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HEADS-UP!

* Due dates
- 6/08: HW 4 due

- 6/08: Final project presentation
presentation + Q&A (strict)
* Presentation cover:

- 1 slide on your research motivation and goals
1 slides on your ideas (how did you plan to achieve your goals)
1-2 slides on your hypotheses and experimental design
2-3 slides on your most interesting results

- 1 slides on your conclusion and implications
- 6/13: Final exam (online, 24 hrs., unlimited trials)
- 6/13: Final project report (Template is on the website)
- 6/15: Late submissions for HW 1-4
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TOPICS FOR TODAY

* Privacy

- Motivation

- Threat Models
* De-anonymization attack
» Tracing attack (membership / attribute inference)
* Reconstruction attack
* (additional) Model extraction

- Defenses
* Data anonymization
* Differential privacy (DP)
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Deep Learning with Differential Privacy
Abadi et al. (Presented by Vy and Matthew)

Secure-Al Systems Lab (SAIL) - CS499/579: Trustworthy Machine Learning



REVISIT’ED - DIFFERENTIAL PRIVACY

* e-Differential Privacy

- A randomized algorithm M: D — R with domain D and a range R satisfies e-differential
privacy if for any two adjacent inputs d,d’ € D and any subset of outputs S C R it holds

Pr[M(d) € S] < e Pr[M(d') € S]

* (g, 6)-Differential Privacy
Pr[M(d) € S] < e° Pr[M(d’) € S] + 6

- 0: Represent some catastrophic failure cases [Link, Link]
- 6 <1/|d]|, where |d]| is the number of samples in a database

o
kP8 Oregon State
& University



https://desfontain.es/privacy/almost-differential-privacy.html
https://desfontain.es/privacy/privacy-loss-random-variable.html

REVISIT’ED - DIFFERENTIAL PRIVACY

* (g, 6)-Differential Privacy
Pr[M(d) € S] < e° Pr[M(d') € S]+ 6

- You have two databases d, d’ differ by one item
- You make the same query M to each and have results M(d) and M(d")
- You ensure the distinguishability between the two under a measure €
e €is large: those two are distinguishable, less private
e €is small: the two outputs are similar, more private
- You also ensure the catastrophic failure probability &
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REVISIT’ED - DIFFERENTIAL PRIVACY

* (g, 6)-Differential Privacy
Pr[M(d) € S] < e° Pr[M(d') € S]+ 6

* Mechanism for (¢, 6)-DP: Gaussian noise

A

M(d) = f(d) + N(0,S% - o°)

- M(d): (¢,6)-DP query output on d
- f(d): non (€, 8)-DP (original) query output on d
- N(0,Sf - 0®): Gaussian normal distribution with mean 0 and the std. of S - ¢

Set the Goal € and Calibrate the noise S}? . 2]
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How bo we use OP FoR ML?

 Revisit’ed — Stochastic Gradient Descent (SGD)
1. Ateach stept, it takes a mini-batch L,
2. Computes the loss L(0) over the samples in L¢, w.r.t. the label y
3. Computes the gradients g, of L(6)
4. Update the model parameters 8 towards the direction of reducing the loss

This Process Should Be (€, 6)-DP! |

D: a training set 6: a model

|
® e o). L » 1. Take L;, and compute L(0)
o ° | 2. Compute g, of L(0)
i 3. Update the @ """
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MAKE AN SGD STEP (¢, )-DP

* Stochastic Gradient Descent (SGD)
1. Ateach stept, it takes a mini-batch L,
2. Computes the loss L(0) over the samples in L¢, w.r.t. the label y
3. Computes the gradients g, of L(6)

6. Update the model parameters 8 towards the direction of reducing the loss

D: a training set 6: a model
o o o~ e » 1. Take L;, and compute L£(8)
& @ ........... 2. Compute g, of L(6)
(]
e R _ %" |  3.Clipg, and add noise ..qeee
o.‘ o ° 4. Update the § ="
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MAKE THE WHOLE SGD PROCESS (¢, 6)-DP

* Stochastic Gradient Descent (SGD)
- SGD iteratively computes the (€, §)-DP step T times
- Problem: how do we compute the total privacy leakage €;,+ over T iterations?

* Privacy accounting with moment accountant

DP has the property
* Suppose the two mechanism M; and M, satisfies (&4, §;)- and (&,, §,)-DP
the composition of those mechanisms M; = M, (M,) satisfies (g;+&,, 6;+6,)-DP
* If each step t satisfies (&, §)-DP, the total SGD process satisfies (T, 6T)-DP

tracking the total privacy leakage €T over T iterations
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PUTTING ALL TOGETHER

DP-Stochastic Gradient Descent (DP-SGD)

Algorithm 1 Differentially private SGD (Outline) // we train a model 8 with the privacy budget €54 e¢

Input: Examples {zi,...,zn}, loss function L(0) =
+ >, L£(0,;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6y randomly

for t € [T] do // iterate over T mini-batches
Take a random sample L; with sampling probability
L/N
Compute gradient // compute the gradient

For each i € L, compute g¢(z;) + Vo, L(0+, ;)
Clip gradient

g:(z:) « g(z:)/ max (1, ||gt(gi)||2) // clip the magnitude of the gradients

gdi r%lo(l;i &.(2:) + (0, 02C71)) // add Gaussian random noise to the gradients
Descent

0t+1 — 0 — ntét 7

£,0 € compute the privacy cost (leakage) so far // compute the privacy cost (leakage) up to t iterations
If £> 5,400 then break; // if the cost is over the budget, then stop training

Output 0r and compute the overall privacy cost (g,9)
using a privacy accounting method.

Oregon State
University
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EVALUATION

* Setup
— Datasets: MNIST | CIFAR-10/100
- Models:
* MNIST: 2-layer feedforward NN on 60-dim. PCA projected inputs
* CIFAR-10/100: A CNN with 2 conv. layers and 2 fully-connected layers

- Metrics:
* Classification accuracy
* Privacy cost (epyqget)
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EVALUATION

* Impact of Noise
- Dataset, Models: MINIST, 2-layer feedforward NN
— Setup: 60-dim PCA projected inputs | Clipping threshold (C): 4 | Noise (g): 8, 4, 2 (from the left)
- Summary:
* On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)
* The accuracy of private models decreases as we decrease the privacy cost
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EVALUATION

* Impact of Noise
- Dataset, Models: MINIST, 2-layer feedforward NN
— Setup: 60-dim PCA projected inputs | Clipping threshold (C): 4 | Noise (g): 8, 4, 2 (from the left)
- Summary:

* On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)
* The accuracy of private models decreases as we decrease the privacy cost
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EVALUATION

* Impact of Hyper-parameter Choices
- Dataset, Models: MINIST, 2-layer feedforward NN
- Setup: 60-dim PCA projected inputs
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EVALUATION

* Impact of Noise
— Dataset, Models: CIFAR-10, CNN
— Setup: Clipping threshold (C): 3 | Noise (0): 6
- Summary:
* On CIFAR-10, DP-SGD offers reasonable acc. under various privacy costs (clean: 80%)
* The accuracy of private models decreases as we decrease the privacy cost
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What Does It Mean hy

Secure-Al Systems Lab (SAIL) - CS499/579: Trustworthy Machine Learning

in CIFAR-10?
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Evaluating Differentially Private Machine Learning in Practice
Bargav Jayaraman and David Evans

Secure-Al Systems Lab (SAIL) - CS499/579: Trustworthy Machine Learning
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EMPIRICAL EVALUATIONS OF PRIVACY RISKS IN DP-MODELS

* Setup

— Datasets: Purchase-100 | CIFAR-100 (on 50-dim PCA projected inputs)
- Models: Logistic regressions | 2-layer feedforward NNs

- Privacy Attacks:

Membership inference: Yeom et al. and Shokri et al.

- DP-SGD:

Oregon State
& University

Set the clipping norm (C) to 1

Set the prob. of catastrophic failures (8) to 107> < 1/| N | (N~60k in MNIST and 50k in CIFAR)
Set the batch size to 200

Set the learning rate to 0.01 for Adam optimizer

Vary € from 0.01 to 1000

Compare (€, §)-DP with other DP-mechanisms: AC, CDP, zCDP, and RDP
Run 5-times and measure the (TPR — FPR) and accuracy loss on average

19



EVALUATION ON CIFAR-100, LRs

* Summary

- Yeom et al. and Shokri et al. are weak privacy attacks
- In other words, (¢, §)-DP theoretically offers very strong privacy bounds
- If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly
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EVALUATION ON CIFAR-100, LRs

* Summary
- Yeom et al. and Shokri et al. are weak privacy attacks

- In other words, (¢, §)-DP theoretically offers very strong privacy bounds
- If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly

- Compared to LRs, NNs leak more in higher privacy budgets
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EVALUATION ON MI PREDICTIONS: LRs vs. NNs

* Summary

- Yeom et al. and Shokri et al. are weak privacy attacks

- In other words, (¢, §)-DP theoretically offers very strong privacy bounds

- If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly
— Compared to LRs, NNs leak more in higher privacy budgets

- Predictions (TPRs and FPRs) are more consistent in LRs than NNs in CIFAR-100
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Figure 3: Overlap of membership predictions across two runs
of logistic regression with RDP at € = 1000 (CIFAR-100)
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TOPICS FOR TODAY

* Privacy

- Motivation

- Threat Models
* De-anonymization attack
» Tracing attack (membership / attribute inference)
* Reconstruction attack
* (additional) Model extraction

- Defenses
* Data anonymization
* Differential privacy (DP)
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Thank You!

Tu/Th 10:00 — 11:50 am

Sanghyun Hong
https://secure-ai.systems/courses/MLSec/Sp23
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