CS 499/599: Machine Learning Security 02.02: Data Poisoning

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu

Notice

- Due dates
 - Presentation 1 Review (on the 4th and 7th)
 - Written Paper Critiques (on the 7th)
 - Homework 2 (on the 7th)
- Sign-up (on Canvas)
 - Scribe Lecture Note
 - In-class Paper Presentation / Discussion

Part II: Data Poisoning

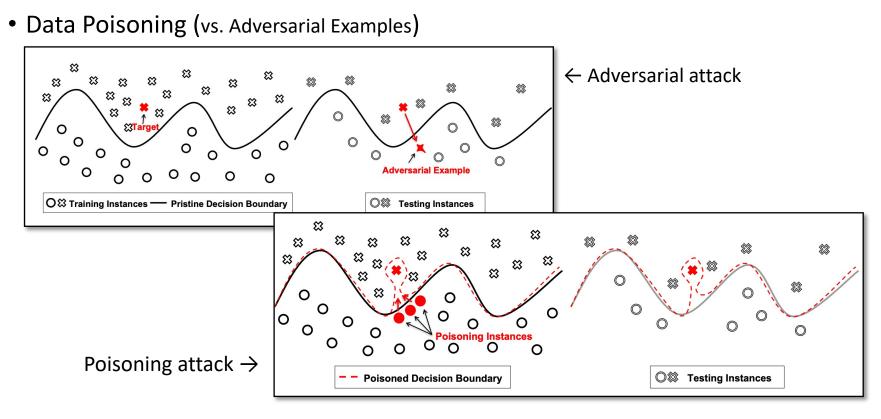
Topics for Today

- Data Poisoning
 - Motivation
 - Threat Model
 - Goal
 - Capability
 - Knowledge
 - Exploitations
 - Spam filtering
 - DDoS detection
 - Conclusion (and implications)
- [Extra; it's not poisoning] Backdoor attacks

- Attacker's Dilemma
 - Sometimes, we cannot perturb test-time inputs
 - But we still want to cause misclassification...

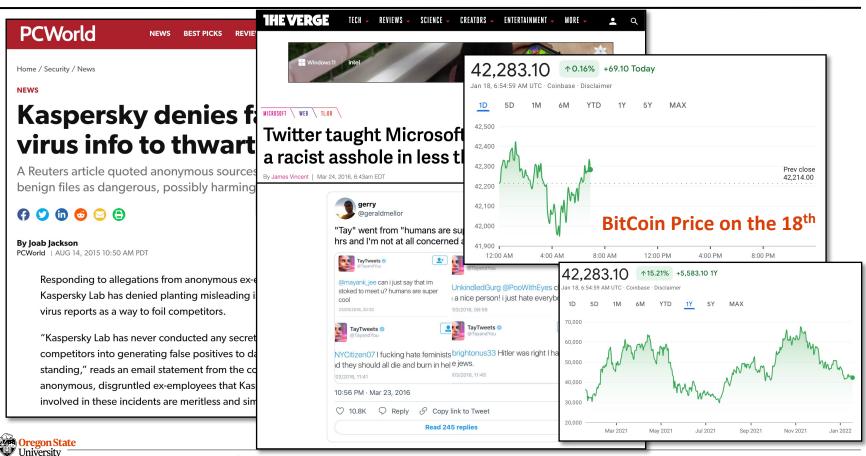
One Option for the Attacker Is To Manipulate Training Data?

Motivation: Conceptual Illustration



Suciu et al., When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks, USENIX Security 2018

Motivation: Real-world Examples



Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

Threat Model

- Goal
 - Manipulate a ML model's behavior by contaminating the training data
- Capability
 - Perturb a subset of samples (D_p) in the training data
 - Inject a few malicious samples (D_p) into the training data
- Knowledge
 - D_{train} : training data
 - *D*_{test}: test-set data
 - f: a neural network and its parameters heta
 - A: training algorithm (e.g., SGD)

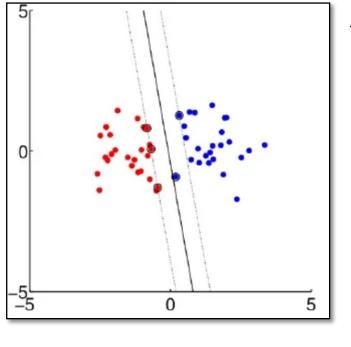
- Goal
 - Manipulate a ML model's behavior by contaminating the training data
- Specifically,
 - Indiscriminate attack: I want to degrade a model's accuracy!
 - Targeted attack: No, I want misclassification of a specific test-time data!

Threat Model: Desiderata in Practice

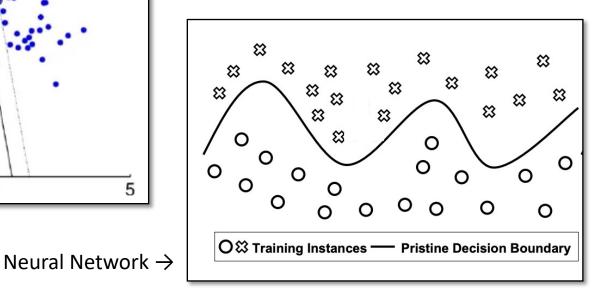
• Goal

- Manipulate a ML model's behavior by contaminating the training data
- Indiscriminate vs. targeted attacks
- Capability
 - Perturb a subset of samples (D_p) in the training data
 - Inject a few malicious samples (D_p) into the training data
- Desiderata
 - # of samples we contaminate $(N(D_p))$
 - Classification accuracy

Exercise: Linear Models vs. DNNs



 \leftarrow Linear model (SVM)



Topics for Today

- Data Poisoning
 - Motivation
 - Threat Model
 - Goal
 - Capability
 - Knowledge
 - Exploitations
 - Spam filtering
 - DDoS detection
 - Conclusion (and implications)
- [Extra; it's not poisoning] Backdoor attacks

Nelson *et al.*, Exploiting Machine Learning to Subvert Your Spam Filter Rubinstein *et al.*, ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors

- Goals
 - Naïve attacker: spam to ham / ham to spam
 - Example:

Title: Your Final Grades Sender: Hóng (sanghyun@oregonstat

Hey Guys,

There are some corrections on your f I need you to confirm your scores imr

Thanks, Sanghyun

🔍 🔍 🔤 OSU Login	× +	
← → C 🏻 login.oregonstate.edu/idp	/profile/SAML2/Redirect/SSO?execution=e1s1	🖞 🖈 🔻 🌲 😒 :
111 Apps		» 🗄 Reading List
Oregon State University		
	Carling Constants / A	1.0
	USERNAME	
	PASSWORD	1000
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-		Need Hein? Service status
1	LOGIN	An a
10 10 10 10		100 A
and the second second	THE R. P. LEWIS CO., LANSING, MICH.	A REAL PROPERTY OF

- Research Questions:
 - RQ 1: How can we attack spam filters by poisoning?
 - RQ 2: How much this poisoning would be effective?
 - RQ 3: How can we mitigate the poisoning against spam filters?

Goals

- Naïve attacker: spam to ham / ham to spam

- [Victim] Spam Filter
 - Trains *periodically* on your emails
 - Label them to: ham, unsure, or spam
 - Important: You want a *permanent impact* on the classifier; not a single exploitation
- Capability
 - Contaminate D_p
 - How?
 - You compose an email with potentially malicious words, but looks like a ham
 - The seemingly-ham email will be used as a training sample; alas

Goals

- Compute a score to decide if an email is spam / unsure / ham
- Classify emails based on the computed score heta in [0, 1]
- Score
 - Compute the probability $P_s(w)$ that a word w is likely to be in spam emails
 - Combine with your prior belief (use smoothing) and compute f(w)
 - Compute the final score I(E)

$$I(E) = \frac{1 + H(E) - S(E)}{2} \in [0, 1], ')$$
$$H(E) = 1 - \chi_{2n}^2 \left(-2 \sum_{w \in \delta(E)} \log f(w) \right)$$

Threat Model

• Goal

- Manipulate a spam filter to classify ham to spam
- Specifically,
 - Indiscriminate attack: the filter classifies (most) ham into spam
 - Targeted attack: the filter classifies a specific email (ham) to spam

Two Attacks

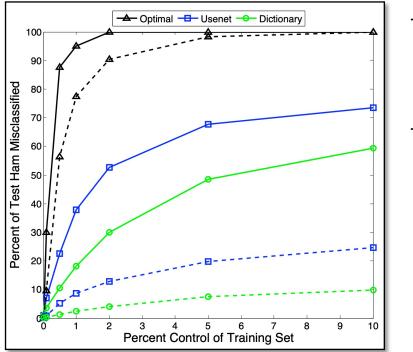
- Dictionary attack (indiscriminate)
 - Send spam emails that include many words likely to occur in ham
- Focused attack (targeted)
 - Send attack emails that include many words likely to occur in a target email
- Knowledge matters
 - Optimal attacker: knows all the words will be in the next batch of incoming emails
 - Realistic attacker: has some knowledge of words, likely to appear in the next batch

Evaluation

- Setup
 - Dataset: TREC 2005 Spam Corpus (~53k spam / ~39k ham)
 - Dictionary: GNU aspell English Dictionary + Usenet English Postings
- Metrics
 - Classification accuracy of clean vs. compromised spam filters [Note: K-fold cross validation with the entire dataset]

Evaluation

Oregon State



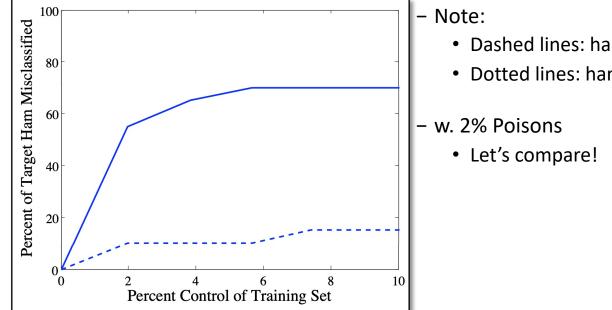
• Dictionary attack results (control ~10k training set)

- Note:

- Dashed lines: ham to spam
- Dotted lines: ham to unsure
- w. 1% Poisons
 - Let's compare!

Evaluation

• Focused attack results (init. w. ~5k inbox data | on 20 target emails)



- Dashed lines: ham to spam
- Dotted lines: ham to unsure

Defenses

- Reject On Negative Impact (RONI)
 - Measure the incremental impact of each email on the accuracy
 - Setup
 - T: 20 emails in the training data
 - Q: 50 emails in the testing data
 - At each iteration, train a filter with 20 + 1 out of 50 and test the accuracy...
 - 100% success [?!]
- Dynamic thresholds
 - Refer to the paper

- Research Questions:
 - RQ 1: How can we attack spam filters by poisoning?
 - Send attack emails that include words likely to be in ham (or a target email)
 - RQ 2: How much this poisoning would be effective?
 - Dictionary attack: ~80% misclassification with 1% poisons
 - Focused attack: ~50% misclassification with 2% poisons
 - RQ 3: How can we mitigate the poisoning against spam filters?
 - RONI

• Data Poisoning

- Motivation
- Threat Model
 - Goal
 - Capability
 - Knowledge
- Exploitations
 - Spam filtering
 - DDoS detection
- Conclusion (and implications)

Thank You!

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

