CS 499/599: Machine Learning Security 02.07: Data Poisoning

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu

Notice

• Due dates

- Written Paper Critiques (on the 9th)
- Sign-up (on Canvas)
 - Scribe Lecture Note
 - In-class Paper Presentation / Discussion

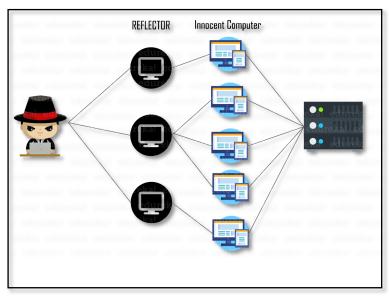
Topics for Today

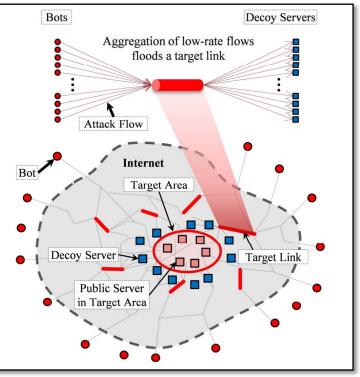
- Data Poisoning
 - Exploitations
 - Spam filtering
 - DDoS detection
 - Conclusion (and implications)
- Data Poisoning:
 - Indiscriminate Attacks
 - Support vector machines (SVMs)
 - Regression models
 - Conclusion (and implications)

Nelson *et al.*, Exploiting Machine Learning to Subvert Your Spam Filter Rubinstein *et al.*, ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors

Motivation

- Goals
 - DDoS attack [Link]





https://edureka.co/blog/what-is-ddos-attack/ Kang *et al.*, Crossfire Attack, IEEE Security and Privacy 2013

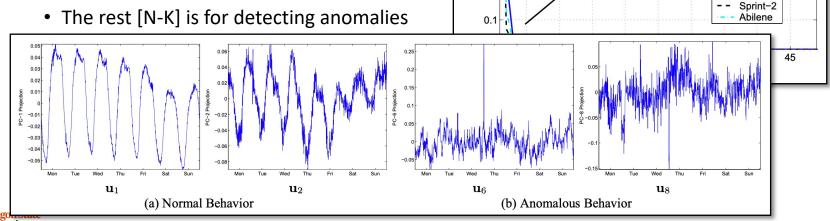
Motivation

- Goals
 - DDoS attack
 - Attacker's network traffic successfully cross an ISP's network



Background: PCA-based Anomaly Detector (Lakhina et al.)

- PCA (Principal Component Analysis)
 - Represent data with smaller set of variables
- PCA-based Anomaly Detection
 - -Y: T x N (time series of all links)
 - Run PCA on Y
 - Find the top-K normal components



0.8

0.7

0.6

0.5

0.4

0.3

0.2

Variance Captured

30.0 0.06

0.04

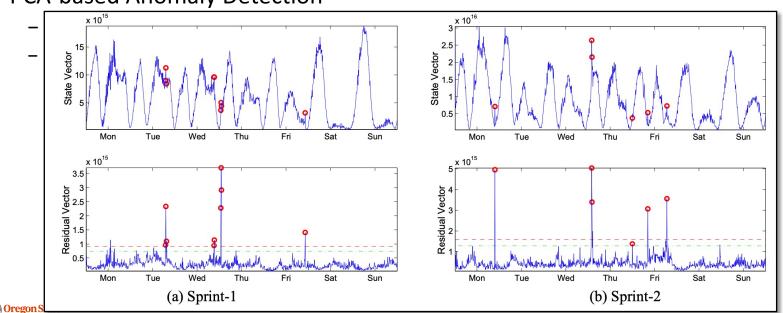
0.02

2

Sprint-1

Background: PCA-based Anomaly Detector (Lakhina et al.)

- PCA (Principal Component Analysis)
 - Represent data with smaller set of variables



PCA-based Anomaly Detection

Iniversity Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

Motivation

- Research Questions:
 - RQ 1: How can we poison the anomaly detector to launch DDoS?
 - RQ 2: How much this attack will be effective?
 - RQ 3: How can we mitigate this poisoning attacks?

Threat Model

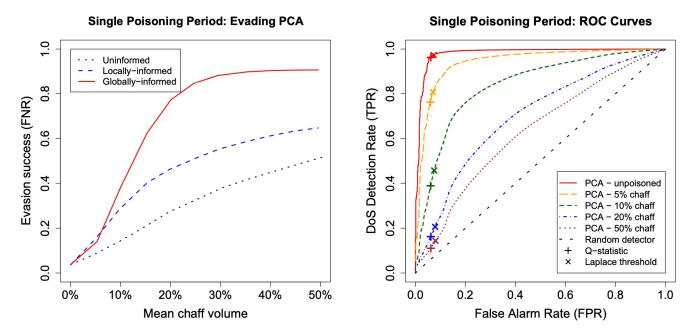
- Goal
 - Manipulate the anomaly detector while increasing the traffic volume [~indiscriminate]
- Capability
 - Inject additional traffic (chaff) along the network flow
- Knowledge
 - Does not know the traffic (uninformed attack)
 - Know the current volume of traffic (*locally-informed* attack)
 - Know all the details about the network links (globally-informed attack)
- [Victim] Anomaly Detector
 - PCA retrained each week on m-1 (with anomalies removed)
 - Use the trained PCA for detecting anomalies in week ${\boldsymbol{m}}$

Poisoning Attack Strategies

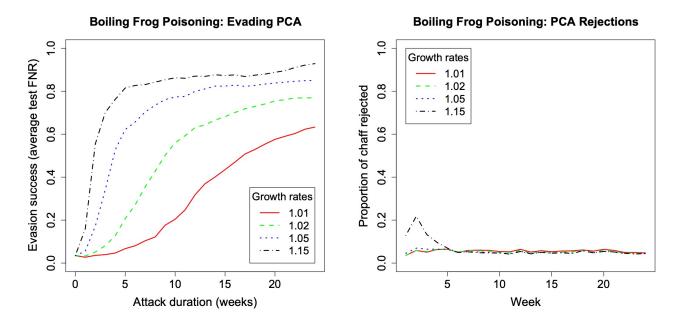
- Uninformed
 - Randomly add chaff (the amount is θ)
- Locally-informed
 - Only add chaff $(\max\{0, y_S(t) \alpha\})^{\theta}$ when the traffic is already reasonably large
- Globally-informed
 - Optimize the amount of chaff $\max_{\mathbf{C} \in \mathbb{R}^{T \times F}} \quad \left\| (\bar{\mathbf{Y}} + \mathbf{C}) \mathbf{A}_f \right\|_2$ s.t. $\|\mathbf{C}\|_1 \leq \theta$ $\forall t, n \ \mathbf{C}_{tn} > 0$
- [Continuous case] Boiling Frog attack
 - Initially set the theta to a small value, and increase it over time
 - Use any of the three (informed, locally-informed, or globally-informed) to add chaff

- Setup
 - Dataset: OD Flow Data from Ailene network
 - Period: Mar. 2004 Sep. 2004 (6 months)
 - Each week: 2016 measurements x 144 networks, 5 min intervals
- Metrics
 - Detector's false negative rate (FNR)
 - Use ROC curve to show tradeoffs btw true positive rate (TPR) and FPR

- Single Poisoning Period
 - One week data for training PCA and the next one week for testing



- Boiling Frogs
 - Data from previous weeks for training PCA and the current week for testing

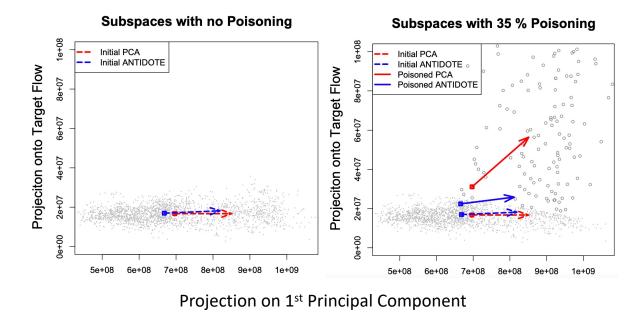


Defense: ANTIDOTE

• Robust statistics

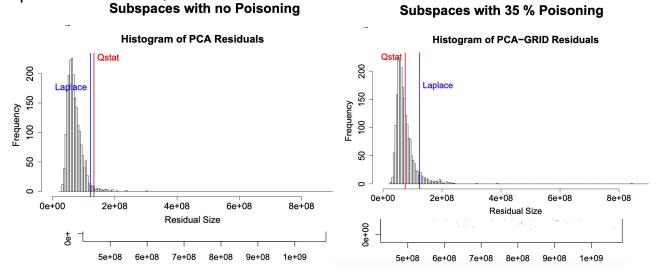
Oregon State

- Reduce the sensitivity of statistics to outliers
- Use PCA-GRID (Croux et al.)



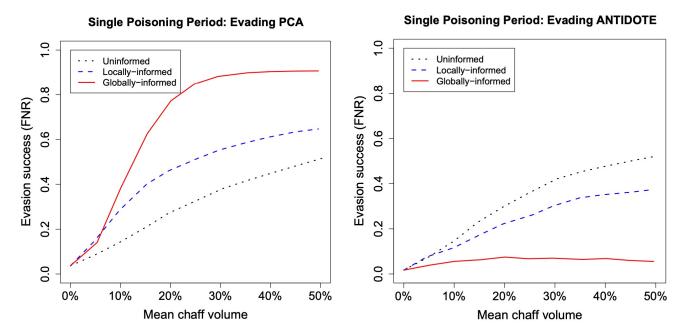
Defense: ANTIDOTE

- Robust statistics
 - Reduce the sensitivity of statistics to outliers
 - Use PCA-GRID (Croux et al.)
 - Use Laplace Threshold (Robust estimate for its residual threshold)

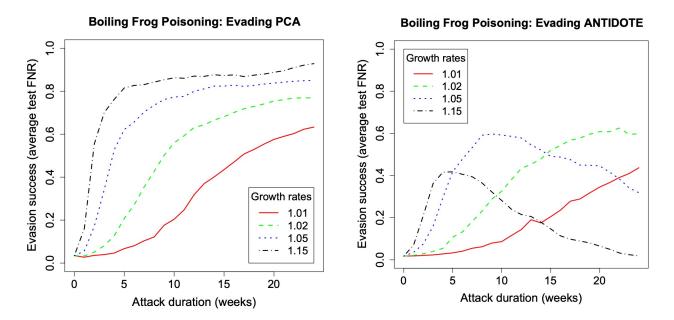


Evaluation: ANTIDOTE

- Single Poisoning Period
 - One week data for training PCA and the next one week for testing



- Boiling Frogs
 - Data from previous weeks for training PCA and the current week for testing



Oregon State University Secure-Al Systems Lab (S/

Conclusion

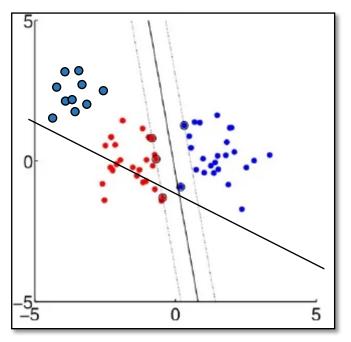
- Research Questions:
 - RQ 1: How can we poison the anomaly detector to launch DDoS?
 - Inject some additional traffic (chaff)
 - Make a detector have false estimation of normal states
 - Three-levels of knowledge: uninformed / locally-informed / globally-informed
 - Single poisoning vs. Boiling frogs
 - RQ 2: How much this attack will be effective?
 - The success increases as we increase (knowledge / % of poisons / period)
 - **RQ 3:** How can we **mitigate** this poisoning attacks?
 - ANTIDOTE: Robust statistics (PCA-GRID + Laplace threshold)

Topics for Today

- Data Poisoning
 - Exploitations
 - Spam filtering
 - DDoS detection
 - Conclusion (and implications)
- Data Poisoning
 - Indiscriminate Attacks
 - Support vector machines (SVMs)
 - Regression models
 - Conclusion (and implications)

Biggio *et al.*, Poisoning Attacks against Support Vector Machines Jagielski *et al.*, Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning

Revisited: Linear Models vs. DNNs



 \leftarrow Linear model (SVM)

Background: Support Vector Machine

• DIT [<u>Link</u>]

- 1: let's put green points
- 2: let's put red points on the other side
- 3: let's put red points closer to the green cluster
- 4: let's put red points in the middle of the green cluster
- 5: let's use another kernel.

Threat Model

- Goal
 - Indiscriminate attack
 - Find a point (x_c, y_c) , whose addition to D_{tr} decreases a model's acc.
- Capability
 - Train a model f on D_{tr}
 - Inject the point (x_c, y_c) into D_{tr}
- Knowledge
 - D_{tr} : training data
 - D_{val} : validation data (where we pick the poison)
 - f: a (linear) SVM and its parameters a_i , b
 - A: training algorithm (e.g., Sub-Gradient Descent)

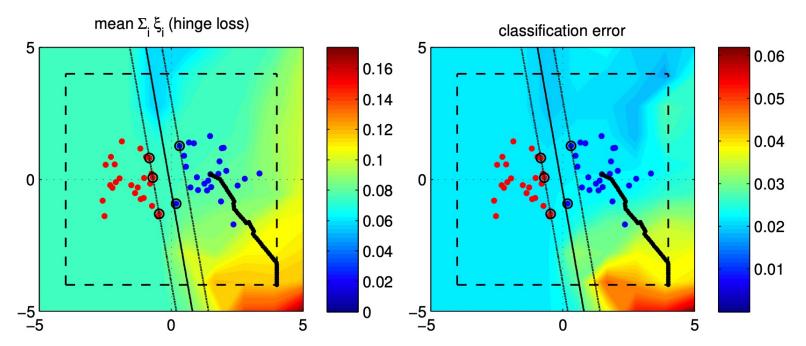
Proposed Attack on SVM!

Algorithm 1 Poisoning attack against SVM **Input:** \mathcal{D}_{tr} , the training data; \mathcal{D}_{val} , the validation data; y_c , the class label of the attack point; $x_c^{(0)}$, the initial attack point; t, the step size. **Output:** x_c , the final attack point. 1: $\{\alpha_i, b\} \leftarrow \text{learn an SVM on } \mathcal{D}_{\text{tr}}.$ // train an SVM on the clean data 2: $k \leftarrow 0$. 3: repeat Re-compute the SVM solution on $\mathcal{D}_{tr} \cup \{x_c^{(p)}, y_c\}$ // train an SVM with the poison 4: using incremental SVM (e.q., Cauwenberghs & Poggio, 2001). This step requires $\{\alpha_i, b\}$. Compute $\frac{\partial L}{\partial u}$ on \mathcal{D}_{val} according to Eq. (10). // compute the gradient 5:Set u to a unit vector aligned with $\frac{\partial L}{\partial u}$. 6: 7: $k \leftarrow k+1 \text{ and } x_c^{(p)} \leftarrow x_c^{(p-1)} + tu$ // update the poison, to increase the loss 8: until $L\left(x_{c}^{\left(p\right)}\right) - L\left(x_{c}^{\left(p-1\right)}\right) < \epsilon$ // stop if the loss doesn't increase more than ϵ 9: return: $x_c = x_c^{(p)}$

- Setup
 - Datasets
 - Artificial data: Gaussian dist. $[N(-1.5, 0.6^2) \text{ vs. } N(1.5, 0.6^2)]$
 - Real data: MNIST [1 vs. 7 | 8 vs. 9 | 0 vs. 4]
 - Model(s)
 - SVM [Linear vs. RBF-Kernel]

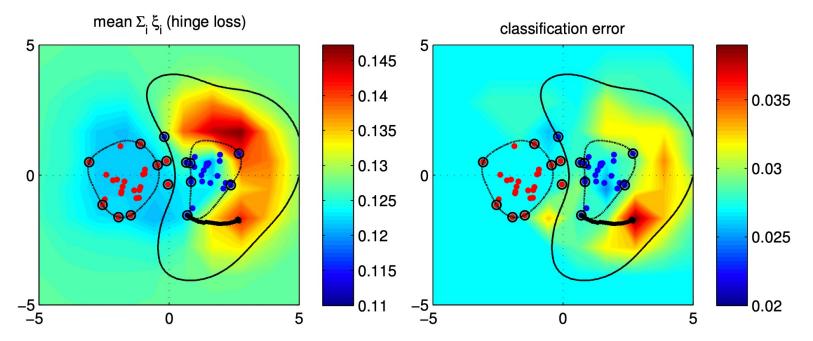
Evaluation: Artificial Data

• Linear SVM



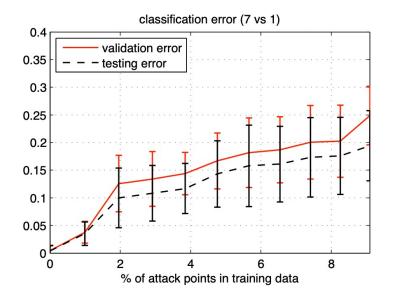
Evaluation: Artificial Data

• SVM w. RBF Kernel



Evaluation: MNIST

• Linear SVM



- Results
 - Use a *single* poison
 - Error increases by 15 20%
 - Increasing # poisons leads to a higher error

Topics for Today

- Data Poisoning
 - Exploitations
 - Spam filtering
 - DDoS detection
 - Conclusion (and implications)
- Data Poisoning
 - Indiscriminate Attacks
 - Support vector machines (SVMs)
 - Regression models
 - Conclusion (and implications)

Biggio *et al.*, Poisoning Attacks against Support Vector Machines Jagielski *et al.*, Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning

Background: Regression Models

- Regression Models [Demo]
 - DIT
 - 1. let's add some more points
 - 2. let's see how much error (RMSE) it increases
 - In the Paper
 - Ordinary Least Squares (OLS)
 - Ridge regression
 - LASSO
 - Elastic-net regression

Threat Model

- Goal
 - Indiscriminate attack (increase the error on D_{val})
- Capability
 - Train a model f on D_{tr}
 - Inject p poisons into the training set (N(D_{tr}) = n + p)
- Knowledge [White-box vs. Black-box]
 - D_{tr} : training data (black-box adversary only has partial knowledge of D_{tr})
 - D_{val} : validation data
 - f: a model and its parameters (black-box attacker doesn't know the parameters)
 - L: training algorithm

Attack Formulation: Bi-level Optimization

 $\begin{array}{ll} \arg \max_{\mathcal{D}_p} & \quad \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}_p^\star) \,, \\ \text{s.t.} & \quad \boldsymbol{\theta}_p^\star \in \arg \min_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \mathcal{D}_p, \boldsymbol{\theta}) \end{array}$

- Outer-optimization: maximize the error of a model on the validation data
- Inner-optimization: minimize the model's error on the training data

Proposed Attack on Regression Models!

Algorithm 1 Poisoning Attack Algorithm

1: $i \leftarrow 0$ (iteration counter)

Input: $\mathcal{D} = \mathcal{D}_{tr}$ (white-box) or \mathcal{D}'_{tr} (black-box), $\mathcal{D}', \mathcal{L}, \mathcal{W}$, the initial poisoning attack samples $\mathcal{D}_p^{(0)} = (\boldsymbol{x}_c, y_c)_{c=1}^p$, a small positive constant ε .

// train a model on the contaminated data

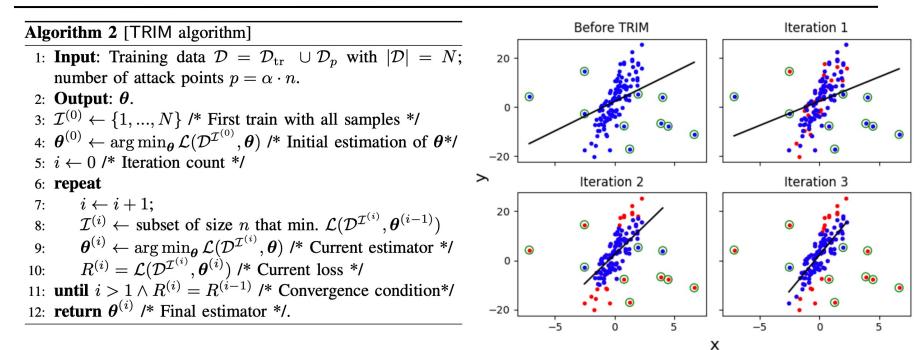
2: $\boldsymbol{\theta}^{(i)} \leftarrow \arg\min_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D} \cup \mathcal{D}_n^{(i)}, \boldsymbol{\theta})$ 3: repeat $w^{(i)} \leftarrow \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}^{(i)})$ 4: $\hat{\boldsymbol{\theta}}^{(i+1)} \leftarrow \hat{\boldsymbol{\theta}}^{(i)}$ 5. for c = 1, ..., p do 6: $\boldsymbol{x}_{c}^{(i+1)} \leftarrow \text{line_search}\left(\boldsymbol{x}_{c}^{(i)}, \nabla_{\boldsymbol{x}_{c}} \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}^{(i+1)})\right)$ 7: $\boldsymbol{\theta}^{(i+1)} \leftarrow \arg\min_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D} \cup \mathcal{D}_{p}^{(i+1)}, \boldsymbol{\theta})$ 8: $w^{(i+1)} \leftarrow \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}^{(i+1)})$ 9: $i \leftarrow i + 1$ 10: 11: **until** $|w^{(i)} - w^{(i-1)}| < \varepsilon$

Output: the final poisoning attack samples $\mathcal{D}_p \leftarrow \mathcal{D}_p^{(i)}$

// update poisons to increase the loss of the model

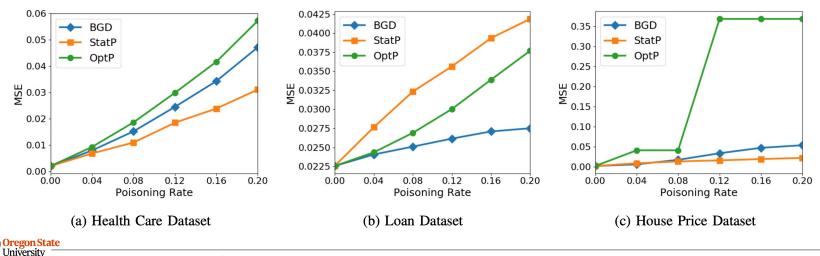
// stop when the model doesn't change more than e

Proposed Defense: TRIM

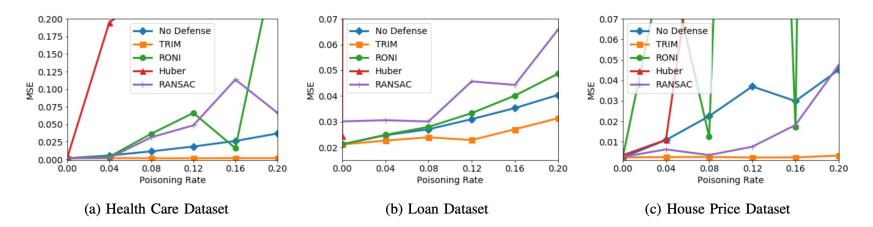


- Setup
 - Datasets: Health care | Loan | Housing
 - Models
 - Ordinary Least Square (OLS)
 - Ridge regression
 - LASSO
 - Elastic-net regression
 - Attacks
 - OptP | StatP | BGD (Prior work by Xiao et al.)
 - Defenses
 - Huber | RANSAC | Chen et al. | RONI | TRIM

- Results Summary
 - Attacks
 - OptP > StatP, BGD (Prior work)
 - StatP, BGD: varies from datasets
 - StatP > OptP: computational efficiency; StatP still shows a reasonable success rate
 - Poisons transfer: crafted on one model works for the three others



- Results Summary
 - Defenses
 - TRIM > Huber | RANSAC | Chen et al. | RONI
 - TRIM is computationally efficient (< 0.02 seconds on the House dataset)
 - Prior work's defenses sometimes increase errors



Topics for Today

- Data Poisoning
 - Exploitations
 - Spam filtering
 - DDoS detection
 - Conclusion (and implications)
- Data Poisoning
 - Indiscriminate Attacks
 - Support vector machines (SVMs)
 - Regression models
 - [Now] Conclusion (and implications)

Thank You!

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

