Notice

- Due dates
 - Written paper critiques (on 01.12)
 - Homework 1 (discuss an extension to 01.17)
 - Term Project (team-up by 01.19)
- Sign-up (on Canvas)
 - Scribe Lecture Note
 - In-class Paper Presentation / Discussion
- Zoom link for the class
 - Please email me if you have (to be quarantined, illness, ...)

CS 499/599: Machine Learning Security 01.10: Adversarial Examples (AE) 2

Mon/Wed 12:00 – 1:50 pm

Instructor: Sanghyun Hong

sanghyun.hong@oregonstate.edu

Recap

- ML Matters
- Evasion attack
 - Motivation
 - Threat Model
 - Gradient Descent Attack
 - Attacks on MNIST and PDF Malware Classifiers
- Counter-intuitive Properties (CI Prop.)
 - CI Prop. 1 [Controversial]
 - CI Prop. 2

Topics for Today

- AE←ML
 - Motivation / Cl Prop. 1
 - CI Prop. 2 cont'd
 - Conclusions & Implications
- AE←ML
 - Motivation
 - FGSM Attack
 - Adversarial Training
 - More observations
 - Conclusions
- AE←Security
 - Practical considerations
 - Iterative Method
 - Real-world exploitation

Oregon State University

Szegedy et al., Intriguing Properties of Neural Networks

: This work approaches the problem from a ML perspective

• H1: Overfitting Matters?

Description	Training error	Test error	Av. min. distortion
Softmax with $\lambda = 10^{-4}$	6.7%	7.4%	0.062
Softmax with $\lambda = 10^{-2}$	10%	9.4%	0.1
Softmax with $\lambda = 1$	21.2%	20%	0.14
Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$	0%	1.64%	0.058
Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$	0%	1.54%	0.065
Autoencoder with Softmax $\lambda = 10^{-6}$	0.57%	1.9%	0.086
	DescriptionSoftmax with $\lambda = 10^{-4}$ Softmax with $\lambda = 10^{-2}$ Softmax with $\lambda = 1$ Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$ Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$ Autoencoder with Softmax $\lambda = 10^{-6}$	Description Training error Softmax with $\lambda = 10^{-4}$ 6.7% Softmax with $\lambda = 10^{-2}$ 10% Softmax with $\lambda = 1$ 21.2% Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$ 0% Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$ 0% Autoencoder with Softmax $\lambda = 10^{-6}$ 0.57%	Description Training error Test error Softmax with $\lambda = 10^{-4}$ 6.7% 7.4% Softmax with $\lambda = 10^{-2}$ 10% 9.4% Softmax with $\lambda = 1$ 21.2% 20% Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$ 0% 1.64% Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$ 0% 1.54% Autoencoder with Softmax $\lambda = 10^{-6}$ 0.57% 1.9%

- Row 1-3:

- Regularization (weight decay) can increase the min. required distortion (for 0% acc.)
- Excessive regularization can increase the required distortion further, but, it also increases the classifier's training and testing errors at the same time

• H2: Non-linearity Matters?

Model Name	Description	Training error	Test error	Av. min. distortion
FC10(10 ⁻⁴)	Softmax with $\lambda = 10^{-4}$	6.7%	7.4%	0.062
$FC10(10^{-2})$	Softmax with $\lambda = 10^{-2}$	10%	9.4%	0.1
FC10(1)	Softmax with $\lambda = 1$	21.2%	20%	0.14
FC100-100-10	Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$	0%	1.64%	0.058
FC200-200-10	Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$	0%	1.54%	0.065
AE400-10	Autoencoder with Softmax $\lambda = 10^{-6}$	0.57%	1.9%	0.086

- Row 4-6:

- Non-linear models are also vulnerable to adv. examples
- The vulnerability slightly decreases as:
 - 1) the # of hidden units increase, and
 - 2) we use the auto-encoder

• H3: Are NNs resilient to input perturbations?

	FC10(10 ⁻⁴)	$FC10(10^{-2})$	FC10(1)	FC100-100-10	FC200-200-10	AE400-10	Av. distortion
FC10(10 ⁻⁴)	100%	11.7%	22.7%	2%	3.9%	2.7%	0.062
$FC10(10^{-2})$	87.1%	100%	35.2%	35.9%	27.3%	9.8%	0.1
FC10(1)	71.9%	76.2%	100%	48.1%	47%	34.4%	0.14
FC100-100-10	28.9%	13.7%	21.1%	100%	6.6%	2%	0.058
FC200-200-10	38.2%	14%	23.8%	20.3%	100%	2.7%	0.065
AE400-10	23.4%	16%	24.8%	9.4%	6.6%	100%	0.086
Gaussian noise, stddev=0.1	5.0%	10.1%	18.3%	0%	0%	0.8%	0.1
Gaussian noise, stddev=0.3	15.6%	11.3%	22.7%	5%	4.3%	3.1%	0.3

- They are, against random Gaussian perturbations on the inputs (see the red box)
- However, they are **NOT** against the worst-case perturbations (adv. examples)

Random perturbations (trivial ones),
NOT the right way to measure the stability of neural networks

(a) Even columns: adversarial examples for a linear (FC) classifier (stddev=0.06)

(b) Even columns: adversarial examples for a 200-200-10 sigmoid network (stddev=0.063)

(c) Randomly distorted samples by Gaussian noise with stddev=1. Accuracy: 51%.

• H4: Do adversarial examples transfer?

	$FC10(10^{-4})$	$FC10(10^{-2})$	FC10(1)	FC100-100-10	FC200-200-10	AE400-10	Av. distortion
FC10(10 ⁻⁴)	100%	11.7%	22.7%	2%	3.9%	2.7%	0.062
$FC10(10^{-2})$	87.1%	100%	35.2%	35.9%	27.3%	9.8%	0.1
FC10(1)	71.9%	76.2%	100%	48.1%	47%	34.4%	0.14
FC100-100-10	28.9%	13.7%	21.1%	100%	6.6%	2%	0.058
FC200-200-10	38.2%	14%	23.8%	20.3%	100%	2.7%	0.065
AE400-10	23.4%	16%	24.8%	9.4%	6.6%	100%	0.086
Gaussian noise, stddev=0.1	5.0%	10.1%	18.3%	0%	0%	0.8%	0.1
Gaussian noise, stddev=0.3	15.6%	11.3%	22.7%	5%	4.3%	3.1%	0.3

- Adversarial examples transfer!

- The transferability varies depending on the choice of models, regularizations ... used
- (see Table 3 & 4) They transfer even btw the models trained on disjoint training sets

Spectral Analysis of Instability

• Lipschitz constant [?!]

Conclusions and Future Work

- [TL; DR] DNNs have counter intuitive properties
 - RQ1: Does a single neuron represent a high-level concept?
 - No distinction btw individual neurons and random linear combinations of neurons
 - RQ2: Are neural networks resilient to input perturbations?
 - No
 - They may have some resilience against random perturbations
 - However, it's not resilient to the worst-case test-time inputs (adversarial examples)
 - Even by adding human-imperceptible perturbations, adversarial examples are effective
 - This work suggests there maybe some ways to mitigate adv. examples
 - Reduce overfitting (e.g., using weight decay)
 - Use linear models (e.g., single layer feedforward networks)
 - This work also found that adversarial examples often transfer

Goodfellow et al., Explaining and Harnessing Adversarial Examples

Motivation

- Observations from the work by Szegedy et al.
 - NN models are vulnerable to adv. examples
 - False sense of security
 - They are resilient to random Gaussian perturbations
 - However, it does **NOT** mean NNs are resilient to the worst-case perturbations
 - The vulnerability reduces when
 - We use the weight decay (regularization)
 - We use linear models (single layer NNs)
 - Adv. examples transfer!

Motivation - cont'd

- Research Questions
 - RQ1: What is the primary cause of adversarial examples?
 - RQ2: How can we find the adversarial examples efficiently?
 - RQ3: How can an adversary exploit adversarial examples in practice?
 - RQ4: How can we defend models against adversarial examples?

RQ 1: Primary Cause of AEs

• Revisit H2: Non-linearity Matters?

Model Name	Description	Training error	Test error	Av. min. distortion
FC10(10 ⁻⁴)	Softmax with $\lambda = 10^{-4}$	6.7%	7.4%	0.062
$FC10(10^{-2})$	Softmax with $\lambda = 10^{-2}$	10%	9.4%	0.1
FC10(1)	Softmax with $\lambda = 1$	21.2%	20%	0.14
FC100-100-10	Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$	0%	1.64%	0.058
FC200-200-10	Sigmoid network $\lambda = 10^{-5}, 10^{-5}, 10^{-6}$	0%	1.54%	0.065
AE400-10	Autoencoder with Softmax $\lambda = 10^{-6}$	0.57%	1.9%	0.086
LI				

- Observations:

- The min. distortion required to make a model's acc. to 0% is larger in the non-linear models (Row 4-6) than the linear models (Row 1-3)
- Non-linearity may be the primary cause of adversarial examples

RQ 1: Primary Cause of AEs

- H in Prior work: Non-linearity Matters
- H in This work:
 - H: Perhaps, its linearity matters, too!
 - Method: Show the existence of adversarial examples in linear models
 - Suppose an input x and its adv. input $x + \eta$, where $||\eta||_{\infty} < \varepsilon$, and a linear model

$$\boldsymbol{w}^{ op} \tilde{\boldsymbol{x}} = \boldsymbol{w}^{ op} \boldsymbol{x} + \boldsymbol{w}^{ op} \boldsymbol{\eta}.$$

- (Let's show it) We can find an AE if its input has sufficient dimensionality
- Implications
 - Its linearity (and also the direction) matters
 - Perhaps, there is an easy way to find adversarial examples in NNs

RQ 1: Primary Cause of AEs

- NNs are non-linear, but are a stack of multiple linear models (link)
- Hypothesis:
 - We may exploit this property to find AEs efficiently!

RQ 2: Fast Gradient Sign Method (FGSM)

- Given
 - A test-time input (x, y)
 - A NN model f and its parameters heta
 - A loss (or a cost) function $J(\theta, x, y)$
- Find
 - An adversarial perturbation η such that $f(x + \eta) \neq y$ and $||\eta||_{\infty} < \varepsilon$

$$\boldsymbol{\eta} = \epsilon \operatorname{sign} \left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y) \right).$$

- Results on the test-sets
 - On MNIST: 99.9% error rate with an avg. confidence of 79.3% (eps = 0.25)
 - On CIFAR10: 87.2% error rate with an avg. confidence of 96.6% (eps = 0.1)

RQ 4: Defend ML Models against AEs

- Observation from the prior work
 - Regularizations (e.g., weight decay) reduce the error rate by AEs
 - Training a model with AEs somewhat reduces the error rate: adversarial training (AT)
- Challenges in AT
 - It is unclear on which adversarial examples a model should be trained
 - It is computationally expensive process with existing AE crafting methods (L-BFGS)
- Adversarial Training Proposed in This Work

$$\tilde{J}(\boldsymbol{\theta}, \boldsymbol{x}, y) = \alpha J(\boldsymbol{\theta}, \boldsymbol{x}, y) + (1 - \alpha) J(\boldsymbol{\theta}, \boldsymbol{x} + \epsilon \text{sign} \left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y) \right).$$

RQ 4: Effectiveness of AT

- On MNIST
 - The error rate of AT models on the test-set is similar to the non-AT models
 - The AT models become resilient to adversarial examples
 - It reduces an error rate of a trained model from 89.4% to 17.9%
 - It also reduces the transferability: an error rate from 40.9% to 19.6%
 - But still, AT is not a perfect defense
 - If the AT models misclassify an AE, it's confidence is still high, *e.g.*, 80.4%
 - Extra observations
 - Training with random Gaussian perturbations is inefficient at preventing AEs
 - In DNNs, it is better to just perturb the original input than the activations
 - AT is useful when a model has the sufficient capacity to learn AEs

Conclusions

- Research Questions
 - RQ1: What is the primary cause of adversarial examples?
 - Empirical results may show that it's the linearity that matters
 - AEs are highly aligned with the directions of weight vectors (linear models)
 - Due to the two reasons, AEs transfer between models
 - RQ2: How can we find the adversarial examples efficiently?
 - FGSM (fast gradient sign method)
 - RQ4: How can we defend models against adversarial examples?
 - Adversarial training: we can make a model generalize on adversarial examples

Thank You!

Mon/Wed 12:00 – 1:50 pm

Instructor: Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

