
Notice

• Due dates
− Written paper critiques (on 01.12)
− Homework 1 (discuss an extension to 01.17)
− Term Project (team-up by 01.19)

• Sign-up (on Canvas)
− Scribe Lecture Note
− In-class Paper Presentation / Discussion

• Zoom link for the class
− Please email me if you have (to be quarantined, illness, …)
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Recap
• ML Matters
• Evasion attack

− Motivation
− Threat Model
− Gradient Descent Attack
− Attacks on MNIST and PDF Malware Classifiers

• Counter-intuitive Properties (CI Prop.)
− CI Prop. 1 [Controversial]
− CI Prop. 2
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Topics for Today
• AE  ⃪ ML

− Motivation / CI Prop. 1
− CI Prop. 2 – cont’d
− Conclusions & Implications

• AE  ⃪ ML
− Motivation
− FGSM Attack
− Adversarial Training
− More observations
− Conclusions

• AE  ⃪ Security
− Practical considerations
− Iterative Method
− Real-world exploitation
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Szegedy et al., Intriguing Properties of Neural Networks
: This work approaches the problem from a ML perspective



Empirical Observations on MNIST Models
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• H1: Overfitting Matters?

− Row 1-3:
• Regularization (weight decay) can increase the min. required distortion (for 0% acc.)
• Excessive regularization can increase the required distortion further,

but, it also increases the classifier’s training and testing errors at the same time



Empirical Observations on MNIST Models

Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security 7

• H2: Non-linearity Matters?

− Row 4-6:
• Non-linear models are also vulnerable to adv. examples
• The vulnerability slightly decreases as:

1) the # of hidden units increase, and
2) we use the auto-encoder



Empirical Observations on MNIST Models
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• H3: Are NNs resilient to input perturbations?

− They are, against random Gaussian perturbations on the inputs (see the red box)
− However, they are NOT against the worst-case perturbations (adv. examples)



Empirical Observations on MNIST Models
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• Random perturbations (trivial ones), 
NOT the right way to measure the stability of neural networks



Empirical Observations on MNIST Models
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• H4: Do adversarial examples transfer?

− Adversarial examples transfer!
− The transferability varies depending on the choice of models, regularizations … used
− (see Table 3 & 4) They transfer even btw the models trained on disjoint training sets



Spectral Analysis of Instability
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• Lipschitz constant [?!]



Conclusions and Future Work
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• [TL; DR] DNNs have counter intuitive properties
− RQ1: Does a single neuron represent a high-level concept?

• No distinction btw individual neurons and random linear combinations of neurons

− RQ2: Are neural networks resilient to input perturbations?
• No

− They may have some resilience against random perturbations
− However, it’s not resilient to the worst-case test-time inputs (adversarial examples)

• Even by adding human-imperceptible perturbations, adversarial examples are effective
• This work suggests there maybe some ways to mitigate adv. examples

− Reduce overfitting (e.g., using weight decay)
− Use linear models (e.g., single layer feedforward networks)

• This work also found that adversarial examples often transfer
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Goodfellow et al., Explaining and Harnessing Adversarial Examples



Motivation
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• Observations from the work by Szegedy et al.
− NN models are vulnerable to adv. examples

• False sense of security
− They are resilient to random Gaussian perturbations
− However, it does NOT mean NNs are resilient to the worst-case perturbations

• The vulnerability reduces when
− We use the weight decay (regularization)
− We use linear models (single layer NNs)

• Adv. examples transfer!



Motivation – cont’d
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• Research Questions
− RQ1: What is the primary cause of adversarial examples?
− RQ2: How can we find the adversarial examples efficiently?
− RQ3: How can an adversary exploit adversarial examples in practice?
− RQ4: How can we defend models against adversarial examples?



RQ 1: Primary Cause of AEs
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• Revisit H2: Non-linearity Matters?

− Observations:
• The min. distortion required to make a model’s acc. to 0%

is larger in the non-linear models (Row 4-6) than the linear models (Row 1-3)
• Non-linearity may be the primary cause of adversarial examples



RQ 1: Primary Cause of AEs
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• H in Prior work: Non-linearity Matters
• H in This work:

− H: Perhaps, its linearity matters, too!
− Method: Show the existence of adversarial examples in linear models

• Suppose an input 𝑥 and its adv. input 𝑥 + 𝜂, where ||𝜂||! < 𝜀, and a linear model

• (Let’s show it) We can find an AE if its input has sufficient dimensionality
− Implications

• Its linearity (and also the direction) matters
• Perhaps, there is an easy way to find adversarial examples in NNs



RQ 1: Primary Cause of AEs
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• NNs are non-linear, but are a stack of multiple linear models (link)
• Hypothesis:

− We may exploit this property to find AEs efficiently!

http://playground.tensorflow.org/


RQ 2: Fast Gradient Sign Method (FGSM)
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• Given
− A test-time input (𝑥, 𝑦)
− A NN model 𝑓 and its parameters 𝜃
− A loss (or a cost) function 𝐽(𝜃, 𝑥, 𝑦)

• Find
− An adversarial perturbation 𝜂 such that 𝑓 𝑥 + 𝜂 ≠ 𝑦 and ||𝜂||! < 𝜀

• Results on the test-sets
− On MNIST: 99.9% error rate with an avg. confidence of 79.3% (eps = 0.25)
− On CIFAR10: 87.2% error rate with an avg. confidence of 96.6% (eps = 0.1)



RQ 4: Defend ML Models against AEs
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• Observation from the prior work
− Regularizations (e.g., weight decay) reduce the error rate by AEs 
− Training a model with AEs somewhat reduces the error rate: adversarial training (AT)

• Challenges in AT
− It is unclear on which adversarial examples a model should be trained
− It is computationally expensive process with existing AE crafting methods (L-BFGS)

• Adversarial Training Proposed in This Work



RQ 4: Effectiveness of AT
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• On MNIST
− The error rate of AT models on the test-set is similar to the non-AT models
− The AT models become resilient to adversarial examples

• It reduces an error rate of a trained model from 89.4% to 17.9%
• It also reduces the transferability: an error rate from 40.9% to 19.6%

− But still, AT is not a perfect defense
• If the AT models misclassify an AE, it’s confidence is still high, e.g., 80.4%

− Extra observations
• Training with random Gaussian perturbations is inefficient at preventing AEs
• In DNNs, it is better to just perturb the original input than the activations
• AT is useful when a model has the sufficient capacity to learn AEs



Conclusions
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• Research Questions
− RQ1: What is the primary cause of adversarial examples?

• Empirical results may show that it’s the linearity that matters
• AEs are highly aligned with the directions of weight vectors (linear models)
• Due to the two reasons, AEs transfer between models

− RQ2: How can we find the adversarial examples efficiently?
• FGSM (fast gradient sign method)

− RQ4: How can we defend models against adversarial examples?
• Adversarial training: we can make a model generalize on adversarial examples



Thank You!
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