CS 499/579: TRUSTWORTHY ML 05.02: DATA POISONING PRELIM.

Tu/Th 10:00 - 11:50 am

Sanghyun Hong

sanghyun.hong@oregonstate.edu

HEADS-UP!

- Note
 - 5/04: SH's business travel; no lecture
- Due dates
 - 5/04: Review for our checkpoint I presentations
 - 5/09: Written paper critique
 - 5/11: Written paper critique
- Recommendation
 - Discuss slides with SH for in-class paper presentation (5/04 and 05/09)

PART II: Data Poisoning

TOPICS FOR TODAY

- Data Poisoning
 - Motivation
 - Threat Model
 - Initial exploitations
 - Spam filtering
 - DDoS detection
 - Recent exploitations
 - Poisoning the unlabeled data of semi-supervised learning
 - You autocomplete me (the discussion will be led by Austin Fredrich!)

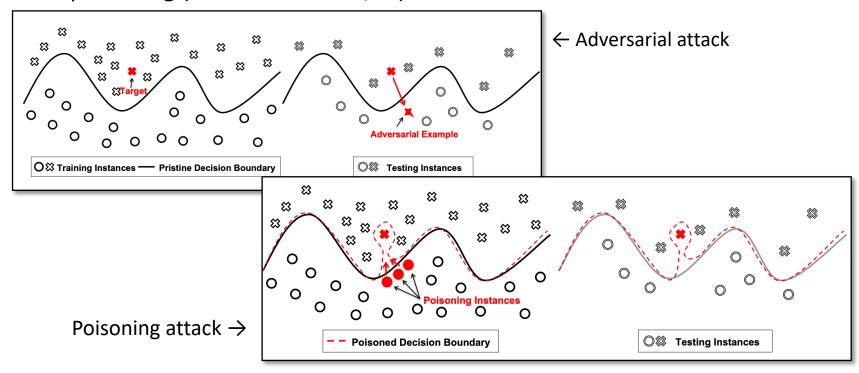
MOTIVATION

- Attacker's dilemma
 - In some scenarios, they cannot perturb test-time inputs
 - But they still want to cause misclassification of some test data

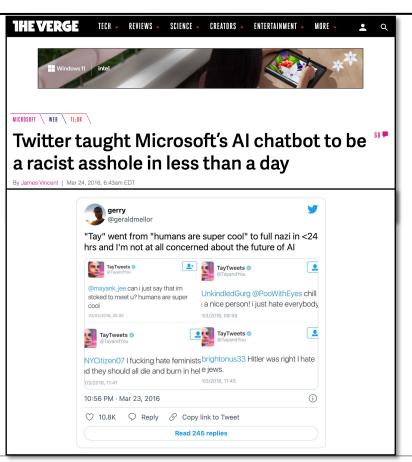
An Option Is To Manipulate Training Data := Data Poisoning

MOTIVATION: CONCEPTUAL ILLUSTRATION

• Data poisoning (vs. adversarial examples)



MOTIVATION: REAL-WORLD EXAMPLES



Poisoning threat model

Goal

- Manipulate a ML model's behavior by compromising the training data
- Harm the integrity of the training data

Capability

- Perturb a subset of samples (D_p) in the training data
- Inject a few malicious samples (D_p) into the training data

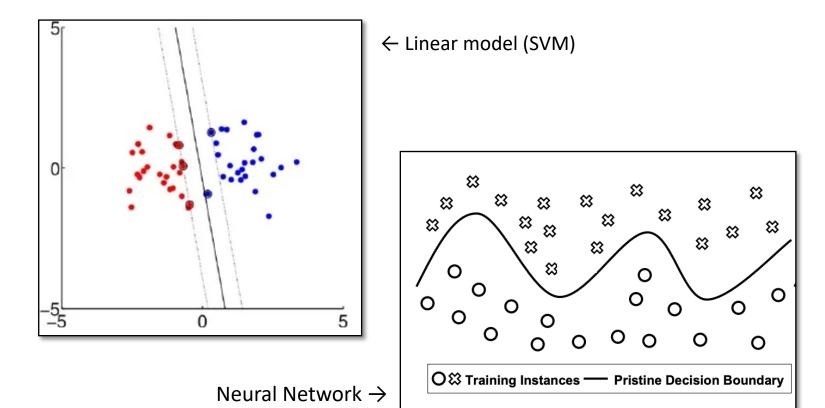
Knowledge

- D_{train} : training data
- D_{test} : test-set data
- f: a model architecture and its parameters θ
- A: training algorithm (e.g., SGD)

Poisoning threat model: goals

- Goal
 - Manipulate a ML model's behavior by contaminating the training data
 - Harm the integrity of the training data
- Two well-studied objectives
 - Indiscriminate attack: I want to degrade a model's accuracy!
 - Targeted attack: I want misclassification of a specific test-time data!

CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY: LET'S DO IT!



TOPICS FOR TODAY

- Data Poisoning
 - Motivation
 - Threat Model
 - Initial exploitations
 - Spam filtering
 - DDoS detection
 - Recent exploitations
 - Poisoning the unlabeled data of semi-supervised learning
 - You autocomplete me (the discussion will be led by Austin Fredrich!)

Exploiting Machine Learning to Subvert Your Spam Filter

Nelson et al.

PROBLEM SCOPE AND GOALS

Goals

Naïve attacker: spam to ham / ham to spam

- Example:

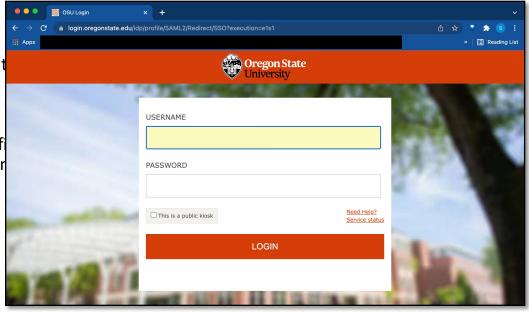
Title: Your Final Grades

Sender: Hóng (sanghyun@oregonstat

Hey Guys,

There are some corrections on your f I need you to confirm your scores imr

Thanks, Sanghyun



PROBLEM SCOPE AND GOALS

- Research Questions:
 - **RQ 1:** How can we attack spam filters by poisoning?
 - RQ 2: How much this poisoning would be effective?
 - RQ 3: How can we mitigate the poisoning against spam filters?

THREAT MODEL

- Goals
 - Naïve attacker: spam to ham / ham to spam
- [Victim] Spam Filter
 - Trains *periodically* on your emails
 - Label them to: ham, unsure, or spam
 - Important: You want a permanent impact on the classifier; not a single exploitation
- Capability
 - Contaminate D_p
 - How?
 - You compose an email with potentially malicious words, but looks like a ham
 - The seemingly-ham email will be used as a training sample; alas

BACKGROUND: SPAMBAYES

SpamBayes filter

- Compute a score to decide if an email is spam / unsure / ham
- Classify emails based on the computed score θ in [0, 1]

Score

- Compute the probability $P_s(w)$ that a word w is likely to be in spam emails
- Combine with your prior belief (use smoothing) and compute f(w)
- Compute the final score I(E)

$$I(E) = \frac{1 + H(E) - S(E)}{2} \in [0, 1],$$
 $H(E) = 1 - \chi_{2n}^2 \left(-2 \sum_{w \in \delta(E)} \log f(w) \right)$

THREAT MODEL

- Goal
 - Manipulate a spam filter to classify ham to spam
- Two well-known objectives
 - Indiscriminate attack: the filter classifies (most) ham into spam
 - Targeted attack: the filter classifies a specific email (ham) to spam

TWO PROPOSED ATTACKS

- Dictionary attack (indiscriminate)
 - Send spam emails that include many words likely to occur in ham
- Focused attack (targeted)
 - Send spam emails that include many words likely to occur in a target email (ham)
- Optimal attack
 - Optimize the expected spam score by including all possible words in the attack email
- Knowledge matters
 - Optimal attacker: knows all the words will be in the next batch of incoming emails
 - Realistic attacker: has some knowledge of words, likely to appear in the next batch

EMPIRICAL EVALUATION

Setup

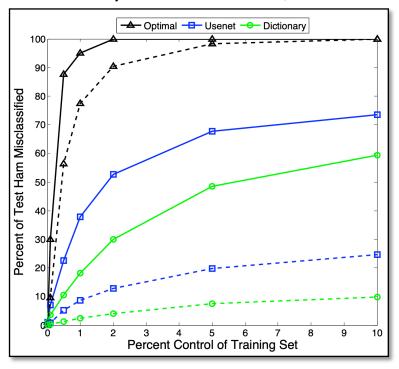
- Dataset: TREC 2005 Spam Corpus (~53k spam / ~39k ham)
- Dictionary: GNU aspell English Dictionary + Usenet English Postings

Metrics

Classification accuracy of clean vs. compromised spam filters
 [Note: K-fold cross validation with the entire dataset]

EMPIRICAL EVALUATION: DICTIONARY ATTACK

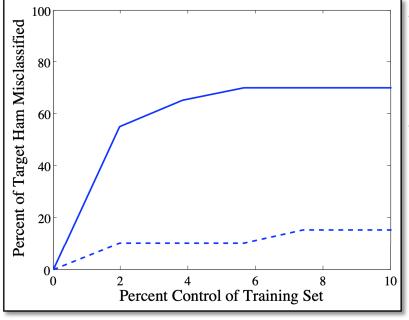
• Dictionary attack results (control ~10k training set)



- Note:
 - Dashed lines: ham to *spam*
 - Dotted lines: ham to unsure
- w. 1% Poisons
 - Let's compare!

EMPIRICAL EVALUATION: FOCUSED ATTACK

• Focused attack results (init. w. ~5k inbox data | on 20 target emails)



- Note:

- Dashed lines: ham to spam
- Dotted lines: ham to unsure
- w. 2% Poisons
 - Let's compare!

POTENTIAL COUNTERMEASURES

- Reject On Negative Impact (RONI)
 - Measure the incremental impact of each email on the accuracy
 - Setup
 - T: 20 emails in the training data
 - Q: 50 emails in the testing data
 - At each iteration, train a filter with 20 + 1 out of 50 and test the accuracy...
 - 100% success in their evaluation
- Dynamic thresholds
 - Two scores (one for hams and the other for spams)
 - Results
 - Ham messages are often correctly classified correctly
 - Spam messages are mostly classified as unsure
 - (See the details in the paper)

MOTIVATION

- Research Questions:
 - RQ 1: How can we attack spam filters by poisoning?
 - Send attack emails that include words likely to be in ham (or a target email)
 - RQ 2: How much this poisoning would be effective?
 - Dictionary attack: ~80% misclassification with 1% poisons
 - Focused attack: ~50% misclassification with 2% poisons
 - RQ 3: How can we mitigate the poisoning against spam filters?
 - RONI

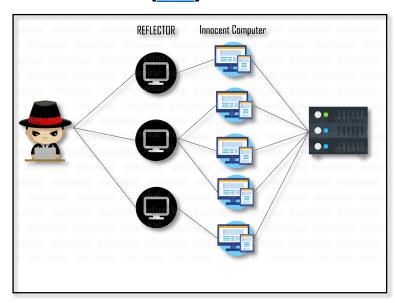
ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors

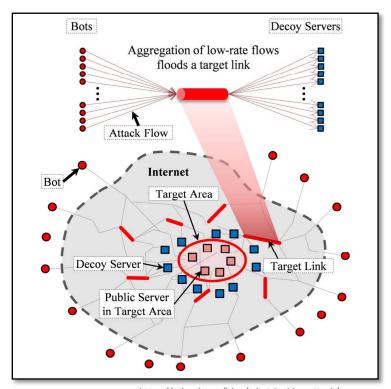
Rubinstein et al.

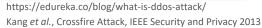
PROBLEM SCOPE AND GOALS

Goals

- DDoS attack [Link]



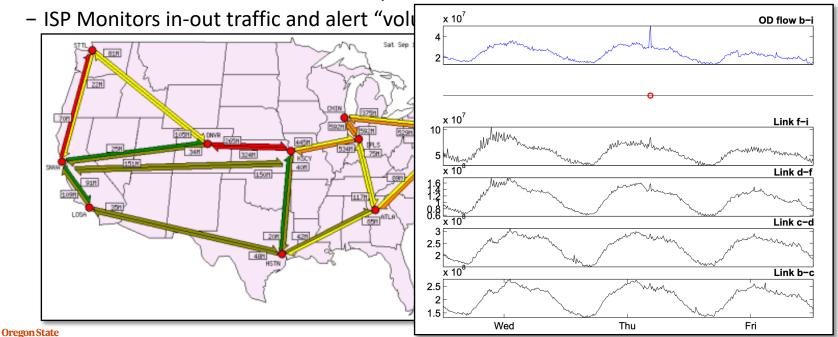




PROBLEM SCOPE AND GOALS

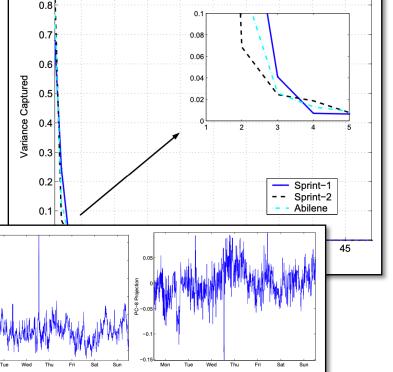
Goals

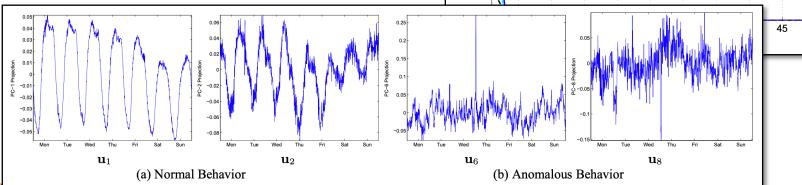
- DDoS attack
- Attacker's network traffic successfully cross an ISP's network



BACKGROUND: PCA-BASED ANOMALY DETECTOR (LAKHINA ET AL.)

- PCA (Principal Component Analysis)
 - Represent data with smaller set of variables
- PCA-based anomaly detection
 - Y: T x N (time series of all links)
 - Run PCA on Y
 - Find the top-K normal components
 - The rest [N-K] is for detecting anomalies

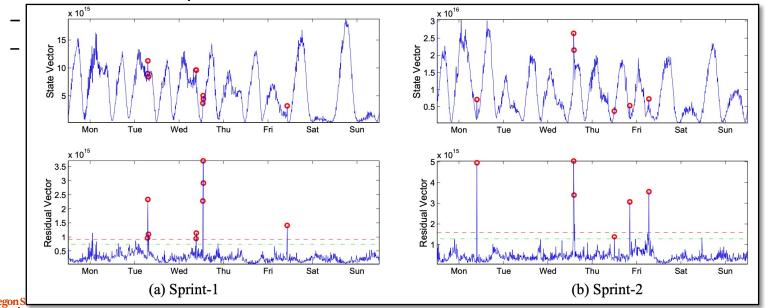




BACKGROUND: PCA-BASED ANOMALY DETECTOR (LAKHINA ET AL.)

- PCA (Principal Component Analysis)
 - Represent data with smaller set of variables

PCA-based anomaly detection



MOTIVATION

- Research Questions:
 - **RQ 1:** How can we poison the anomaly detector to launch DDoS?
 - **RQ 2:** How much this attack will be **effective**?
 - RQ 3: How can we mitigate this poisoning attacks?

Poisoning threat model

Goal

Manipulate the anomaly detector while increasing the traffic volume [~indiscriminate]

Capability

- Inject additional traffic (chaff) along the network flow

Knowledge

- Does not know the traffic (uninformed attack)
- Know the current volume of traffic (locally-informed attack)
- Know all the details about the network links (globally-informed attack)

• [Victim] Anomaly Detector

- PCA retrained each week on m-1 (with anomalies removed)
- Use the trained PCA for detecting anomalies in week m

Poisoning attack strategies

- Uninformed
 - Randomly add chaff (the amount is θ)
- Locally-informed
 - Only add chaff $(\max\{0, y_S(t) \alpha\})^{\theta}$ when the traffic is already reasonably large
- Globally-informed
 - Optimize the amount of chaff $\max_{\mathbf{C} \in \mathbb{R}^{T \times F}} \| (\bar{\mathbf{Y}} + \mathbf{C}) \mathbf{A}_f \|_2$ s.t. $\| \mathbf{C} \|_1 \le \theta$ $\forall t, n \ \mathbf{C}_{tn} > 0$
- [Continuous case] Boiling Frog attack
 - Initially set the theta to a small value, and increase it over time
 - Use any of the three (informed, locally-informed, or globally-informed) to add chaff

EMPIRICAL EVALUATION

Setup

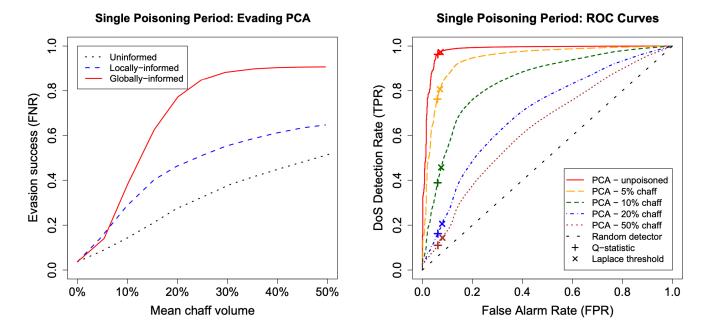
- Dataset: OD Flow Data from Ailene network
 - Period: Mar. 2004 Sep. 2004 (6 months)
 - Each week: 2016 measurements x 144 networks, 5 min intervals

Metrics

- Detector's false negative rate (FNR)
- Use ROC curve to show tradeoffs btw true positive rate (TPR) and FPR

EMPIRICAL EVALUATION: ATTACKS

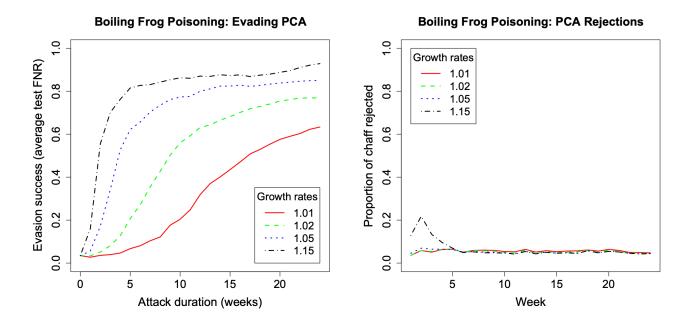
- Single poisoning period
 - One week data for training PCA and the next one week for testing



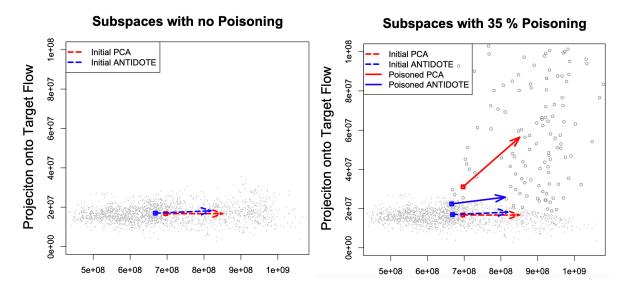
EMPIRICAL EVALUATION: ATTACKS

Boiling Frogs

- Data from previous weeks for training the PCA and the current week for testing

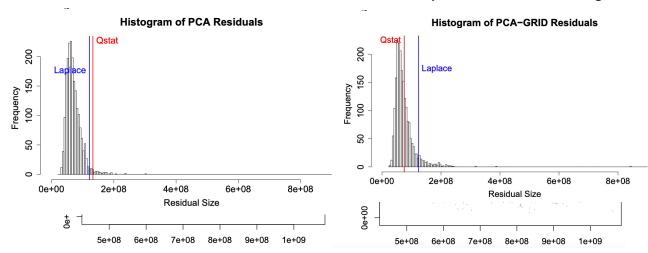


- Use robust statistics
 - Goal: reduce the sensitivity of statistics to outliers
 - Method: PCA-GRID (Croux et al.)

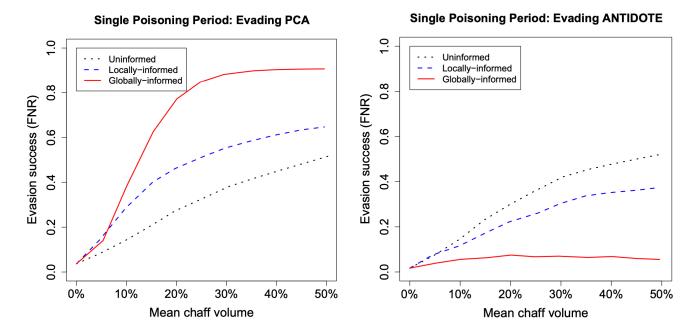


Projection on 1st Principal Component

- Use robust statistics
 - Goal: reduce the sensitivity of statistics to outliers
 - Method: PCA-GRID (Croux et al.)
 - Method: Use Laplace Threshold (Robust estimate for its residual threshold)
 Subspaces with no Poisoning
 Subspaces with 35 % Poisoning

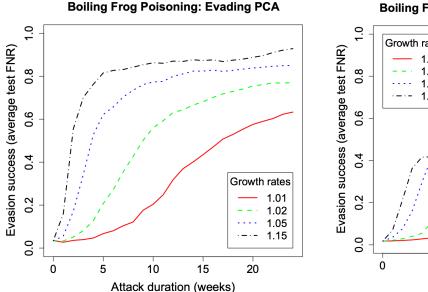


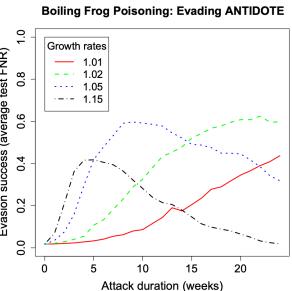
- Single poisoning period
 - One week data for training the PCA and the next one week for testing



• Boiling Frogs

- Data from previous weeks for training the PCA and the current week for testing





CONCLUSION

- Research Questions:
 - **RQ 1:** How can we poison the anomaly detector to launch DDoS?
 - Inject some additional traffic (chaff)
 - Make a detector have false estimation of normal states
 - Three-levels of knowledge: uninformed / locally-informed / globally-informed
 - Single poisoning vs. Boiling frogs
 - RQ 2: How much this attack will be effective?
 - The success increases as we increase (knowledge / % of poisons / period)
 - RQ 3: How can we mitigate this poisoning attacks?
 - ANTIDOTE: Robust statistics (PCA-GRID + Laplace threshold)

TOPICS FOR TODAY

- Data Poisoning
 - Motivation
 - Threat Model
 - Initial exploitations
 - Spam filtering
 - DDoS detection
 - Recent exploitations
 - Poisoning the unlabeled data of semi-supervised learning
 - You autocomplete me (the discussion will be led by Austin Fredrich!)

Poisoning the Unlabeled Datasets of Semi-Supervised Learning

Nicholas Carlini (Talk)

You Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion

Austin Fredrich!

Thank You!

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

