### Notice

#### • Due dates

- Written paper critiques (on 01.26)
- Homework 2 (02.07 2 weeks)
- Term Project Presentation 1 (on 1/31) [Presentation order is in the Sign-up sheet]
- Sign-up (on the Google Sheet)
  - Scribe Lecture Note
  - In-class Paper Presentation / Discussion



### CS 499/599: Machine Learning Security 01.24: Adversarial Example 5

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu





## Recap

- ML Matters
- Evasion (Test-time Adversarial) Attack
  - Threat model
  - Attacks:
    - White-box:
      - FGSM / BIM
      - C&W / PGD attacks
    - Black-box:
      - Practicality
      - Transfer-based attacks
  - Mitigation:
    - Adversarial training (AT)



# **Topics for Today**

- ML Matters
- Evasion (Test-time Adversarial) Attack
  - Threat model
  - Attacks:
    - White-box:
      - FGSM / BIM
      - C&W / PGD attacks
    - Black-box:
      - Practicality
      - Transfer-based attacks
      - Optimization-based attacks
  - Mitigation:
    - Adversarial training (AT)
    - Systematic defense (e.g., FeatureSqueezing)



#### Prior Convictions: Black-Box Adversarial Attacks with Bandits and Priors

Andrew Ilyas, Logan Engstrom, and Alexander Madry

# **Motivation**

- Black-box Attacks on Classifiers
  - Example scenario:
    - Upload (inappropriate) photos to your Instagram account
  - Challenges (vs. white-box attacks, like FGSM, BIM, PGD, ...):
    - Gradient information is not available
  - Possible attack methods
    - Exploit transferability
    - Optimize your adversarial perturbations with query outputs



- Suppose:
  - (x, y): a test-time sample;  $x \in \mathbb{R}^d$  and  $y \in [k]$ ;  $x \in [0, 1]$
  - f: a neural network;  $\theta$ : its parameters
  - $L(\theta, x, y)$ : a loss function
- Goal (of the first order attacker):
  - Find an  $x^{adv} = x + \delta$  such that  $\max_{\delta \in S} L(\theta, x^{adv}, y)$  while  $||\delta||_p \le \varepsilon$
- PGD Crafts:

$$x^{t+1} = \Pi_{x+S} \left( x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$
  
We Need to Know This!



### **Motivation: Gradient Estimation Problem**

- Zeroth-order Optimization
  - Finite Difference Method (FDM):

$$D_v f(x) = \langle \nabla_x f(x), v \rangle \approx \left( f(x + \delta v) - f(x) \right) / \delta.$$

- Compute: derivative of a function f at a point x towards a vector v
- FDM for the gradient with *d*-components:

$$\widehat{\nabla}_{x}L(x,y) = \sum_{k=1}^{d} e_{k} \left( L(x + \delta e_{k}, y) - L(x,y) \right) / \delta \approx \sum_{k=1}^{d} e_{k} \langle \nabla_{x}L(x,y), e_{k} \rangle$$
  
• PGD in the black-box cases:  

$$x^{t+1} = \prod_{x+\mathcal{S}} \left( x^{t} + \alpha \operatorname{sgn}(\overline{\nabla_{x}L(\theta, x, y)}) \right).$$



# **Motivation**

- Research Questions
  - RQ 1: How accurate should we estimate a gradient for successful attacks?
  - RQ 2: How can we estimate gradient accurately with smaller queries?
  - RQ 3: (If we find a method) How effective (and successful) is this new method?



# RQ 1: How Accurate Should We Estimate Gradients?

- Toy Experiment
  - Correctly-picked perturbations vs. Randomly-picked perturbations
  - PGD can be effective even with the imperfect gradient estimate





### **RQ 1: How Accurate Should We Estimate Gradients?**

- Query-efficiency
  - The Least Squares Method:  $\min_{\widehat{g}} \|\widehat{g}\|_2$  s.t.  $A\widehat{g} = y$ .
  - Iteratively compute the estimate  $\hat{g}$ , where:
    - A: Queries {1, 2, ...}
    - y: the corresponding inner product values
  - Natural Evolution Strategy [Ilyas et al.] and Least Squares equivalence

$$\langle \hat{x}_{LSQ}, \boldsymbol{g} 
angle - \langle \hat{x}_{NES}, \boldsymbol{g} 
angle \leq O\left(\sqrt{rac{k}{d} \cdot \log^3\left(rac{k}{p}
ight)}
ight) \left|\left|g
ight|
ight|^2$$



#### Lessons

- Research Questions
  - RQ 1: How accurate should we estimate a gradient for successful attacks?
    - PGD can be quite successful with imperfect gradient estimates
    - Query-efficiency is bounded by the prior work [Ilyas *et al.*] in practical scenarios
  - RQ 2: How can we estimate gradient accurately with smaller queries?
  - RQ 3: (If we find a method) How effective (and successful) is this new method?



- Priors
  - Gradients are correlated in successive attack iterations
  - Pixels close to each other tend to have similar values



- Priors
  - [Time-dependent] Gradients are correlated in successive attack iterations
  - [Data-dependent] Pixels close to each other tend to have similar values



• Time-dependent & Data-dependent Priors





• Formulate the Problem to the Bandit Framework

- Bandit problem

Algorithm 1 Gradient Estimation with Bandit Optimization

1: procedure BANDIT-OPT-LOSS-GRAD-EST
$$(x, y_{init})$$
  
2:  $v_0 \leftarrow \mathcal{A}(\phi)$   
3: for each round  $t = 1, ..., T$  do  
4: // Our loss in round  $t$  is  $\ell_t(g_t) = -\langle \nabla_x L(x, y_{init}), g_t \rangle$   
5:  $g_t \leftarrow v_{t-1}$   
6:  $\Delta_t \leftarrow \text{GRAD-EST}(x, y_{init}, v_{t-1}) // \text{Estimated Gradient of } \ell_t$   
7:  $v_t \leftarrow \mathcal{A}(v_{t-1}, \Delta_t)$   
8:  $g \leftarrow v_T$   
9: return  $\Pi_{\partial \mathcal{K}}[g]$ 



- Formulate the Problem to the Bandit Framework
  - Gradient Estimation

**Algorithm 2** Single-query spherical estimate of  $\nabla_v \langle \nabla L(x, y), v \rangle$ 

1: procedure GRAD-EST(x, y, v)2:  $u \leftarrow \mathcal{N}(0, \frac{1}{d}I) / / \text{Query vector}$ 3:  $\{q_1, q_2\} \leftarrow \{v + \delta \boldsymbol{u}, v - \delta \boldsymbol{u}\} / / \text{Antithetic samples}$ 4:  $\ell_t(q_1) = -\langle \nabla L(x, y), q_1 \rangle \approx \frac{L(x, y) - L(x + \epsilon \cdot q_1, y)}{\epsilon} / / \text{Gradient estimation loss at } q_1$ 5:  $\ell_t(q_2) = -\langle \nabla L(x, y), q_2 \rangle \approx \frac{L(x, y) - L(x + \epsilon \cdot q_2, y)}{\epsilon} / / \text{Gradient estimation loss at } q_2$ 6:  $\boldsymbol{\Delta} \leftarrow \frac{\ell_t(q_1) - \ell_t(q_2)}{\delta} \boldsymbol{u} = \frac{L(x + \epsilon q_2, y) - L(x + \epsilon q_1, y)}{\delta \epsilon} \boldsymbol{u}$ 7: // Note that due to cancellations we can actually evaluate  $\boldsymbol{\Delta}$  with only two queries to L8: return  $\boldsymbol{\Delta}$ 



- Formulate the Problem to the Bandit Framework
  - Gradient Estimation

Algorithm 3 Adversarial Example Generation with Bandit Optimization for  $\ell_2$  norm perturbations

- 1: procedure Adversarial-Bandit-L2 $(x_{init}, y_{init})$
- 2:  $// C(\cdot)$  returns top class
- 3:  $v_0 \leftarrow \mathbf{0}_{1 \times d}$  // If data prior,  $d < \dim(x)$ ;  $v_t$  ( $\Delta_t$ ) up (down)-sampled before (after) line 8

4: 
$$x_0 \leftarrow x_{init} //$$
 Adversarial image to be constructed

5: while 
$$C(x) = y_{init}$$
 do

6: 
$$q_t \leftarrow v_{t-1}$$

7: 
$$x_t \leftarrow x_{t-1} + h \cdot \frac{g_t}{||g_t||_2} / |$$
Boundary projection  $\frac{g}{||g_t||}$  standard PGD: c.f. [Rig15]

8: 
$$\Delta_t \leftarrow \text{GRAD-EST}(x_{t-1}, y_{init}, v_{t-1}) // \text{Estimated Gradient of } \ell_t$$

9: 
$$v_t \leftarrow v_{t-1} + \eta \cdot \Delta_t$$

10: 
$$t \leftarrow t+1$$
  
return  $x_{t-1}$ 



#### Lessons

- Research Questions
  - RQ 1: How accurate should we estimate a gradient for successful attacks?
    - PGD can be quite successful with imperfect gradient estimates
    - Query-efficiency is bounded by the prior work [Ilyas *et al.*] in practical scenarios
  - RQ 2: How can we estimate gradient accurately with smaller queries?
    - Use two priors: time- and data-dependent priors
    - Formulate the estimation into the bandit framework
  - RQ 3: (If we find a method) How effective (and successful) is this new method?



### **RQ 3: How Effective the New Attack?**

- Setup
  - ImageNet (10k randomly chosen samples)
  - Inception-v3
  - Baseline: NES
- Results

**Oregon State** 



#### Lessons

- Research Questions
  - RQ 1: How accurate should we estimate a gradient for successful attacks?
    - PGD can be quite successful with imperfect gradient estimates
    - Query-efficiency is bounded by the prior work [Ilyas *et al.*] in practical scenarios
  - RQ 2: How can we estimate gradient accurately with smaller queries?
    - Use two priors: time- and data-dependent priors
    - Formulate the estimation into the bandit framework
  - RQ 3: (If we find a method) How effective (and successful) is this new method?
    - Require 2.5 5x less queries for successful attacks compared to NES



# **Topics for Today**

- ML Matters
- Evasion (Test-time Adversarial) Attack
  - Threat model
  - Attacks:
    - White-box:
      - FGSM / BIM
      - C&W / PGD attacks
    - Black-box:
      - Practicality
      - Transfer-based attacks
      - Optimization-based attacks
  - Mitigation:
    - Adversarial training (AT)
    - Systematic defense (e.g., FeatureSqueezing)



#### Feature Squeezing: Detecting Adversarial Examples in DNNs

Weilin Xu, David Evans, and Yanjun Qi

# **Motivation**

- Existing Defenses
  - Make robust models:
    - (Gradient masking) Defensive distillation
    - Adversarial training
    - ...
  - **Detect** adversarial examples:
    - Sample statistics
    - Train a detector model
    - Prediction inconsistency (majority vote...)
    - ...



### **Motivation**

• Information-theoretical Perspective





# Key Idea

• FeatureSqueezing



- (Reasonable) Models should return similar predictions over squeezed samples
- Otherwise, it's an adversarial inputs



# **Motivation**

- Research Questions
  - RQ 1: What are the squeezers available for a defender?
  - RQ 2: How much are they effective against existing adversarial attacks?
  - RQ 3: How much are they effective when combined with existing defenses?
  - RQ 4: How much is feature-squeezing effective under adaptive attacks?



### **Threat Model**

- Attacker:
  - Goal: fool the victim classifier on a test-time input x
  - Capability: craft adversarial examples  $x^{adv}$  for x
  - Knowledge
    - White-box
    - Doesn't know whether feature squeezing is used
- Defender:
  - Detect whether the current input x is adversarial or not



# RQ 1: What Are Squeezers Available for a Defender?

- Two simple techniques
  - Reduce the color depth (8-bit to a few bits)
  - Reduce the variation among pixels
    - Local smoothing (e.g., median filter)
    - Non-local smoothing (e.g., denoise)
  - Others
    - JPEG compression [Kurakin et al.]
    - Dimensionality reduction [Turk and Pentland]



# **RQ 2: How Much Are They Effective?**

- Evaluation
  - Setup
    - MNIST, CIFAR10, and ImageNet
    - 7-layer CNN, DenseNet, and MobileNet
    - 100 images correctly classified by those r
  - Attacks
    - FGSM, BIM, C&W (Next | LL), JSMA
    - L0, L2, and L-inf distances

|          |                       | Configrat       | tion | Cost (c) | Success | Prediction | Distortion   |       |       |  |  |  |
|----------|-----------------------|-----------------|------|----------|---------|------------|--------------|-------|-------|--|--|--|
|          |                       | Attack          | Mode | Cust (s) | Rate    | Confidence | $L_{\infty}$ | $L_2$ | $L_0$ |  |  |  |
|          |                       | FGS             | SM   | 0.002    | 46%     | 93.89%     | 0.302        | 5.905 | 0.560 |  |  |  |
|          | 1                     | BI              | М    | 0.01     | 91%     | 99.62%     | 0.302        | 4.758 | 0.513 |  |  |  |
| ANIST    | $L_{\infty}$          | CW              | Next | 51.2     | 100%    | 99.99%     | 0.251        | 4.091 | 0.491 |  |  |  |
|          |                       | CW <sub>∞</sub> | LL   | 50.0     | 100%    | 99.98%     | 0.278        | 4.620 | 0.506 |  |  |  |
|          | <i>L</i> <sub>2</sub> | CW              | Next | 0.3      | 99%     | 99.23%     | 0.656        | 2.866 | 0.440 |  |  |  |
|          |                       | Cw <sub>2</sub> | LL   | 0.4      | 100%    | 99.99%     | 0.734        | 3.218 | 0.436 |  |  |  |
|          |                       | CW              | Next | 68.8     | 100%    | 99.99%     | 0.996        | 4.538 | 0.047 |  |  |  |
|          | 7                     | $Cw_0$          | LL   | 74.5     | 100%    | 99.99%     | 0.996        | 5.106 | 0.060 |  |  |  |
|          | $L_0$                 | TOTAL           | Next | 0.8      | 71%     | 74.52%     | 1.000        | 4.328 | 0.047 |  |  |  |
|          |                       | JSMA            | LL   | 1.0      | 48%     | 74.80%     | 1.000        | 4.565 | 0.053 |  |  |  |
|          |                       |                 |      |          |         |            |              |       |       |  |  |  |
| CIFAR-10 | $L_{\infty}$          | FGS             | SM   | 0.02     | 85%     | 84.85%     | 0.016        | 0.863 | 0.997 |  |  |  |
|          |                       | BI              | М    | 0.2      | 92%     | 95.29%     | 0.008        | 0.368 | 0.993 |  |  |  |
|          |                       | CIV             | Next | 225      | 100%    | 98.22%     | 0.012        | 0.446 | 0.990 |  |  |  |
|          |                       | C₩∞             | LL   | 225      | 100%    | 97.79%     | 0.014        | 0.527 | 0.995 |  |  |  |
|          | L <sub>2</sub>        | DeepFool        |      | 0.4      | 98%     | 73.45%     | 0.028        | 0.235 | 0.995 |  |  |  |
|          |                       | CW <sub>2</sub> | Next | 10.4     | 100%    | 97.90%     | 0.034        | 0.288 | 0.768 |  |  |  |
|          |                       |                 | LL   | 12.0     | 100%    | 97.35%     | 0.042        | 0.358 | 0.855 |  |  |  |
|          | $L_0$                 | CW <sub>0</sub> | Next | 367      | 100%    | 98.19%     | 0.650        | 2.103 | 0.019 |  |  |  |
|          |                       |                 | LL   | 426      | 100%    | 97.60%     | 0.712        | 2.530 | 0.024 |  |  |  |
|          |                       | IGMA            | Next | 8.4      | 100%    | 43.29%     | 0.896        | 4.954 | 0.079 |  |  |  |
|          |                       | JSMA            | LL   | 13.6     | 98%     | 39.75%     | 0.904        | 5.488 | 0.098 |  |  |  |
|          |                       |                 |      |          |         |            |              |       |       |  |  |  |
| ImageNet |                       | FGSM            |      | 0.02     | 99%     | 63.99%     | 0.008        | 3.009 | 0.994 |  |  |  |
|          | T                     | BIM             |      | 0.2      | 100%    | 99.71%     | 0.004        | 1.406 | 0.984 |  |  |  |
|          | $L_{\infty}$          | CIV             | Next | 211      | 99%     | 90.33%     | 0.006        | 1.312 | 0.850 |  |  |  |
|          |                       | Cw∞             | LL   | 269      | 99%     | 81.42%     | 0.010        | 1.909 | 0.952 |  |  |  |
|          |                       | Deep            | Fool | 60.2     | 89%     | 79.59%     | 0.027        | 0.726 | 0.984 |  |  |  |
|          | $L_2$                 | CW              | Next | 20.6     | 90%     | 76.25%     | 0.019        | 0.666 | 0.323 |  |  |  |
|          |                       | $CW_2$          | LL   | 29.1     | 97%     | 76.03%     | 0.031        | 1.027 | 0.543 |  |  |  |
|          | L <sub>0</sub>        | CW              | Next | 608      | 100%    | 91.78%     | 0.898        | 6.825 | 0.003 |  |  |  |
|          |                       | Cw <sub>0</sub> | LL   | 979      | 100%    | 80.67%     | 0.920        | 9.082 | 0.005 |  |  |  |



#### • Effectiveness of the Squeezers

|          | Squeezer          |                 | $L_{\infty}$ Attacks |             |                      |      | L <sub>2</sub> Attacks |      |             |      | $L_0$ At | tacks | A 11 |         |            |
|----------|-------------------|-----------------|----------------------|-------------|----------------------|------|------------------------|------|-------------|------|----------|-------|------|---------|------------|
| Dataset  | Nama              | Doromotors      | FGSM                 | BIM         | $\mathrm{CW}_\infty$ |      | Deep-                  | C    | $CW_2$      |      | $CW_0$   |       | МА   | Attacks | Legitimate |
|          | Ivallie           | 1 al alliciel 5 |                      |             | Next                 | LL   | Fool                   | Next | LL          | Next | LL       | Next  | LL   | Trucks  |            |
| MNIST    | None              |                 | 54%                  | 9%          | 0%                   | 0%   | -                      | 0%   | 0%          | 0%   | 0%       | 27%   | 40%  | 13.00%  | 99.43%     |
|          | Bit Depth         | 1-bit           | 92%                  | <b>87</b> % | 100%                 | 100% | -                      | 83%  | 66%         | 0%   | 0%       | 50%   | 49%  | 62.70%  | 99.33%     |
|          | Madian Smoothing  | 2x2             | 61%                  | 16%         | 70%                  | 55%  | -                      | 51%  | 35%         | 39%  | 36%      | 62%   | 56%  | 48.10%  | 99.28%     |
|          | Median Shioothing | 3x3             | 59%                  | 14%         | 43%                  | 46%  | -                      | 51%  | 53%         | 67%  | 59%      | 82%   | 79%  | 55.30%  | 98.95%     |
|          |                   |                 |                      |             |                      |      |                        |      |             |      |          |       |      |         |            |
|          | None              |                 | 15%                  | 8%          | 0%                   | 0%   | 2%                     | 0%   | 0%          | 0%   | 0%       | 0%    | 0%   | 2.27%   | 94.84%     |
|          | Bit Depth         | 5-bit           | 17%                  | 13%         | 12%                  | 19%  | 40%                    | 40%  | 47%         | 0%   | 0%       | 21%   | 17%  | 20.55%  | 94.55%     |
| CIFAR-10 | Dit Deptil        | 4-bit           | 21%                  | 29%         | 69%                  | 74%  | 72%                    | 84%  | 84%         | 7%   | 10%      | 23%   | 20%  | 44.82%  | 93.11%     |
|          | Median Smoothing  | 2x2             | 38%                  | 56%         | 84%                  | 86%  | 83%                    | 87%  | 83%         | 88%  | 85%      | 84%   | 76%  | 77.27%  | 89.29%     |
|          | Non-local Means   | 11-3-4          | 27%                  | 46%         | 80%                  | 84%  | 76%                    | 84%  | <b>88</b> % | 11%  | 11%      | 44%   | 32%  | 53.00%  | 91.18%     |
|          |                   |                 |                      |             |                      |      |                        |      |             |      |          |       |      |         |            |
|          | None              |                 | 1%                   | 0%          | 0%                   | 0%   | 11%                    | 10%  | 3%          | 0%   | 0%       | 1     | -    | 2.78%   | 69.70%     |
|          | Bit Donth         | 4-bit           | 5%                   | 4%          | 66%                  | 79%  | 44%                    | 84%  | 82%         | 38%  | 67%      |       | -    | 52.11%  | 68.00%     |
| ImageNet | Dit Deptil        | 5-bit           | 2%                   | 0%          | 33%                  | 60%  | 21%                    | 68%  | 66%         | 7%   | 18%      | -     | -    | 30.56%  | 69.40%     |
|          | Median Smoothing  | 2x2             | 22%                  | 28%         | 75%                  | 81%  | 72%                    | 81%  | 84%         | 85%  | 85%      | -     | -    | 68.11%  | 65.40%     |
|          | Moutan Smoothing  | 3x3             | 33%                  | 41%         | 73%                  | 76%  | 66%                    | 77%  | 79%         | 81%  | 79%      | -     | -    | 67.22%  | 62.10%     |
|          | Non-local Means   | 11-3-4          | 10%                  | 25%         | 77%                  | 82%  | 57%                    | 87%  | 86%         | 43%  | 47%      | -     | -    | 57.11%  | 65.40%     |



### **RQ 2: How Much Are They Effective?**

| - Г        | Configuration                                  |                                           |                    |           |       | $L_{\infty}$ Attacks |               |       |       | Attac           | ks    |                 | Overall |       |       |           |
|------------|------------------------------------------------|-------------------------------------------|--------------------|-----------|-------|----------------------|---------------|-------|-------|-----------------|-------|-----------------|---------|-------|-------|-----------|
| • L        |                                                | Squaazor                                  | Parameters         | Threshold | FGSM  | BIM                  | $CW_{\infty}$ |       | Deep  | CW <sub>2</sub> |       | CW <sub>0</sub> |         | JSMA  |       | Detection |
|            |                                                | Squeezei                                  |                    |           |       |                      | Next          | LL    | Fool  | Next            | LL    | Next            | LL      | Next  | LL    | Rate      |
|            |                                                |                                           | 1-bit              | 1.9997    | 0.063 | 0.075                | 0.000         | 0.000 | 0.019 | 0.000           | 0.000 | 0.000           | 0.000   | 0.000 | 0.000 | 0.013     |
|            |                                                | -                                         | 2-bit              | 1.9967    | 0.083 | 0.175                | 0.000         | 0.000 | 0.000 | 0.000           | 0.000 | 0.000           | 0.018   | 0.000 | 0.000 | 0.022     |
|            |                                                | Bit Depth                                 | 3-bit              | 1.7822    | 0.125 | 0.250                | 0.755         | 0.977 | 0.170 | 0.787           | 0.939 | 0.365           | 0.214   | 0.000 | 0.000 | 0.409     |
|            |                                                |                                           | 4-bit              | 0.7930    | 0.125 | 0.150                | 0.811         | 0.886 | 0.642 | 0.936           | 0.980 | 0.192           | 0.179   | 0.041 | 0.000 | 0.446     |
|            | 2                                              |                                           | 5-bit              | 0.3301    | 0.000 | 0.050                | 0.377         | 0.636 | 0.509 | 0.809           | 0.878 | 0.096           | 0.018   | 0.041 | 0.038 | 0.309     |
|            | 2                                              | Median Smoothing                          | 2x2                | 1.1296    | 0.188 | 0.550                | 0.981         | 1.000 | 0.717 | 0.979           | 1.000 | 0.981           | 1.000   | 0.837 | 0.885 | 0.836     |
|            | [A]                                            | Median Shiootining                        | 3x3                | 1.9431    | 0.042 | 0.250                | 0.660         | 0.932 | 0.038 | 0.681           | 0.918 | 0.750           | 0.929   | 0.041 | 0.077 | 0.486     |
|            | E                                              | Non-local Mean                            | 11-3-2             | 0.2770    | 0.125 | 0.400                | 0.830         | 0.955 | 0.717 | 0.915           | 0.939 | 0.077           | 0.054   | 0.265 | 0.154 | 0.484     |
|            | -                                              |                                           | 11-3-4             | 0.7537    | 0.167 | 0.525                | 0.868         | 0.977 | 0.679 | 0.936           | 1.000 | 0.250           | 0.232   | 0.245 | 0.269 | 0.551     |
|            |                                                |                                           | 13-3-2             | 0.2910    | 0.125 | 0.375                | 0.849         | 0.977 | 0.717 | 0.915           | 0.939 | 0.077           | 0.054   | 0.286 | 0.173 | 0.490     |
|            |                                                |                                           | 13-3-4             | 0.8290    | 0.167 | 0.525                | 0.887         | 0.977 | 0.642 | 0.936           | 1.000 | 0.269           | 0.232   | 0.224 | 0.250 | 0.547     |
|            |                                                | Best Attack-Specific Single Squeezer      |                    | -2        | 0.188 | 0.550                | 0.981         | 1.000 | 0.717 | 0.979           | 1.000 | 0.981           | 1.000   | 0.837 | 0.885 | -         |
|            | Best Joint Detection (5-bit, 2x2, 13-3-2) 1.14 |                                           |                    |           | 0.208 | 0.550                | 0.981         | 1.000 | 0.774 | 1.000           | 1.000 | 0.981           | 1.000   | 0.837 | 0.885 | 0.845     |
|            |                                                |                                           |                    |           |       |                      |               |       |       |                 |       |                 |         |       |       |           |
|            |                                                |                                           | 1-bit              | 1.9942    | 0.151 | 0.444                | 0.042         | 0.021 | 0.048 | 0.064           | 0.000 | 0.000           | 0.000   | -     | -     | 0.083     |
|            |                                                |                                           | 2-bit              | 1.9512    | 0.132 | 0.511                | 0.500         | 0.354 | 0.286 | 0.170           | 0.306 | 0.218           | 0.191   | -     | -     | 0.293     |
|            |                                                | Bit Depth                                 | 3-bit              | 1.4417    | 0.132 | 0.556                | 0.979         | 1.000 | 0.476 | 0.787           | 1.000 | 0.836           | 1.000   | -     | -     | 0.751     |
|            |                                                |                                           | 4-bit              | 0.7996    | 0.038 | 0.089                | 0.813         | 1.000 | 0.381 | 0.915           | 1.000 | 0.727           | 1.000   | -     | -     | 0.664     |
|            | et                                             |                                           | 5-bit              | 0.3528    | 0.057 | 0.022                | 0.688         | 0.958 | 0.310 | 0.957           | 1.000 | 0.473           | 1.000   | -     | -     | 0.606     |
|            | Z                                              | Median Smoothing                          | 2x2                | 1.1472    | 0.358 | 0.422                | 0.958         | 1.000 | 0.714 | 0.894           | 1.000 | 0.982           | 1.000   | -     | -     | 0.816     |
|            | ag                                             |                                           | 3x3                | 1.6615    | 0.264 | 0.444                | 0.917         | 0.979 | 0.500 | 0.723           | 0.980 | 0.909           | 1.000   | -     | -     | 0.749     |
|            | <u>E</u>                                       |                                           | 11-3-2             | 0.7107    | 0.113 | 0.156                | 0.813         | 0.979 | 0.357 | 0.936           | 0.980 | 0.418           | 0.830   | -     | -     | 0.618     |
|            |                                                | Non-local Mean                            | 11-3-4             | 1.0387    | 0.208 | 0.467                | 0.958         | 1.000 | 0.548 | 0.936           | 1.000 | 0.673           | 0.957   | -     | -     | 0.747     |
|            |                                                |                                           | 13-3-2             | 0.7535    | 0.113 | 0.156                | 0.813         | 0.979 | 0.357 | 0.936           | 0.980 | 0.418           | 0.851   | -     | -     | 0.620     |
|            |                                                |                                           | 13-3-4             | 1.0504    | 0.226 | 0.444                | 0.958         | 1.000 | 0.548 | 0.936           | 1.000 | 0.709           | 0.957   | -     | -     | 0.751     |
| 2          |                                                | Best Attack-Specif                        | ic Single Squeezer | -         | 0.358 | 0.556                | 0.979         | 1.000 | 0.714 | 0.957           | 1.000 | 0.982           | 1.000   | -     | -     | -         |
| <b>Ore</b> |                                                | Best Joint Detection (5-bit, 2x2, 11-3-4) |                    |           | 0.434 | 0.644                | 0.979         | 1.000 | 0.786 | 0.915           | 1.000 | 0.982           | 1.000   | -     | -     | 0.859     |

Uni Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

é

# RQ 3: When Combined with Adversarial Training (AT)

- Effectiveness of the Squeezers + AT
  - Setup
    - MNIST
    - AT (with epsilon 0.3) + Use 2-bit for Pixels
    - Use FGSM and PGD attacks (epsilon 0.1 − 0.4)



# RQ 4: Is Feature Squeezing Effective against Adaptive Attacks?

- Adaptive attacker
  - Difference: Know the feature squeezing is used
  - Adaptive attack (using C&W + L2 or L-inf):
    - Reduce the prediction difference between x and  $x^{adv}$  under a threshold
    - Set the threshold is the one used by the detector
  - Result on MNIST:



Fig. 7: Adaptive adversary success rates.



# **Motivation**

- Research Questions
  - RQ 1: What are the squeezers available for a defender?
    - Bit-width reduction
    - Smoothing (local or non-local)
  - RQ 2: How much are they effective against existing adversarial attacks?
    - Reduce the attack success rate by 87—100%
    - Detection rate is up to 100% when squeezers are jointly used
  - RQ 3: How much are they effective when combined with existing defenses?
    - On MNIST, it improves the robustness over what AT can provides
  - RQ 4: How much is feature-squeezing effective under adaptive attacks?
    - On MNIST, the attack success rate increases to 0-68%
    - One can choose a filter size randomly to defeat adaptive attacks (68% to 17%)

# Recap

- ML Matters
- Evasion (Test-time Adversarial) Attack
  - Threat model
  - Attacks:
    - White-box:
      - FGSM / BIM
      - C&W / PGD attacks
    - Black-box:
      - Practicality
      - Transfer-based attacks
      - Optimization-based attacks
  - Mitigation:
    - Adversarial training (AT)
    - Systematic defense (e.g., FeatureSqueezing)



# **Thank You!**

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22



