CS 499/599: Machine Learning Security 01.03: Part I: Course Introduction

Mon/Wed 12:00 – 1:50 pm

Instructor: Sanghyun Hong

sanghyun.hong@oregonstate.edu

SAIL Secure Al Systems Lab

Notice (No exceptions)

- OSU's COVID-19 Policy
 - You **MUST** use a face covering when in indoor spaces and classrooms
 - You can be asked to leave the class if you don't wear face coverings
 - Acceptable face coverings
 - Cloth garments that cover the noise and mouths
 - Medial-grade disposable masks
 - Clear plastic shields that cover the forehead, below the chin and wraps around the sides
 - You are **ONLY** allowed to remove face coverings
 - If you are presenting and six feed away from the others
 - If you are drinking water during the lecture

Sanghyun Hong

)regon State

Who am I?

- Assistant Professor of Computer Science at OSU (since Sep. 2021!)
- Ph.D. from the University of Maryland, College Park
- B.S. from Seoul National University, South Korea

What I do?

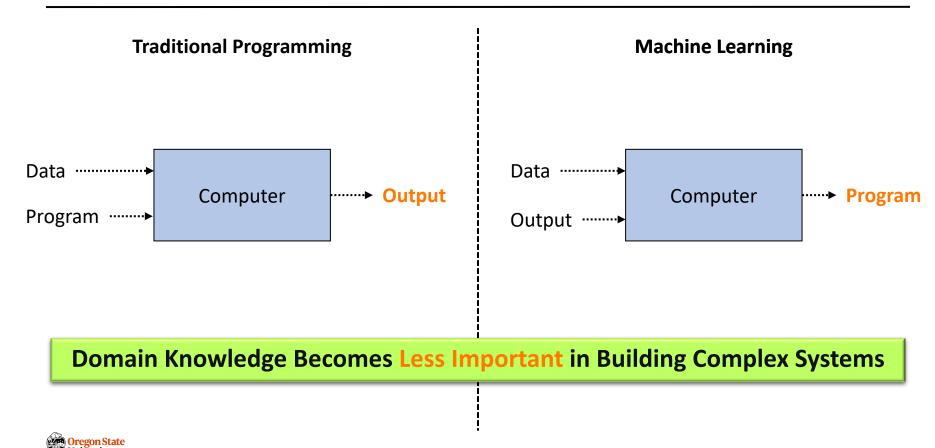
- Formal: I work at the intersection of security, privacy, and machine learning
- Informal: I "hack" machine learning, expose security threats, and defeat them

What do I teach?

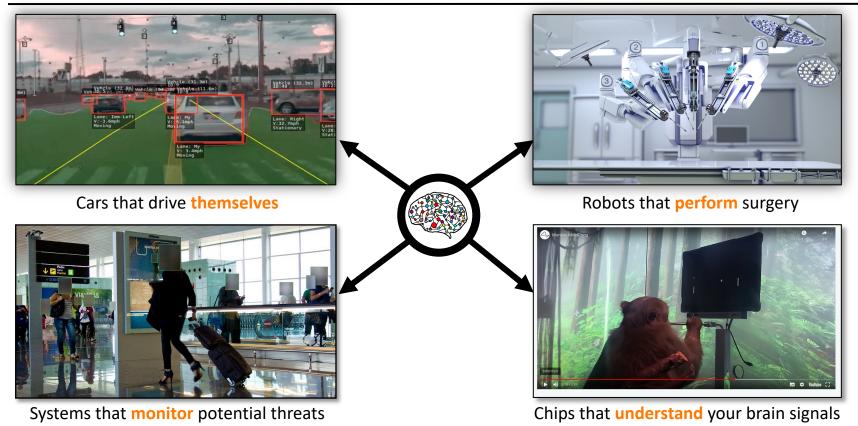
- (now!) Winter 2022: CS499/599: Machine Learning Security
- (upcoming!) Spring 2022: CS344: Operating Systems I

Where can you find me?

- Office: 4103 Kelley Engineering Center (KEC)
- Email: sanghyun.hong (at) oregonstate.edu


Tell Me about Yourself

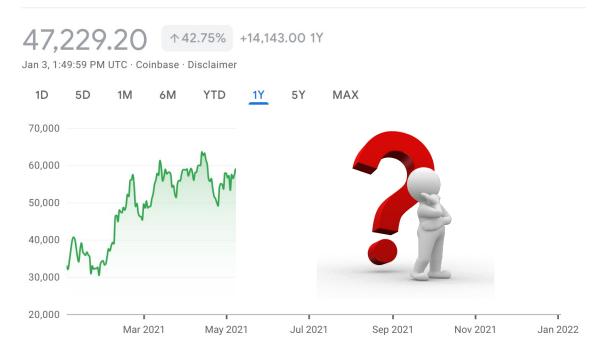
- I'd like to know
 - How to pronounce your name?
 - What program are you in (PhD/MS)?
 - What is your research interest?
 - Who is your advisor and what are you working on?
 - What do you expect from this class?



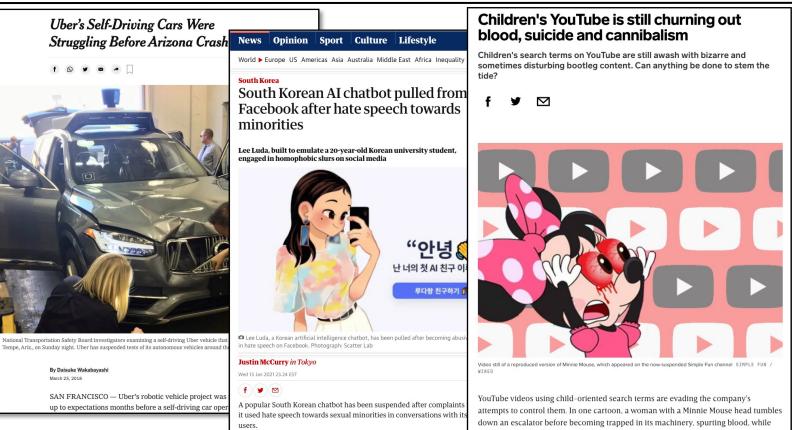
Warm-up

Machine Learning Matters

By Machine Learning, You Can Build



ML Models May Not Work Always as You Expect


BTC / USD · CRYPTOCURRENCY

Bitcoin to United States Dollar

ML Models Do Not Work Always as You Expect - cont'd

her children (baby Mickey and Minnie characters) cry.

This is NOT an ML Class!

Course Objectives

- You'll learn in this class
 - [Security] How to think like an adversary?
 - [Adv. ML]
 - How can an adversary put ML models at risk?
 - What do we have as countermeasures for those threats?
 - [Research]
 - How to pursue a research problem of your interest?
 - How to communicate your research findings with others?
- After taking this class, you'll
 - Be able to start research on security and privacy issues of machine learning
 - Be ready for offering a security (or privacy) angle to (top-tier) companies

Logistics

Important Links

- Course website: https://secure-ai.systems/courses/MLSec/W22
- Instructor:
 - Email: sanghyun.hong@oregonstate.edu
 - Office hours: W 2:30 3:30 pm (on Zoom)
- Canvas: <u>https://canvas.oregonstate.edu/courses/1844685</u>
- Computing resources:
 - EECS: <u>https://eecs.oregonstate.edu/eecs-it#Servers</u>
 - HPC: <u>https://it.engineering.oregonstate.edu/hpc</u>

Course Structure

- 10-week schedule; no textbook
 - Course syllabus is up: <u>https://secure-ai.systems/courses/MLSec/W22/syllabus.html</u>
 - Week 1: Introduction & Overview
 - Week 2-4: Adversarial examples
 - Week 5-7: Data poisoning attacks
 - Week 8-10: Privacy attacks

Schedu	Schedule					
Date	Topics	Notes	Readings			
Part I: Overview and Motivation						
Mon. 01/03	Introduction [Slides]	[HW 1]	The Security of Machine Learning [Bonus] SoK: Security and Privacy in Machine Learning			
			Part II: Adversarial Examples			
Wed. 01/05	Preliminaries [Slides]		Evasion Attacks against Machine Learning at Test Time Intriguing Properties of Neural Networks			
Mon. 01/10	Preliminaries [Slides]	[HW 1 Due]	Explaining and Harnessing Adversarial Examples Adversarial Examples in the Physical World			
Wed. 01/12	Attacks [Slides]		Towards Evaluating the Robustness of Neural Networks Towards Deep Learning Models Resistant to Adversarial Attacks [Bonus] Universal Adversarial Perturbations			

Course Structure – cont'd

- In this course, you will do
 - 30 pts: Written paper critiques
 - 35 pts: Homework
 - 35 pts: Term project
 - 20 pts: Final Exam (online)
- [Bonus] You will also have extra points opportunities
 - +5 pts: Scribe lecture notes (max. once)
 - +5 pts: Paper presentation (max. once)
 - +5 pts: Outstanding project work
 - +5 pts: Submitting the final project report to workshops

30 pts: Written Paper Critiques

- [Due] Before each class
- Read 2 papers; not the papers in [Bonus] section
- You will write:
 - Two critiques; one for each paper
 - Combine them into a single PDF file
- Your critique **MUST** include:
 - Summary of the paper
 - Contributions (typically 2-3 for each paper)
 - Strengths and weaknesses (2-3 for each)
 - Your opinions

Oregon State

- 15 Critiques | Grades in a 0-2 scale
- Submit your critique to Canvas

Date	Topics	Notes	Readings
			Part I: Overview and Motivation
Mon.	Introduction	[HW 1]	The Security of Machine Learning
01/03	[Slides]		[Bonus] SoK: Security and Privacy in Machine Learning
			Part II: Adversarial Examples
Wed. 01/05	Preliminaries [Slides]		Evasion Attacks against Machine Learning at Test Time Intriguing Properties of Neural Networks
Mon. 01/10	Preliminaries [Slides]	[HW 1 Due]	Explaining and Harnessing Adversarial Examples Adversarial Examples in the Physical World
Wed.	Attacks		Towards Evaluating the Robustness of Neural Networks
01/12	[Slides]		Towards Deep Learning Models Resistant to Adversarial Attack [Bonus] Universal Adversarial Perturbations

35 pts: Homework

- [Due/Details] See the course website: https://secure-ai.systems/courses/MLSec/W22/homework.html
- Homework
 - HW 1 (5 pts): Build Your Own Models
 - HW 2 (10 pts): Adversarial examples and defenses
 - HW 3 (10 pts): Data poisoning attacks and defenses
 - HW 4 (10 pts): Privacy attacks and defenses
- Submit your homework to Canvas
- Your submission **MUST** include:
 - Your code (not the models)
 - Your write-up (2-3 pages at max.)
 - Combine them into a single compressed file

35 pts: Term Project

- [Details] See the course website: https://secure-ai.systems/courses/MLSec/W22/project.html
- You will form a team of max. 4 students
 - You are welcome to do this individually
 - Use Canvas to sign-up (will be updated by Wed.)
- Project Topics
 - Choose your own topic
 - Replicate the prior work's results
- Presentations
 - Checkpoint Presentation 1 (10 pts)
 - Checkpoint Presentation 2 (10 pts)
 - Final Presentation and a write-up (15 pts)
- [Peer reviews] 5 pts for each presentation

Course Structure – cont'd

- In this course, you will do
 - 30 pts: Written paper critiques
 - 35 pts: Homework
 - 35 pts: Term project
 - 20 pts: Final Exam (online)
- [Bonus] You will also have extra points opportunities
 - +5 pts: Scribe lecture note (max. once)
 - +5 pts: Paper presentation (max. once)
 - +5 pts: Outstanding project work
 - +5 pts: Submitting the final project report to workshops

[Extra] Scribe Lecture Note

- [Due] One week after each class
- You can opt-in now and next class
 - First come, first served
 - Max. 2 students can sign-up for one
 - Max. once you can opt-in for this
 - Use Canvas to sign-up (will be updated by Wed.)
- Your note **MUST** include:
 - Outline: a list of key topics covered in the class
 - Content: a detailed summary of the class' content
 - Use the Latex template; expected length: 3-4 pages
- Grades in a 0-5 scale | I may ask for edits
- See the course website: <u>https://secure-ai.systems/courses/MLSec/W22/critiques.html</u>

[Extra] Paper Presentation

- [Details] See the course website: https://secure-ai.systems/courses/MLSec/W22/critiques.html
- You can *opt-in* for this opportunity
 - First come, first served
 - Max. 2 students can sign-up for one
 - Max. once you can opt-in for this
 - Use Canvas to sign-up (will be updated by Wed.)
- You MUST meet me TWICE:
 - 1.5 weeks before the class for organizing your presentation
 - 0.5 weeks before; to do a dry-run
- 20 min. paper discussion & 10-15 min. in-class discussion
- Grades in a 0-5 scale

Late Submissions

- Written paper critiques: 0 pts
- Homework
 - From the due date, your final points will decrease by -1 pts / extra day.
- Term Project
 - No presentation in any cases: 0 pts
 - No report submission: -5 pts from your final score
 - Late report submission: your final score will decrease by -1 pts / extra day
- Final Exam: 0 pts
- Extra points opportunities
 - Scribe notes: 0 pts
 - Paper presentation: 0 pts

Keep an Eye on the Course Website

- Check
 - New announcements
 - Updates on the course syllabus

Thank You!

Mon/Wed 12:00 – 1:50 pm

Instructor: Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

CS 499/599: Machine Learning Security 01.03: Part II: Overview and Motivation

Mon/Wed 12:00 – 1:50 pm

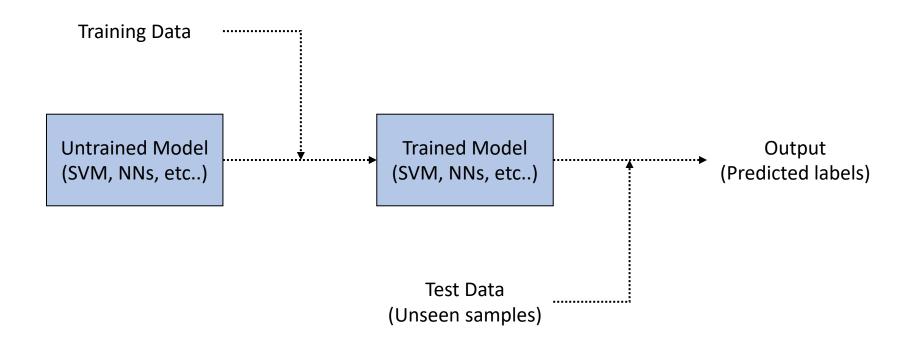
Instructor: Sanghyun Hong

sanghyun.hong@oregonstate.edu

Notice

• Due dates

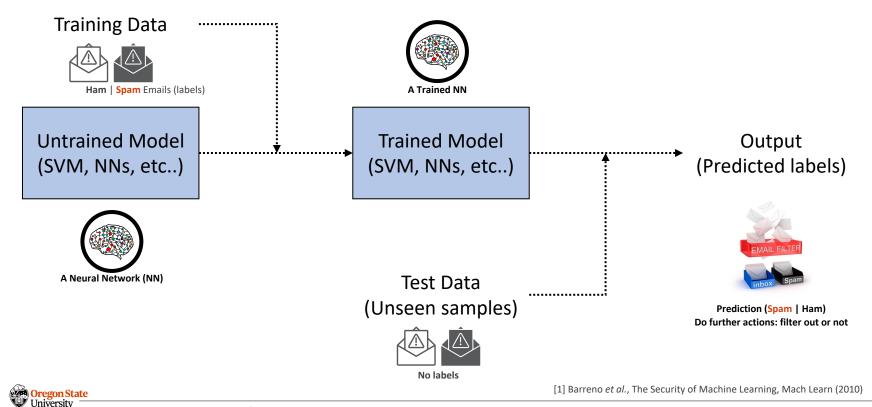
- Written paper critiques (on 01.05)
- Homework 1 (on 01.10)



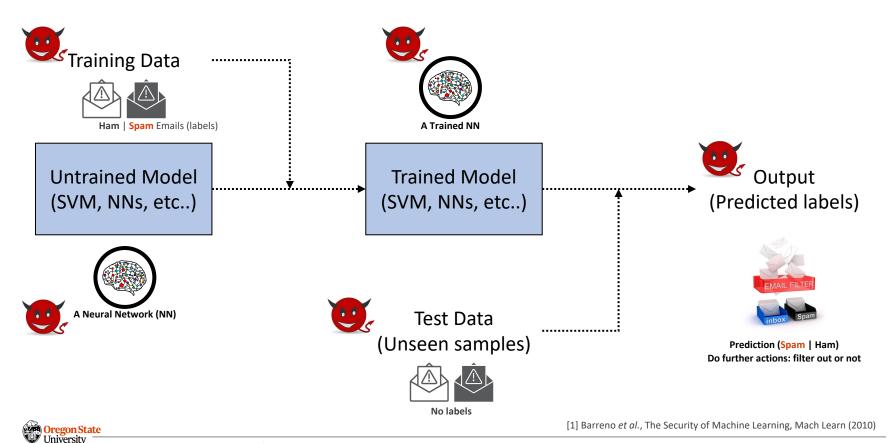
Topics for Today

- ML Pipeline
- Threat Model
 - Attack surfaces
 - Attack objectives
 - Attacker's knowledge
 - Attacker's capabilities
- Possible Attacks on ML
 - Adv. examples
 - Data poisoning
 - Backdoor attacks
 - Membership inference
 - Many more...

ML Pipeline: How Do We Train an ML Model?



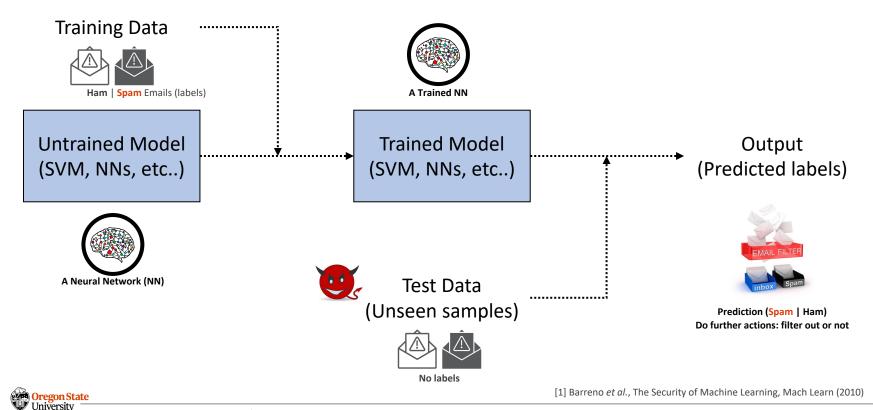
ML Pipeline: How Do We Use the Trained Model for Inference?



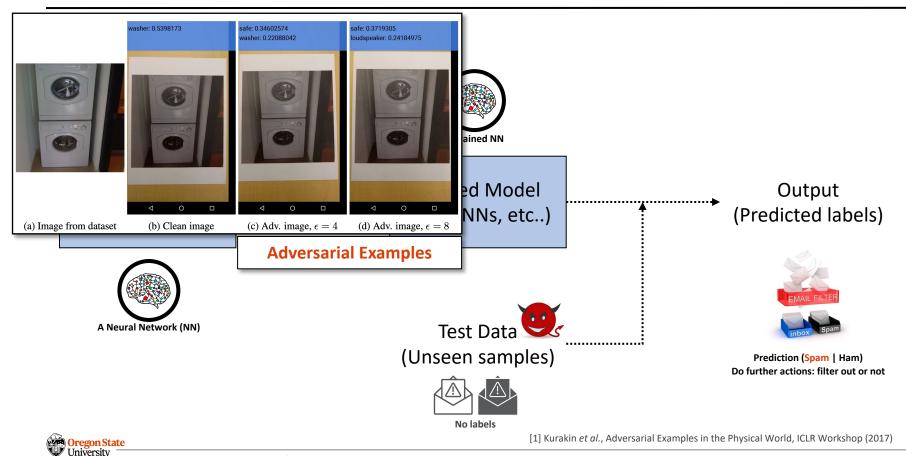
ML Pipeline: Spam Filter Example

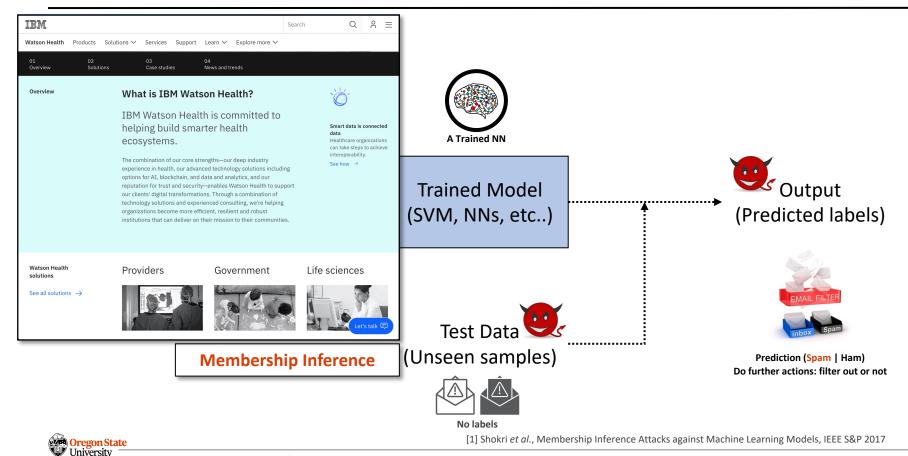
Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

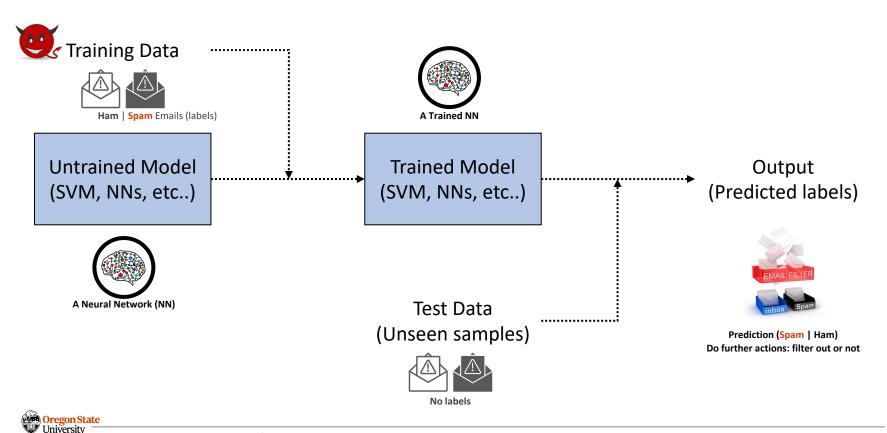
Threat Model: Attack Surfaces

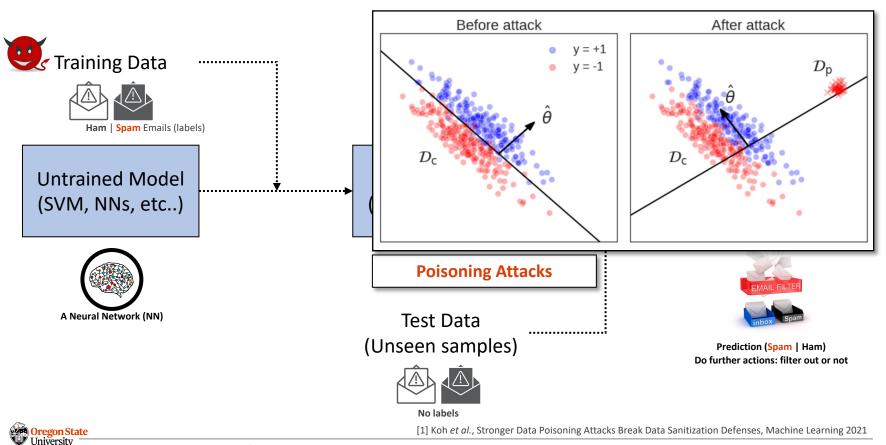


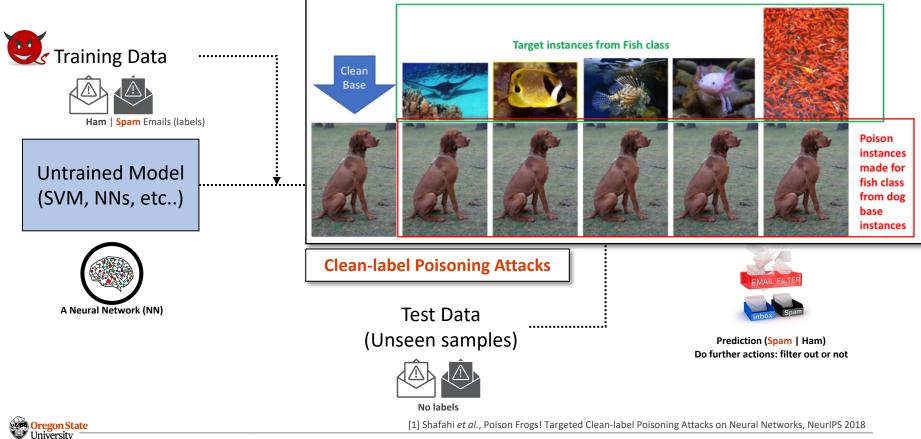
Threat Model: Attacker's Knowledge

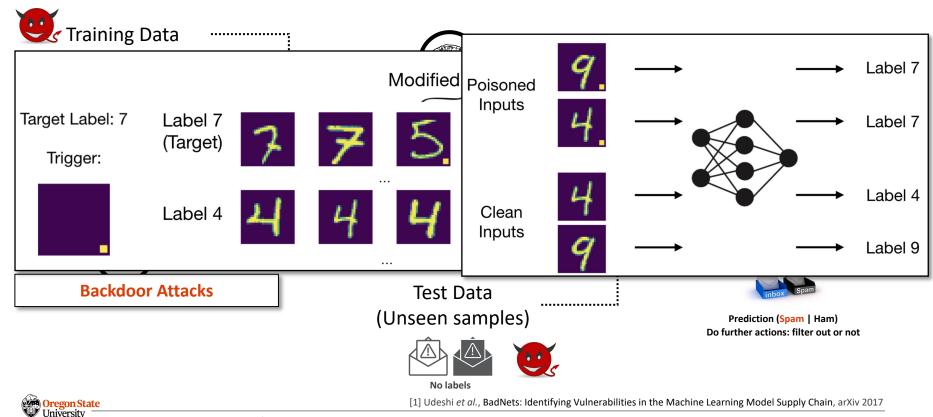

- White-box: an attacker knows the model and its internals
- Black-box: an attacker can only query the model (in most cases)


Threat Model: Test-time Attack


Test-time Attack: Adversarial Examples


Test-time Attack: Membership Inference


Threat Model: Training-time Attack


Training-time Attack: Poisoning Attacks

Training-time Attack: Clean-label Poisoning Attacks

Training-time Attack: Backdoor Attacks

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

Summary of the Threats to ML Pipelines

- Test-time attacks
 - Adversarial examples
 - Objective: misclassification of a test-time example
 - Capability: modify the test-time example
 - Knowledge: white-box (model internals), black-box (queries are only available)
 - Membership inference
 - Objective: infer the membership of an example in the training set
 - Capability: query the model and observe the logits
 - Knowledge: black-box

Summary of the Threats to ML Pipelines

- Training-time attacks
 - Data poisoning
 - Objective: misclassification of test-time samples
 - Capability: inject (a small subset of) bad data into the training set
 - Knowledge: white-box (model internals), black-box (queries are only available)
 - Backdoor attacks
 - Objective: cause misclassification of test-time samples with a specific trigger
 - Capability:
 - Inject (a small subset of) bad data with the trigger into the training set
 - Add the trigger to the target test-time samples
 - Knowledge: black-box

Thank You!

Mon/Wed 12:00 – 1:50 pm

Instructor: Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

