Notice

- Due dates
 - Homework 1 (01.17)
 - Written paper critiques (on 01.19)
 - Term Project (Sign-up by 01.19) [Want Random by 01.17?]
- Sign-up (on Canvas)
 - Scribe Lecture Note
 - In-class Paper Presentation / Discussion
- Zoom link for the class
 - Please email me if you have (to be quarantined, illness, ...)

CS 499/599: Machine Learning Security 01.12: Adversarial Examples (AE) 3

Mon/Wed 12:00 – 1:50 pm

Instructor: Sanghyun Hong

sanghyun.hong@oregonstate.edu

Recap

- ML Matters
- Evasion (Test-time Adversarial) Attack
 - Threat Model
 - Attack:
 - FGSM Attack
 - Mitigation:
 - Adversarial Training (AT)

Topics for Today

- AE←Security
 - Practical considerations
 - Iterative Methods
 - Real-world exploitation
- AE←Security
 - Motivation
 - C&W Attack
 - Conclusions (and Implications)
- AE←ML
 - Motivation
 - PGD Attack
 - Conclusions (and Implications)

Alexey et al., Adversarial Examples in the Physical World

Motivation

- Remaining Questions:
 - RQ3: Can an adversary exploit adversarial examples in practice?

Motivation - cont'd

- AE in the numerical world \neq AE in the physical world
 - Numerical perturbations by FGSM lead to the input values like 34.487
 - In the pixel space, such perturbations do not exist (*i.e.*, quantized pixel values)
 - One may take only classification results with a high probability (e.g., > 0.8)
 - Many others...
- An example (CIFAR-10)
 - Craft AEs on a DNN model (~an error rate of 99.9%)
 - Store these AEs into PNG files
 - Upload them to object recognition services (~an error rate of 10%)

- Given
 - A test-time input (X, y); each pixel in $X \sim [0, 255]$
 - A NN model f and its parameters heta
 - A loss (or a cost) function J(X, y)

• Find

- An AE X^{adv} such that $f(X^{adv}) \neq y$ and $||X^{adv} - X||_{\infty} \leq \varepsilon$

$$oldsymbol{X}^{adv} = oldsymbol{X} + \epsilon \operatorname{sign} ig(
abla_X J(oldsymbol{X}, y_{true}) ig)$$

Basic Iterative Method

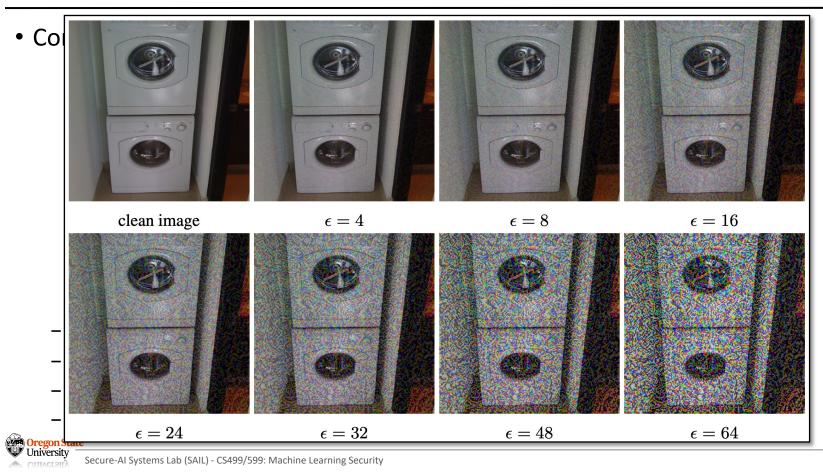
- Objectives
 - To scale numerically small perturbations (*i.e.*, pixel values ~ [0, 255])
 - To craft **powerful** AEs
- BIM Method
 - Run FGSM over multiple iterations

$$oldsymbol{X}_{0}^{adv} = oldsymbol{X}, \quad oldsymbol{X}_{N+1}^{adv} = Clip_{X,\epsilon} \Big\{ oldsymbol{X}_{N}^{adv} + lpha \operatorname{sign}ig(
abla_{X} J(oldsymbol{X}_{N}^{adv}, y_{true}) ig) \Big\}$$

- Iterative Least-Likely (ILL) Class Method
 - Choose a desired class as the class with the low est logit value (y_{LL})

$$oldsymbol{X}_{0}^{adv} = oldsymbol{X}, \quad oldsymbol{X}_{N+1}^{adv} = Clip_{X,\epsilon} \left\{ oldsymbol{X}_{N}^{adv} - lpha \operatorname{sign} \left(
abla_{X} J(oldsymbol{X}_{N}^{adv}, y_{LL})
ight)
ight\}$$

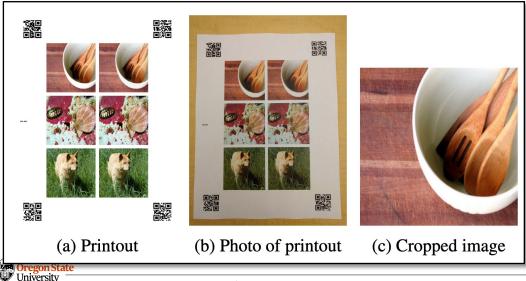
Empirical Results on the ImageNet Inception-v3



RQ 3: Real-World Exploitation

• Setup

- 1. Craft AEs, store them in PNG, and print them
- 2. Take photos of printed AEs with a cell phone
- 3. Resize and center-crop the images from 2
- 4. Run classification on the images from 3



Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

RQ 3: Real-World Exploitation

- Observations
 - AEs work in the physical world
 - Misclassification rate is higher in AEs than what we observe with clean examples
 - Chances increase when we increase the perturbations (*i.e.*, eps from 2 to 16)
 - Prefiltering can reduce the misclassification significantly
 - Prefilter: only accept the classification with a high probability > 0.8
 - It reduces an error rate by 40 90%
 - Can we think some other system-level defenses?

RQ 3: Still, I Can't Believe It Works

• <u>Link</u>, <u>Link</u>, <u>Link</u>

Conclusions

- Lessons
 - RQ2: How can we find the adversarial examples efficiently?
 - BIM (Basic Iterative method)
 - ILL (Iterative Least-Likely class method)
 - RQ3: Can an adversary exploit adversarial examples in practice?
 - Highly Likely!

Topics for Today

- AE ← Security
 - Practical considerations
 - Iterative Methods
 - Real-world exploitation
- AE←Security
 - Motivation
 - C&W Attack
 - Conclusions (and Implications)
- AE←ML
 - Motivation
 - PGD Attack
 - Conclusions (and Implications)

Carlini et al, Towards Evaluating the Robustness of Neural Networks

Explosive Interests in AEs

- Many Attacks
 - FGSM
 - BIM (ILL-Class)
 - JSMA
 - DeepFool
 - ...
- Defense Proposals
 - NN architectures resilient to AEs
 - Adversarial Training [?!]
 - Defensive Distillation

Motivation

- Research Questions:
 - RQ 1: What attacks should we choose for evaluating NN robustness?
 - RQ 2: How much are the existing defenses effective against AEs?

• Given

- A test-time input (x, y); each element in $x \sim [0, 1]$
- A NN model f and its parameters heta

• Goal

- Find an x^{adv} such that $f(x^{adv}) \neq y$ while $||x^{adv} - x||_p \leq \varepsilon$

Revisit the Threat Model – cont'd

- Given
 - A test-time input (x, y); each element in $x \sim [0, 1]$
 - A NN model f and its parameters heta
- Goal

- Find an x^{adv} such that $f(x^{adv}) = t$ ($t \neq y$) while $||x^{adv} - x||_p \leq \varepsilon$

- Three scenarios (depends on how we choose $y^t = f(x^{adv})$)
 - Best-case
 - Average-case
 - Worst-case

Revisit the Threat Model – cont'd

- Given
 - A test-time input (x, y); each element in $x \sim [0, 1]$
 - A NN model f and its parameters heta
- Goal

- Find an x^{adv} such that $f(x^{adv}) = t$ ($t \neq y$) while $||x^{adv} - x||_p \leq \varepsilon$

- Three scenarios (depends on how we choose $y^t = f(x^{adv})$)
 - Best-case
 - Average-case
 - Worst-case
- Perturbations

– L_0, L_1, L_2, L_∞

RQ 1: How to Evaluate the Robustness of NNs?

• The Problem:

minimize
$$\mathcal{D}(x, x + \delta) + c \cdot f(x + \delta)$$

such that $x + \delta \in [0, 1]^n$

- Somewhat computationally tractable problem
- c: a hyper-parameter found by binary search
- Many Possible C (or f)
 - Refer to the paper ($f_1 \sim f_7$)
- Optimization: PGD, Clipped GD, Change of Variables (Refer to the paper)

RQ 1: How to Evaluate the Robustness of NNs?

- Carlini & Wagner (C&W) Attack:
 - L_2 Attack:

minimize
$$\|\frac{1}{2}(\tanh(w) + 1) - x\|_2^2 + c \cdot f(\frac{1}{2}(\tanh(w) + 1))$$

with f defined as
 $f(x') = \max(\max\{Z(x')_i : i \neq t\} - Z(x')_t, -\kappa).$

- L_0 Attack: at each iteration, find pixel locations we don't want to perturb
- L_{∞} Attack: same as L_2

RQ 1: Evaluation Results

- Setup
 - MNIST, CIFAR-10, and ImageNet
 - on randomly chosen 1000 test-time images
- Baselines
 - FGSM, BIM, JSMA, and DeepFool
- Results:
 - C&W achieves 100% misclassification rate
 - It uses 2x 10x less perturbations than the baselines
 - FGSM often shows 0 42% success rate (weak attack)

Motivation – revisit'ed

- Research Questions:
 - RQ 1: What attacks should we choose for evaluating NN robustness?
 - RQ 2: How much are the existing defenses effective against AEs?

- The Key Idea
 - Increase the distillation temperature T so that classification becomes more confident
- Their Results
 - Reduces the misclassification by AEs
 - from 96% to 0% (MNIST)
 - from 88% to 5% (CIFAR-10)

RQ 2: How to Evaluate Defenses?

- Take-away
 - Use strong (or the strongest) attacks to evaluate defenses
 - Defense should also break the transferability
- Results:
 - C&W achieves 100% misclassification rate against defensive distillation
 - C&W's misclassification rate does not depend on the distillation temperature
 - When carefully crafted,
 - C&W AEs crafted on a model transfers to a model trained with defensive distillations
 - It transfer with 0 100% depending on the choice of k in [0, 40]

Conclusions

- Lessons
 - RQ 1: What attacks should we choose for evaluating NN robustness?
 - Not just existing attacks, but a strong baseline attack
 - RQ 2: How much are the existing defenses effective against AEs?
 - Defenses not evaluated with strong baseline attacks are weak
 - Defenses should break the transferability, too

Thank You!

Mon/Wed 12:00 – 1:50 pm

Instructor: Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

