Notice

* Due dates
— Written paper critiques (on 01.26)
- Homework 2 (02.07 — 2 weeks)
— Term Project Presentation 1 (on 1/31) [Presentation order is in the Sign-up sheet]

* Sign-up (on the Google Sheet)

— Scribe Lecture Note
— In-class Paper Presentation / Discussion
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Recap

* ML Matters

* Evasion (Test-time Adversarial) Attack
— Threat model
- Attacks:
* White-box:
- FGSM / BIM
- C&W / PGD attacks
* Black-box:
- Practicality
- Transfer-based attacks

- Mitigation:
* Adversarial training (AT)
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Topics for Today

* ML Matters

* Evasion (Test-time Adversarial) Attack
— Threat model
— Attacks:
* White-box:
- FGSM / BIM
- C&W / PGD attacks
 Black-box:
- Practicality
- Transfer-based attacks
- Optimization-based attacks
- Mitigation:
e Adversarial training (AT)
» Systematic defense (e.g., FeatureSqueezing)

g Oregon State
545‘ Universi
ty

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security



Prior Convictions: Black-Box Adversarial Attacks with Bandits and Priors
Andrew llyas, Logan Engstrom, and Alexander Madry



Mativation

* Black-box Attacks on Classifiers
- Example scenario:
» Upload (inappropriate) photos to your Instagram account

— Challenges (vs. white-box attacks, like FGSM, BIM, PGD, ...):
* Gradient information is not available

— Possible attack methods
* Exploit transferability
* Optimize your adversarial perturbations with query outputs
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Motivation: PGD Revisit’'d

* Suppose:
- (x,y): a test-time sample; x € R* and y € [k]; x € [0,1]
- f:aneural network; 6: its parameters
- L(6, x,y): aloss function

* Goal (of the first order attacker)!
~ Find an x%%" = x + § such that while ||8]], < €

e PGD Crafts:

At =TI, s (2" + asgn(V,L(6,x,y))) .
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Motivation: Gradient Estimation Problem

e Zeroth-order Optimization
— Finite Difference Method (FDM):

D,f(z) = (Vo f(z),v) = (f(x + dv) — f(x)) /0.

* Compute: derivative of a function f at a point x towards a vector v

— FDM for the gradient with d-components:

d d
VoL(z,y) =Y ex (L(x + dex,y) — L(z,y)) /6 ~ Y ex(VoL(x,y), ex)

e PGD in the black-box cases:

=TI, s (x' +asgn(V,L(6,x,v))) .
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Mativation

e Research Questions

- RQ1: How should we estimate a gradient for successful attacks?
- RQ 2: How can we estimate gradient accurately with ?
- RQ 3: (If we find a method) How is this new method?

Oregon State
& University

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security



RO 1: How Accurate Should We Estimate Gradients?

* Toy Experiment
— Correctly-picked perturbations vs. Randomly-picked perturbations
- PGD can be effective even with the imperfect gradient estimate

— random-k

— top-k

| | | | | | |
0% 5% 10% 15% 20% 25% 30% 35% 40%
k percent of ImageNet coordinates

adversariality rate
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RO 1: How Accurate Should We Estimate Gradients?

* Query-efficiency
— The Least Squares Method: min ||g]|2 s.t. Ag=uv.
g

— Iteratively compute the estimate g, where:
e A:Queries {1, 2, ...}
* y:the corresponding inner product values

- Natural Evolution Strategy [llyas et al.] and Least Squares equivalence

(TLsq,9) — (ZNEs,9) <O (\/I:l - log® (ﬁ)) ||9||2
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Lessons

* Research Questions
- RQ1: How should we estimate a gradient for successful attacks?

* PGD can be quite successful with imperfect gradient estimates
* Query-efficiency is bounded by the prior work [llyas et al.] in practical scenarios

- RQ 2: How can we estimate gradient accurately with ?
- RQ 3: (If we find a method) How is this new method?
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RQ 2: How Can We Improve Query-efficiency for the Attacks?

* Priors

- Gradients are correlated in successive attack iterations
- Pixels close to each other tend to have similar values
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RQ 2: How Can We Improve Query-efficiency for the Attacks?

* Priors

Gradients are correlated in successive attack iterations
Pixels close to each other tend to have similar values
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RQ 2: How Can We Improve Query-efficiency for the Attacks?

* Time-dependent & Data-dependent Priors
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RQ 2: How Can We Improve Query-efficiency for the Attacks?

 Formulate the Problem to the Bandit Framework
- Bandit problem

Algorithm 1 Gradient Estimation with Bandit Optimization

1: procedure BANDIT-OPT-LOSS-GRAD-EST(z, yinit)

2 Vo .A((b)

3 for each round t =1,...,7 do

4 // Our loss in round ¢ is 4;(g:) = — (Vi L(Z, Yinit), g¢)
5: t < Vi—1
6

7

8

9

A; + GRAD-EST(Z, Yinit, v:—1) // Estimated Gradient of 4,
vy — A(vg—1, Ay)

g < vr

return Ik [g]
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RQ 2: How Can We Improve Query-efficiency for the Attacks?

* Formulate the Problem to the Bandit Framework
— Gradient Estimation

Algorithm 2 Single-query spherical estimate of V,(VL(z,y),v)

procedure GRAD-EST(z.y. v
. Ju+ N(0,51) // Query vector

191,92} < {v + 0u,v — ou} // Antithetic samples

1:

2

3

4 Li(q1) = —(VL(z,y),q1) = L(x’y)_Le(x+€'q1 ¥) // Gradient estimation loss at g
5: li(q2) = —(VL(z,y),q2) =~ L(“”y)_Le(z"‘f"h’y)// Gradient estimation loss at go
6

7

8

A  bla)—t(az),, _ L(zteqz,y)—L(z+eqr,y),,

de
// Note that due to cancellations we can actually evaluate A with only two queries to L
return A
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RQ 2: How Can We Improve Query-efficiency for the Attacks?

* Formulate the Problem to the Bandit Framework
— Gradient Estimation

Algorithm 3 Adversarial Example Generation with Bandit Optimization for ¢3 norm perturbations

1: procedure ADVERSARIAL-BANDIT-L2(Zpit, Yinit)
2 [/ C(.) returns top class
3 vo < 0144 // If data prior, d < dim(z); v; (A¢) up (down)-sampled before (after) line 8
4: Zo < Tinit // Adversarial image to be constructed

5: while C(z) = yinit do
6
7
8
9

i w1 S|
Iit —x41+h- e e —2— // Boundary projection - oy standard PGD: c.f. [Rig15|

JAVIR = GRAD- bST(mt 1, Yinit, Vt—1) // Estimated Gradient of £

Ve U1+ Ay

10: t—t+1
return x;_;

Oregon State
” Umversnty - - -
Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security



Lessons

* Research Questions
- RQ1: How should we estimate a gradient for successful attacks?

* PGD can be quite successful with imperfect gradient estimates
* Query-efficiency is bounded by the prior work [llyas et al.] in practical scenarios

- RQ 2: How can we estimate gradient accurately with ?
* Use two priors: time- and data-dependent priors
* Formulate the estimation into the bandit framework

- RQ 3: (If we find a method) How is this new method?
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RO 3: How Effective the New Attack?

* Setup
- ImageNet (10k randomly chosen samples)

- Inception-v3
— Baseline: NES

e Results

- - - Banditsy (time prior)

—— Banditsrp (time + data)

Avg. queries by success %

N
b

# queries
\

(=)

success rate
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Lessons

* Research Questions
- RQ1: How should we estimate a gradient for successful attacks?

* PGD can be quite successful with imperfect gradient estimates
* Query-efficiency is bounded by the prior work [llyas et al.] in practical scenarios

- RQ 2: How can we estimate gradient accurately with ?
* Use two priors: time- and data-dependent priors
* Formulate the estimation into the bandit framework

- RQ 3: (If we find a method) How is this new method?
* Require 2.5 — 5x less queries for successful attacks compared to NES
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Topics for Today

* ML Matters

* Evasion (Test-time Adversarial) Attack
— Threat model
— Attacks:
* White-box:
- FGSM / BIM
- C&W / PGD attacks
 Black-box:
- Practicality
- Transfer-based attacks
- Optimization-based attacks
- Mitigation:
e Adversarial training (AT)
» Systematic defense (e.g., FeatureSqueezing)
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Feature Squeezing: Detecting Adversarial Examples in DNNs
Weilin Xu, David Evans, and Yanjun Qi
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Mativation

* Existing Defenses
robust models:

(Gradient masking) Defensive distillation
Adversarial training

adversarial examples:
Sample statistics

Train a detector model
Prediction inconsistency (majority vote...)
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Mativation

* Information-theoretical Perspective
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Key Idea

* FeatureSqueezing

M Prediction, Adversarial
é Yes
dy

Prediction,
9 \
d

Legitimate

|
'13zaanbg

Input

Prediction,

- (Reasonable) Models should return similar predictions over squeezed samples
— Otherwise, it’s an adversarial inputs
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Mativation

e Research Questions
- RQ 1: What are the available for a defender?

- RQ 2: How much are they against existing adversarial attacks?

- RQ 3: How much are they effective when
- RQ 4: How much is feature-squeezing effective under
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Threat Model

 Attacker:
— Goal: fool the victim classifier on a test-time input x
— Capability: craft adversarial examples x%%? for x

- Knowledge
* White-box
e Doesn’t know whether feature squeezing is used

* Defender:
- Detect whether the current input x is adversarial or not
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RO 1: What Are Squeezers Available for a Defender?

* Two simple techniques
- Reduce the color depth (8-bit to a few bits)
— Reduce the variation among pixels
* Local smoothing (e.g., median filter)
* Non-local smoothing (e.g., denoise)
— Others
* JPEG compression [Kurakin et al.]
* Dimensionality reduction [Turk and Pentland]
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RO 2: How Much Are They Effective?

 Evaluation
- Setup
* MNIST, CIFAR10, and ImageNet
» 7-layer CNN, DenseNet, and MobileNet
* 100 images correctly classified by those r

- Attacks
* FGSM, BIM, C&W (Next | LL), JSMA

* LO, L2, and L-inf distances

T®
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Configration Cost (s) Success | Prediction Distortion
Attack [ Mode Rate | Confidence | L, L, Ly
FGSM 0.002 46% | 93.89% | 0.302 | 5.905 | 0.560
I BIM 0.01 91% | 99.62% | 0.302 | 4.758 | 0.513
0 cw Next | 51.2 100% | 99.99% | 0.251 | 4.091 | 0.491
— * LL 50.0 100% | 99.98% | 0.278 | 4.620 | 0.506
% L | cw Next 0.3 99% | 99.23% | 0.656 | 2.866 | 0.440
S 2 LL 0.4 100% | 99.99% |0.734 | 3.218 | 0.436
cw Next | 68.8 100% | 99.99% | 0.996 | 4.538 | 0.047
g LL 74.5 100% | 99.99% | 0.996 | 5.106 | 0.060
Lo JSMA Next 0.8 71% | 74.52% 1.000 | 4.328 | 0.047
LL 1.0 48% | 74.80% 1.000 | 4.565 | 0.053
FGSM 0.02 85% | 84.85% |0.016 | 0.863 | 0.997
I BIM 0.2 92% | 95.29% | 0.008 | 0.368 | 0.993
e cw Next | 225 100% | 98.22% | 0.012 | 0.446 | 0.990
o © LL |225 100% | 97.79% | 0.014 | 0.527 | 0.995
';2‘ DeepFool 0.4 98% | 73.45% |0.028 | 0.235 | 0.995
£ L, cw Next | 10.4 100% | 97.90% | 0.034 | 0.288 | 0.768
5 2 [LL | 120 100% | 97.35% | 0.042[0.358 | 0.855
W, Next | 367 100% | 98.19% | 0.650 | 2.103 | 0.019
LL |426 100% | 97.60% | 0.712 | 2.530 | 0.024
Lo ISMA Next 8.4 100% | 43.29% | 0.896 | 4.954 | 0.079
LL 13.6 98% | 39.75% |0.904 | 5.488 | 0.098
FGSM 0.02 9% | 63.99% | 0.008 | 3.009 | 0.994
L BIM 0.2 100% | 99.71% | 0.004 | 1.406 | 0.984
- e CcW Next | 211 99% | 90.33% |0.006 | 1.312 | 0.850
Z, °° LL |269 99% | 81.42% |0.010 | 1.909 | 0.952
gn DeepFool 60.2 89% | 79.59% | 0.027 | 0.726 | 0.984
E| L cw Next | 20.6 90% | 76.25% |0.019 | 0.666 | 0.323
B LL 29.1 97% | 76.03% |0.031 | 1.027 | 0.543
L | cw Next | 608 100% | 91.78% | 0.898 | 6.825 | 0.003
g LL |979 100% | 80.67% | 0.920 | 9.082 | 0.005




RO 2: How Much Are They Effective?

* Effectiveness of the Squeezers

L., Attacks

Lo Attacks

Squeezer - All

Dataset CW, eep- CwW, CW, JSMA Legitimate
Name Parameters | FGSM | BIM —eer 71— goo1 [Next | LL | Next | LL | Next | LL | Atacks

None 54% 9% 0% 0% - 0% 0% 0% 0% | 27% | 40% | 13.00% 99.43%

MNIST Bit Depth 1-bit 92% | 87% | 100% | 100% - 83% | 66% 0% 0% | 50% | 49% | 62.70% 99.33%

Median Smoothing 2x2 61% | 16% 70% 55% - 51% | 35% | 39% | 36% | 62% | 56% | 48.10% 99.28%

3x3 59% | 14% 43% 46% - 51% | 53% | 67% | 59% | 82% | 79% | 55.30% 98.95%

None 15% 8% 0% 0% 2% 0% 0% 0% 0% 0% 0% 2.27% 94.84%

Bit Depth 5-b?t 17% | 13% 12% 19% 40% | 40% | 47% 0% 0% | 21% | 17% | 20.55% 94.55%

CIFAR-10 4-bit 21% | 29% 69% T4% T2% | 84% | 84% T% | 10% | 23% | 20% | 44.82% 93.11%

Median Smoothing 2x2 38% | 56% 84% 86 % 83% | 87% | 83% | 88% | 85% | 84% | 76% | 77.27% 89.29%

Non-local Means 11-3-4 27% | 46% 80% 84% T76% | 84% | 8% | 11% | 11% | 4% | 32% | 53.00% 91.18%

None 1% 0% 0% 0% 11% | 10% 3% 0% 0% - - 2.78% 69.70%

Bit Depth 4-b§t 5% 4% 66% 79% 44% | 84% | 82% | 38% | 67% - - 52.11% 68.00%

ImageNet 5-bit 2% 0% 33% 60% 21% | 68% | 66% T% | 18% - - 30.56% 69.40%

Median Smoothing 2x2 22% | 28% 75% 81% 72% | 81% | 84% | 85% | 85% - - 68.11% 65.40%

3x3 33% | 41% 73% 76% 66% | 77% | 79% | 81% | 79% - - 67.22% 62.10%

Non-local Means 11-3-4 10% | 25% 77 % 82% 57% | 87% | 86% | 43% | 47% - - 57.11% 65.40%
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RO 2: How Much Are They Effective?

o

C

Ore
Uni

Configuration L., Attacks L, Attacks Ly Attacks Overall
CW, Deep CwW, CW, JSMA Detection

Squeezer Parameters Threshold | FGSM | BIM Next | LL | Fool [Next | LL | Next | LL | Next | LL Rate
1-bit 1.9997 0.063 | 0.075 | 0.000 | 0.000 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013
2-bit 1.9967 0.083 | 0.175 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.018 | 0.000 | 0.000 | 0.022
Bit Depth 3-bit 1.7822 0.1250.250 | 0.755 ] 0.977 | 0.170 | 0.787 [ 0.939 | 0.365 [ 0.214 [ 0.000 [ 0.000 | 0.409
4-bit 0.7930 0.1250.150 | 0.811 | 0.886 | 0.642 [ 0.936 [ 0.980 [ 0.192 [ 0.179 [ 0.041 [ 0.000 | 0.446
o 5-bit 0.3301 0.000 | 0.050 | 0.377 | 0.636 | 0.509 | 0.809 | 0.878 [ 0.096 [ 0.018 [ 0.041 [ 0.038 | 0.309
; Mdiai, STEoHHng 2x2 1.1296 0.188 | 0.550 | 0.981 | 1.000 | 0.717 | 0.979 | 1.000 | 0.981 | 1.000 | 0.837 | 0.885 | 0.836
< 3x3 1.9431 0.042 [ 0.250 | 0.660 | 0.932 | 0.038 | 0.681 [ 0.918 | 0.750 [ 0.929 [ 0.041 [ 0.077 | 0.486
E 11-3-2 0.2770 0.125 | 0.400 | 0.830 | 0.955 | 0.717 | 0.915 [ 0.939 [ 0.077 | 0.054 | 0.265 | 0.154 | 0.484
Non-local Mean 11-3-4 0.7537 0.167 | 0.5250.868 | 0.977 | 0.679 | 0.936 | 1.000 | 0.250 [ 0.232 [ 0.245 [ 0.269 | 0.551
13-3-2 0.2910 0.125]0.375]0.849[0.977 | 0.717 | 0.915 [ 0.939 [ 0.077 [ 0.054 [ 0.286 [ 0.173 | 0.490
13-3-4 0.8290 0.167 | 0.525 | 0.887 | 0.977 | 0.642 | 0.936 | 1.000 | 0.269 | 0.232 [ 0.224 [ 0.250 | 0.547

Best Attack-Specific Single Squeezer - 0.188 | 0.550 | 0.981 | 1.000 | 0.717 | 0.979 | 1.000 | 0.981 | 1.000 | 0.837 | 0.885 -
Best Joint Detection (5-bit, 2x2, 13-3-2) | 1.1402 0.208 | 0.550 | 0.981 | 1.000 | 0.774 | 1.000 | 1.000 | 0.981 | 1.000 | 0.837 [ 0.885 | 0.845
1-bit 1.9942 0.151 | 0.444 1 0.042 | 0.021 | 0.048 | 0.064 | 0.000 | 0.000 | 0.000 | - - 0.083
2-bit 1.9512 0.132|0.511 | 0.500 | 0.354 | 0.286 | 0.170 [ 0.306 | 0.218 | 0.191 - - 0.293
Bit Depth 3-bit 1.4417 0.132 [ 0.556 [ 0.979 | 1.000 | 0.476 | 0.787 [ 1.000 | 0.836 | 1.000 | - - 0.751
4-bit 0.7996 0.038 | 0.089 | 0.813 | 1.000 | 0.381 [ 0.915 [ 1.000 | 0.727 | 1.000 | - - 0.664
- 5-bit 0.3528 0.057 | 0.022 | 0.688 | 0.958 | 0.310 | 0.957 | 1.000 | 0.473 | 1.000 | - - 0.606
Z | Median Smoo thing 2x2 1.1472 0.358 [ 0.4220.958 [ 1.000 | 0.714 [ 0.894 [ 1.000 | 0.982 | 1.000 | - - 0.816
&0 3x3 1.6615 0.264 | 0.444 1 0.917 [ 0.979 | 0.500 | 0.723 [ 0.980 [ 0.909 | 1.000 | - - 0.749
,§ 11-3-2 0.7107 0.113 | 0.156 | 0.813 [ 0.979 | 0.357 | 0.936 | 0.980 [ 0.418 | 0.830 | - - 0.618
Non-local Mean 11-3-4 1.0387 0.208 | 0.467 | 0.958 | 1.000 | 0.548 | 0.936 | 1.000 | 0.673 [ 0.957 | - - 0.747
13-3-2 0.7535 0.113 | 0.156 | 0.813 | 0.979 | 0.357 | 0.936 | 0.980 [ 0.418 | 0.851 | - - 0.620
13-3-4 1.0504 0.226 | 0.444 1 0.958 | 1.000 | 0.548 | 0.936 | 1.000 | 0.709 [ 0.957 | - - 0.751

Best Attack-Specific Single Squeezer - 0.358 [ 0.556 | 0.979 | 1.000 | 0.714 | 0.957 | 1.000 | 0.982 | 1.000 | - - -
Best Joint Detection (5-bit, 2x2, 11-3-4) | 1.2128 0.434 | 0.644 | 0.979 | 1.000 | 0.786 | 0.915 [ 1.000 | 0.982 | 1.000 | - - 0.859
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RQ 3: When Combined with Adversarial Training [AT])

* Effectiveness of the Squeezers + AT

- Setup
* MNIST

* AT (with epsilon 0.3) + Use 2-bit for Pixels
* Use FGSM and PGD attacks (epsilon 0.1 — 0.4)

1.00 9862

9743
Composed

9917
9783
0.95 Adversarial Training
:9)
2
£
= 9055
S
< 0.90 . . s
Binary Filter
.8685
0.85
0 0.1 0.2 0.3 0.4

Adversary Strength (¢ for FGSM)
(a) FGSM attacks.
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1.00 9912
9727

.9850
Composed
9706 9479
0.95 9421
by Binary Filter
£ 9376
3
< 0.90 9050
.8760
Adversarial Training
0.148 (for £=0.4)
0.85

0 0.1 0.2 0.3 0.4
Adversary Strength (¢ of PGD)

(b) PGD attacks.
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RO 4: Is Feature Squeezing Effective against Adaptive Attacks?

* Adaptive attacker
- Difference: Know the feature squeezing is used
- Adaptive attack (using C&W + L2 or L-inf):
* Reduce the prediction difference between x and x
* Set the threshold is the one used by the detector
- Result on MNIST:

adv ynder a threshold

0.6

0.5

0.44

0.4

‘0'3 Targeted .

02 (Next)

0.1

0.0 — s

00 01 02 03 04 05 06 07 08 09 1.0
Clipped €

Fig. 7: Adaptive adversary success rates.
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Mativation

* Research Questions
- RQ 1: What are the available for a defender?
 Bit-width reduction
e Smoothing (local or non-local)

- RQ 2: How much are they against existing adversarial attacks?
* Reduce the attack success rate by 87—100%
e Detection rate is up to 100% when squeezers are jointly used

- RQ 3: How much are they effective when ?
* On MNIST, it improves the robustness over what AT can provides

- RQ 4: How much is feature-squeezing effective under attacks?
* On MNIST, the attack success rate increases to 0-68%
* One can choose a filter size randomly to defeat adaptive attacks (68% to 17%)
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Recap

* ML Matters

* Evasion (Test-time Adversarial) Attack
— Threat model
- Attacks:
* White-box:
- FGSM / BIM
- C&W / PGD attacks
 Black-box:
- Practicality
- Transfer-based attacks
- Optimization-based attacks
- Mitigation:
* Adversarial training (AT)
» Systematic defense (e.g., FeatureSqueezing)
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Thank You!

Mon/Wed 12:00 — 1:50 pm

Sanghyun Hong
https://secure-ai.systems/courses/MLSec/W22
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