CS 499/579: TRUSTWORTHY ML 05.30: PRIVACY I

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

sanghyun.hong@oregonstate.edu

HEADS-UP!

- Due dates
 - 6/08: HW 4 due
 - 6/08: Final project presentation
 - 11 min presentation + 2-4 min Q&A (strict)
 - Presentation MUST cover:
 - 1 slide on your research motivation and goals
 - 1 slides on your ideas (how did you plan to achieve your goals)
 - 1-2 slides on your hypotheses and experimental design
 - 2-3 slides on your most interesting results
 - 1 slides on your conclusion and implications
 - 6/13: Final exam (online, 24 hrs., unlimited trials)
 - 6/13: Final project report (Template is on the website)
 - 6/15: Late submissions for HW 1-4

TOPICS FOR TODAY

- Privacy
 - Motivation
 - Threat Models
 - De-anonymization attack
 - Tracing attack (membership / attribute inference)
 - Reconstruction attack
 - (additional) Model extraction
 - Defenses
 - Data anonymization
 - Differential privacy (DP)

YOUR DATA IS VERY PRIVATELY MANAGED!

²https://www.muckrock.com/news/archives/2020/jan/18/clearview-ai-facial-recogniton-records/

Oregon State University

PRIVACY, PRIVACY, PRIVACY

Let's Talk Threat Models to Study Privacy Risks!

Facebook has agreed to pay a £500,000 fine imposed by the UK's data protection watchdog for its role in the Cambridge Analytica scandal.

• ML Pipeline

• Privacy risks

- Identify your membership in the training data
- Identify (sensitive) properties of your training data
- Identify (sensitive) attribute of a person that you know
- Reconstruct a sample completely
- Reconstruct a model behind the query interface

- ...

• ML Pipeline

- Privacy risks (from the view of the work by Dwork et al.)
 - Tracing attack : Identify your membership in the training data
 - Reconstruction : Identify (sensitive) properties of your training data
 - De-anonymization: Identify (sensitive) attribute of a person that you know
 - Reconstruction : Reconstruct a sample completely
 - Reconstruction : Reconstruct a model behind the query interface

...

Dwork et al., Exposed! A Survey of Attacks on Private Data

- Privacy risks (from the view of the work by Dwork et al.)
 - Re-identification
 - Goal: de-identify anonymized datasets
 - ex. : in an election poll, is this vote for President candidate A from you?

- Reconstructions

- Goal: reconstruct all the properties of a target instance in the dataset
- ex. : in the Census dataset, what are the attribute values associated with you?

- Tracing

- Goal: identify whether some instances are in the dataset or not
- ex. : did you participate in a clinical trial?

- The attack considers non-trivial cases
 - ex. Smoking causes cancer
 - Revealing this information is *not* a privacy attack
 - We know this is correlated without interacting with the target model
 - ex. A model trained on a dataset of lung cancer patients
 - ex. The model gets a patient information and returns the probability of getting the cancer
 - ex. We know the Person A is smoking
 - ex. We identify that A is in the dataset (defer the details to later on)
 - It's a non-trivial attack as we identify the information about an individual

- Goal
 - Attacker: de-anonymize anonymized records
 - Victim : anonymize sensitive data records
- Knowledge of the attacker
 - Additional (or auxiliary information) about the data
- Capability of the attacker
 - Query your data with some techniques
 - Perform post-processing computations on q (outputs)
 - ... (many more)

President's Council of Advisors on Science and Technology, 2014

THREAT MODEL: DE-ANONYMIZATION - CONT'D

- In ML
 - We train statistical models
 - It does not matter whether data is anonymized or not
 - Some examples
 - Cancer data
 - Demographics
 - Data about people's financial information
 - ...
- Note:
 - "Anonymization of a data record might seem easy to implement. Unfortunately, it is increasingly easy to defeat anonymization by the very techniques that are being developed for many legitimate applications of big data." [1]

[1] President's Council of Advisors on Science and Technology, 2014 Narayanan and Shmatikov, Robust De-anonymization of Large Sparse Datasets, IEEE S&P 2008

- Setup
 - Victim:
 - Has a dataset $x = \{x_1, ..., x_n\}$ with *n*-i.i.d samples where each x_i is drawn from *P* over $\{\pm 1\}^d$
 - For each query M, the victim returns the sample mean q over given sample x_i 's
 - Attacker:
 - Perform an attack A(y, q, z) that identify whether a target instance $y \in \{\pm 1\}^d$ IN the dataset x or not (OUT) with m-i.i.d reference samples $z = \{z_1, ..., z_n\}$ and the sample mean q
 - Procedure:

- Setup
 - Victim:
 - For each *i*-th instance, the victim has (x_i, s_i) information
 - $x_i \in \{0, 1\}^d$: public info. accessible by an adversary and s_i : is the one-bit secret
 - Attacker:
 - Perform an attack A that reconstructs s_i by exploiting query outputs \hat{q} and the public information A(x, M(x, s)), where the attacker knows k > 1 public attributes
 - Formally

- Setup
 - Victim:
 - For each *i*-th instance, the victim has (x_i, s_i) information
 - $x_i \in \{0, 1\}^d$: public info. accessible by an adversary and s_i : is the one-bit secret
 - Attacker:
 - Perform an attack A that reconstructs s_i by exploiting query outputs \hat{q} and the public information A(x, M(x, s)), where the attacker knows k > 1 public attributes

- Approximation:

- Linear statistics (e.g., linear SVM, linear regression, ...)
- Practical constraints (# Queries)
 - Ideally 2^n queries to solve the subset-sum problem
 - Practically, considering the tradeoff btw error and accuracy, we can do it in polynomial time

THREAT MODEL: (ADDITIONAL) MODEL EXTRACTION

- Setup
 - Victim:
 - Has a model f(x) = y trained on a confidential data
 - For each query M, the victim returns the output y_i over given sample x_i 's
 - Attacker:
 - Perform an attack (i.e., trains a surrogate model f' that is functionally equivalent to f

Tramer et al., Stealing Machine Learning Models via Prediction APIs, USENIX 2016

TOPICS FOR TODAY

- Privacy
 - Motivation
 - Threat Models
 - De-anonymization attack
 - Tracing attack (membership / attribute inference)
 - Reconstruction attack
 - (additional) Model extraction
 - Defenses
 - Data anonymization
 - Differential privacy (DP)

PROPOSING DEFENSES

- Challenges
 - How can we define a privacy guarantee?
 - Problem: Adversaries may break some heuristic defenses (arms-race)
 - Example: A defense and its pitfall:
 - In DB query responses, a defender can randomly drop k rows ($k \ll r, r$: # rows in resp.)
 - One can submit the same query multiple times, and then they compares responses
 - What if we apply the strongest privacy guarantee?
 - Problem:
 - Well, if you do not share, you do not leak any information
 - But it is *NOT* what we want (the end of arms-race)
 - How can we offer an upper-bound of privacy leakage?
 - **Problem:** It is hard to define what is the leakage of private information
 - Example: Many definitions are feasible (e.g., certain attributes, specific samples, etc...)

PROPOSING DEFENSES: DIFFERENTIAL PRIVACY

- Differential Privacy (DP)
 - How can we offer an upper-bound of privacy leakage?
 - Focus on the smallest perturbations on a dataset we protect: a single instance
 - Make the outputs of any algorithms (*e.g.*, query processing) compute on datasets with a single item difference cannot be different from each other with ε probability
 - Formally,
 - An algorithm (or a mechanism) M satisfies ε -differential privacy if, for any datasets x and y differing only on the data of a single instance and any potential outcome \hat{q} ,

$$\mathbb{P}\left[\mathcal{M}(x)=\hat{q}\right] \leq e^{\varepsilon} \cdot \mathbb{P}\left[\mathcal{M}(y)=\hat{q}\right].$$

- 3 Important Properties of DP
 - DP-Definition
 - An algorithm (or a mechanism) M satisfies ε -differential privacy if, for any datasets x and y differing only on the data of a single instance and any potential outcome \hat{q} ,

$$\mathbb{P}\left[\mathcal{M}(x)=\hat{q}\right] \leq e^{\varepsilon} \cdot \mathbb{P}\left[\mathcal{M}(y)=\hat{q}\right].$$

- Post-processing
 - Any post-processing of differentially-private data won't change the DP guarantee
- Composition
 - If the same instance in multiple datasets (where each satisfies ε-DP), the combination of those releases also satisfies kε-DP (*i.e.*, the guarantees will degrade by k)

- Group-privacy

• If we want to protect k instances, instead of a single item, we require $k\epsilon$ -DP guarantee

- Implementation
 - DP-Definition
 - An algorithm (or a mechanism) M satisfies ε -differential privacy if, for any datasets x and y differing only on the data of a single instance and any potential outcome \hat{q} ,

$$\mathbb{P}\left[\mathcal{M}(x)=\hat{q}\right] \leq e^{\varepsilon} \cdot \mathbb{P}\left[\mathcal{M}(y)=\hat{q}\right].$$

- Gaussian mechanism-Definition
 - Formally: Suppose properties $q = (q_1, ..., q_k)$, the Gaussian mechanism M_{q,σ^2} takes x as input and releases $\hat{q} = (\hat{q_1}, ..., \hat{q_k})$ where each $\hat{q_i}$ is independent sample from $N(q_i(x), \sigma^2)$, for an appropriate variance σ^2
 - Easy-way: I will add Gaussian noise with a variance σ^2 to the output \hat{q} , such that the output satisfies ε -differential privacy guarantee

TOPICS FOR TODAY

- Privacy
 - Motivation
 - Threat Models
 - De-anonymization attack
 - Tracing attack (membership / attribute inference)
 - Reconstruction attack
 - (additional) Model extraction
 - Defenses
 - Data anonymization
 - Differential privacy (DP)

Membership Inference Attacks against Machine Learning Models

Shokri et al. (Presented by Opeyemi Ajibuwa)

Thank You!

Tu/Th 10:00 – 11:50 am

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

