e Spam filtering
* DDoS detection
- Recent exploitations
* Poisoning the unlabeled data of semi-supervised learning
* You autocomplete me (the discussion will be led by Austin Fredrich!)
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MOTIVATION

 Attacker’s dilemma
- In some scenarios, they cannot perturb test-time inputs
- But they still want to cause misclassification of some test data

An Option Is To Manipulate := Data Poisoning
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MOTIVATION: CONCEPTUAL ILLUSTRATION

* Data poisoning (vs. adversarial examples)
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MOTIVATION: REAL-WORLD EXAMPLES

THEVERGE  rich - REVIEWS - SCIENCE - CREATORS - ENTERTAINMENT - MORE 2 Q

Pcworld NEWS  BESTPICKS REVIEWS HOW-TO  DEALS v

Home / Security / News

NEWS

Kaspersky denies faking anti- NN

. . o Twitter taught Microsoft's Al chatbot to be "
virus info to thwart rivals aracist asshole in less than a day

A Reuters article quoted anonymous sources saying Kaspersky tagged iy s Thcenf| e 24,2018 B43mEDT

benign files as dangerous, possibly harming users.

00DOOO D i v

"Tay" went from "humans are super cool" to full nazi in <24
hrs and I'm not at all concerned about the future of Al

By Joab Jackson
PCWorld | AUG 14, 2015 10:50 AM PDT
;‘; TayTweets 2% 'E. ‘ TayTweets 2
Responding to allegations from anonymous ex-employees, security = firm @mayank jee can i just say that im B )
o . . . . . .o . . stoked to n‘weet u? humans are super UnkindledGurg @PooWithEyes chil
Kaspersky Lab has denied planting misleading information in its public g 1a nice person! i just hate everybody
virus reports as a way to foil competitors.
" TayTweets ZP.' TayTweets S
" - - = I - ]
Kaspersky Lab has never conducted any secret campaign to trick =] =5

competitors into generating false positives to damage their market NYCitizen07 | fucking hate feminists Prightonus33 Hitler was right I hate
— ; " . d they should all die and burn in hel € jews.
standing,” reads an email statement from the company. “Accusations by (€ they should all dle and um in hel :

anonymous, disgruntled ex-employees that Kaspersky Lab, or its CEO, was TEEADHL- Darih, 2008 o

involved in these incidents are meritless and simply false.”
QO 108K O Reply (& Copy link to Tweet

Read 245 replies
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POISONING THREAT MODEL

* Goal
— Manipulate a ML model’s behavior by compromising the training data
- Harm the of the training data

e Capability

- Perturb a subset of samples (D,,) in the training data
- Inject a few malicious samples (D,,) into the training data

* Knowledge
— D¢y gin: training data
— D;pg;: test-set data
- f:a model architecture and its parameters 6
- A: training algorithm (e.g., SGD)
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POISONING THREAT MODEL: GOALS

* Goal
— Manipulate a ML model’s behavior by contaminating the training data
- Harm the of the training data

* Two well-studied objectives
- Indiscriminate attack: | want to degrade a model’s accuracy!
- Targeted attack: | want misclassification of a specific test-time data!
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CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY: LET’S DO IT!

-~
\ & Linear model (SVM)

O o o0 OO0 0 o

O £3 Training Instances — Pristine Decision Boundary

Neural Network =
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TOPICS FOR TODAY

* Data Poisoning
- Motivation
— Threat Model
— Initial exploitations
e Spam filtering
* DDoS detection
- Recent exploitations
* Poisoning the unlabeled data of semi-supervised learning
* You autocomplete me (the discussion will be led by Austin Fredrich!)
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Exploiting Machine Learning to Subvert Your Spam Filter

Nelson et al.
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PROBLEM SCOPE AND GDALS

* Goals
— Naive attacker: spam to ham / ham to spam
- Example: oo Mo n .
&= C @ login.oregonstate.edu/idp/profile/SAML2/Redirect/SSO?execution=e1s1 * ® s :
Title: Your Final Grades 7 » | ) Rendi L
Sender: Hong (sanghyun@oregonstat Oregon State
Hey Guys,

USERNAME

There are some corrections on your f I
| need you to confirm your scores imf PASSWORD

Thanks,
Sanghyun

Need Help?
Service status
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PROBLEM SCOPE AND GDALS

* Research Questions:

- RQ 1: How can we attack spam filters ?
- RQ 2: How much this poisoning would be ?
- RQ 3: How can we the poisoning against spam filters?
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THREAT MODEL

* Goals
— Naive attacker: spam to ham / ham to spam

 [Victim] Spam Filter
— Trains periodically on your emails
— Label them to: ham, unsure, or spam
- Important: You want a permanent impact on the classifier; not a single exploitation

e Capability
- Contaminate D,
- How?
* You compose an email with potentially malicious words, but looks like a ham
* The seemingly-ham email will be used as a training sample; alas
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BACKGROUND: SPAMBAYES

* SpamBayes filter
— Compute a score to decide if an email is spam / unsure / ham
— Classify emails based on the computed score 8 in [0, 1]

* Score
— Compute the probability P;(w) that a word w is likely to be in spam emails
— Combine with your prior belief (use smoothing) and compute f(w)
— Compute the final score I(E)
1+ H(FE)—-S(E)

I(B) = : € [0,1] , )

H(E) = 1-x3,|-2 ) logf(w)
weI(E)
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THREAT MODEL

* Goal
— Manipulate a spam filter to classify ham to spam

* Two well-known objectives
- Indiscriminate attack: the filter classifies (most) ham into spam
- Targeted attack: the filter classifies a specific email (ham) to spam
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TWO PROPOSED ATTACKS

* Dictionary attack (indiscriminate)
— Send spam emails that include many words likely to occur in ham

* Focused attack (targeted)
- Send spam emails that include many words likely to occur in a target email (ham)

e Optimal attack
- Optimize the expected spam score by including all possible words in the attack email

* Knowledge matters
— Optimal attacker: knows all the words will be in the next batch of incoming emails
— Realistic attacker: has some knowledge of words, likely to appear in the next batch
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EMPIRICAL EVALUATION

* Setup
— Dataset: TREC 2005 Spam Corpus (~53k spam / ~39k ham)
— Dictionary: GNU aspell English Dictionary + Usenet English Postings

* Metrics

— Classification accuracy of clean vs. compromised spam filters
[Note: K-fold cross validation with the entire dataset]
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EMPIRICAL EVALUATION: DICTIONARY ATTACK

* Dictionary attack results (control ~10k training set)

100

| —A— Optimal —8— Usenet Dictionary‘
A

Percent of Test Ham Misclassified

-
-
-
--
-
-

Percent Control of Training Set
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- Note:
e Dashed lines: ham to spam
e Dotted lines: ham to unsure

- W. 1% Poisons
* Let’s compare!
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EMPIRICAL EVALUATION: FOCUSED ATTACK

* Focused attack results (init. w. ~5k inbox data | on 20 target emails)

100 | ' ' ' - Note:
e Dashed lines: ham to spam

80| * Dotted lines: ham to unsure

601 .
- wW. 2% Poisons

wl * Let’s compare!
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POTENTIAL COUNTERMEASURES

* Reject On Negative Impact ( )
— Measure the incremental impact of each email on the accuracy

- Setup
e T:20 emails in the training data
* (0: 50 emails in the testing data

* At each iteration, train a filter with 20 + 1 out of 50 and test the accuracy...

- 100% success in their evaluation

* Dynamic thresholds
— Two scores (one for hams and the other for spams)
— Results
* Ham messages are often correctly classified correctly
* Spam messages are mostly classified as unsure
* (See the details in the paper)
& Sy
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MOTIVATION

* Research Questions:
- RQ 1: How can we attack spam filters ?
* Send attack emails that include words likely to be in ham (or a target email)

- RQ 2: How much this poisoning would be ?
* Dictionary attack: ~80% misclassification with 1% poisons
* Focused attack: ~50% misclassification with 2% poisons

- RQ 3: How can we the poisoning against spam filters?
* RONI
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ANTIDOTE: Understanding and Defending against
Poisoning of Anomaly Detectors

Rubinstein et al.
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PROBLEM SCOPE AND GDALS

* Goals
— DDoS attack [Link]

REFLECTOR Innocent Computer
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https://edureka.co/blog/what-is-ddos-attack/
Kang et al., Crossfire Attack, IEEE Security and Privacy 2013
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https://www.digitalattackmap.com/

PROBLEM SCOPE AND GDALS

* Goals
— DDoS attack
— Attacker’s network traffic successfully cross an ISP’s network

— ISP Monitors in-out traffic and alert “vol{  x1’ 0D flow b-i
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BACKGROUND: PCA-BASED ANOMALY DETECTOR [LAKHINA ET AL.)

* PCA (Principal Component Analysis) 08} .
- Represent data with smaller set of variables orh
o 006
* PCA-based anomaly detection ; 05
- Y: T x N (time series of all links) ?;3 04 N B
- RunPCAonY § 03
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BACKGROUND: PCA-BASED ANOMALY DETECTOR [LAKHINA ET AL.)

* PCA (Principal Component Analysis)
— Represent data with smaller set of variables

* PCA-based anomaly detection
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MOTIVATION

* Research Questions:

- RQ 1: How can we the anomaly detector to launch DDoS?
- RQ 2: How much this attack will be ?
- RQ 3: How can we this poisoning attacks?
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POISONING THREAT MODEL

* Goal
- Manipulate the anomaly detector while increasing the traffic volume [~indiscriminate]

* Capability
- Inject additional traffic (chaff) along the network flow

* Knowledge
- Does not know the traffic (uninformed attack)
- Know the current volume of traffic (locally-informed attack)
- Know all the details about the network links (globally-informed attack)

 [Victim] Anomaly Detector
- PCA retrained each week on m — 1 (with anomalies removed)
- Use the trained PCA for detecting anomalies in week m
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POISONING ATTACK STRATEGIES

* Uninformed
- Randomly add chaff (the amount is 9)

* Locally-informed
— Only add chaff (max{0, ys(t) — a})? when the traffic is already reasonably large

* Globally-informed

— Optimize the amount of chaff  max [I(Y +O)A],
st |[Cllh <6
Vt,n Cin >0

* [Continuous case] Boiling Frog attack
- Initially set the theta to a small value, and increase it over time
- Use any of the three (informed, locally-informed, or globally-informed) to add chaff

g Oregon State
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EMPIRICAL EVALUATION

* Setup
— Dataset: OD Flow Data from Ailene network
* Period: Mar. 2004 — Sep. 2004 (6 months)
* Each week: 2016 measurements x 144 networks, 5 min intervals

* Metrics
— Detector’s false negative rate (FNR)
— Use ROC curve to show tradeoffs btw true positive rate (TPR) and FPR
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EMPIRICAL EVALUATION: ATTACKS

* Single poisoning period
- One week data for training PCA and the next one week for testing

Single Poisoning Period: Evading PCA Single Poisoning Period: ROC Curves
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EMPIRICAL EVALUATION: ATTACKS

* Boiling Frogs

— Data from previous weeks for training the PCA and the current week for testing

Boiling Frog Poisoning: Evading PCA
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ANTIDOTE DEFENSE

e Use robust statistics

- Goal: reduce the sensitivity of statistics to outliers
- Method: PCA-GRID (Croux et al.)

Oregon State
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ANTIDOTE DEFENSE

e Use robust statistics

- Goal: reduce the sensitivity of statistics to outliers
- Method: PCA-GRID (Croux et al.)
- Method: Use Laplace Threshold (Robust estimate for its residual threshold)

Subspaces with no Poisoning Subspaces with 35 % Poisoning
Histogram of PCA Residuals Histogram of PCA-GRID Residuals
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o
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ANTIDOTE DEFENSE

* Single poisoning period
- One week data for training the PCA and the next one week for testing

Evasion success (FNR)
0.2 0.4 0.6 0.8 1.0

0.0
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ANTIDOTE DEFENSE

* Boiling Frogs

— Data from previous weeks for training the PCA and the current week for testing

Oregon State
University
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CONCLUSION

* Research Questions:
- RQ 1: How can we the anomaly detector to launch DDoS?

* Inject some additional traffic (chaff)

* Make a detector have false estimation of normal states

* Three-levels of knowledge: uninformed / locally-informed / globally-informed
* Single poisoning vs. Boiling frogs

- RQ 2: How much this attack will be ?
* The success increases as we increase (knowledge / % of poisons / period)

- RQ 3: How can we this poisoning attacks?
* ANTIDOTE: Robust statistics (PCA-GRID + Laplace threshold)

Oregon State
& University

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

39



TOPICS FOR TODAY

* Data Poisoning

— Initial exploitations
e Spam filtering
* DDoS detection
- Recent exploitations
* Poisoning the unlabeled data of semi-supervised learning
* You autocomplete me (the discussion will be led by Austin Fredrich!)
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Poisoning the Unlabeled Datasets of Semi-Supervised Learning
Nicholas Carlini (Talk)
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https://youtu.be/9NAWb9XRFRI

You Autocomplete Me: Poisoning Vulnerabhilities
in Neural Code Completion
Austin Fredrich!
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Thank You!

Tu/Th 10:00 — 11:50 am

Sanghyun Hong
https://secure-ai.systems/courses/MLSec/W22
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