CS 499/599: Machine Learning Security 02.09: Data Poisoning

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu

Notice

• Due dates

- Written Paper Critiques (on the 14th)
- Sign-up (on Canvas)
 - Scribe Lecture Note
 - In-class Paper Presentation / Discussion

Topics for Today

- Motivation
 - Evade spam filter
 - Evade DDoS detection
- Data Poisoning:
 - Indiscriminate Attacks
 - Support vector machines (SVMs)
 - Regression models
 - Targeted Attacks
 - Deep neural networks (DNNs)
 - Poison Frogs
 - Meta-Poison
 - Conclusion (and implications)

Revisited: Linear Models vs. DNNs

Oregon State Jniversity

Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

ន

ន

ន

Ο

0

ŝ

ន

ឌ

0

О

О

ន

ន

 \circ

Shafahi *et al.*, Poison Frogs! Targeted Clean-label Poisoning Attacks on Neural Networks Huang *et al.*, MetaPoison: Practical General-purpose Clean-label Data Poisoning

Motivation

- Practical Constraints
 - You don't have control over your inputs
 - You don't want to mess-up the entire system

Targeted Poisoning Attacks!

gy-u-s-airports/

Motivation

- Practicality
 - Many ways to insert your malicious data
 - Human-inspection is not feasible (think about t

Data collection method

The Weibo data is obtained by a python crawler. The crawler automatically uses Weibo's advanced search function for keyword indexing.

The keywords we used included:

- COVID-19
- novel coronavirus(新型冠状病毒)
- corona(新冠)
- epidemics(疫情)
- novel pneumonia(新型肺炎)
- pneumonia in Wuhan(武汉+肺炎)

The crawler program automatically entered one of the keywords into the query box and set the query time range to be a specific hour. As illustrated in Figure 2, the crawler sets the time range from January 18, 2020, 00:00:00 to January 18, 2020, 01:00:00.

For each query, the time range increased by one hour, and each query searched all the new posts within an hour. Each query returned a maximum of 50 pages, each contained around 20 posts. If the number posts exceed the page limits, we cannot fully collect the information due to the limitations of the search function.

https://yiling-chen.github.io/flickr-cropping-dataset/ https://github.com/yleng/COVID-Weibo

Threat Model: Targeted Poisoning

Goal

- Indiscriminate attack (increase the error on D_{val})

- Targeted attack: cause a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Train a model f on D_{tr}
 - Inject p poisons into the training set (N(D_{tr}) = n + p)
- Knowledge
 - D_{tr} : training data
 - D_{val} : validation data
 - *f* : a model and its parameters
 - L: training algorithm (e.g., SGD)

Threat Model: Clean-label Targeted Poisoning

Goal

- Indiscriminate attack (increase the error on D_{val})
- Targeted attack: cause a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Train a model f on D_{tr}
 - Inject p poisons into the training set (N(D_{tr}) = n + p)
- Knowledge
 - D_{tr} : training data
 - D_{val} : validation data
 - f: a model and its parameters
 - L: training algorithm (e.g., SGD)

Background: Convolutional Neural Networks

- A conventional view:
 - Convolutions: extract features, embeddings, latent representations, ...
 - Last layer: uses the output for a classification task

Background: Convolutional Neural Networks

- Input-space ≠ Feature-space:
 - Two samples similar in the input-space can be far from each other in the feature-space
 - Two samples very different in the input-space can be close to each other in f

• Goal

- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*

Goal

- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*

• Goal

- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*

Goal

- You want your any poison to be closer to your target (x_t, y_t) in the feature space
- Objective:

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

- Optimization:

Algorithm 1 Poisoning Example Generation

Input: target instance t, base instance b, learning rate λ Initialize x: $x_0 \leftarrow b$ Define: $L_{p}(x) = ||f(\mathbf{x}) - f(\mathbf{t})||^{2}$ for i = 1 to maxIters do Forward step: $\hat{x}_i = x_{i-1} - \lambda \nabla_x L_n(x_{i-1})$ Backward step: $x_i = (\hat{x}_i + \lambda \beta b)/(1 + \beta \lambda)$ end for

// construct input perturbations

// decide how much we will perturb

Evaluations

- Scenarios
 - Scenario 1: Transfer learning
 - Scenario 2: End-to-end learning

Evaluations: Transfer Learning

- Setup
 - Dataset: Dog vs. Fish (ImageNet)
 - Models: Inception-V3 (Pretrained on ImageNet)
- "one-shot kill" Attacks
 - Goal: Dog > Fish or Fish > Dog | All 1099 targets from the test-set
 - Craft a poison using a single image chosen from the other class
 - Train the last layer on $D_{tr} \cup (x_p, y_p)$ and check if the target's label is flipped
- Results
 - The attack succeeds with 100% accuracy
 - The accuracy drop caused by the attack is 0.2% on average

Evaluations: Transfer Learning

Evaluations: End-to-End Learning

- Setup
 - Dataset: CIFAR-10
 - Models: AlexNet (Pretrained on CIFAR-10)
- "end-to-end" Attacks
 - Goal: Bird > Dog or Airplane > Frog
 - Craft 1-70 poisons using the images chosen from the (Dog or Frog) class
 - Trick: watermarking!
 - Train the entire model on $D_{tr} \cup (x_p, y_p)$ and check the misclassification rate

Evaluations: End-to-End Learning

• Results

Topics for Today

- Motivation
 - Evade spam filter
 - Evade DDoS detection
- Data Poisoning:
 - Indiscriminate Attacks
 - Support vector machines (SVMs)
 - Regression models
 - Targeted Attacks
 - Deep neural networks (DNNs)
 - Poison Frogs
 - Meta-Poison
 - Conclusion (and implications)

Goal

- Indiscriminate attack (increase the error on D_{val})

- Targeted attack: cause a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Train a model f on D_{tr}
 - Perturb p training samples in the training set (N(D_{tr}) = n)
- Knowledge
 - D_{tr} : training data
 - D_{val} : validation data
 - f: a model and its parameters (Ugh!)
 - L: training algorithm (e.g., SGD)

Revisit the Key Idea

- Goal
 - You want your any poison to be closer to your target (x_t, y_t) in the *feature space*
 - Objective:

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \quad \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$
Now you don't know the *f*

- Revisit the previous idea
 - Bi-level optimization

$$\begin{array}{ll} \arg \max_{\mathcal{D}_p} & \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}_p^{\star}), & X \\ \text{s.t.} & \boldsymbol{\theta}_p^{\star} \in \arg \min_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \mathcal{D}_p, \boldsymbol{\theta}) & \boldsymbol{\theta} \end{array}$$

$$X_{p}^{*} = \underset{X_{p}}{\operatorname{argmin}} \mathcal{L}_{\operatorname{adv}}(x_{t}, y_{\operatorname{adv}}; \theta^{*}(X_{p}))$$
$$\theta^{*}(X_{p}) = \underset{\theta}{\operatorname{argmin}} \mathcal{L}_{\operatorname{train}}(X_{c} \cup X_{p}, Y; \theta)$$
Problem: no control over θ

Goal

Oregon State

- You simulate all the training procedures with all f, θ while crafting your poisons

Algorithm 1 Craft poison examples via MetaPoison

- 1: Input Training set of images and labels (X, Y) of size N, target image x_t , adversarial class y_{adv} , ϵ and ϵ_c thresholds, $n \ll N$ subset of images to be poisoned, T range of training epochs, M randomly initialized models.
- 2: Begin
- 3: Stagger the M models, training the mth model weights θ_m up to $\lfloor mT/M \rfloor$ epochs
- 4: Select n images from the training set to be poisoned, denoted by X_p. Remaining clean images denoted X_c
- 5: For $i = 1, \ldots, C$ crafting steps:
- 6: For $m = 1, \ldots, M$ models:
- 7: Copy $\tilde{\theta} = \theta_m$
- 8: For k = 1, ..., K unroll steps^{*a*}:

9:
$$\tilde{\theta} = \tilde{\theta} - \alpha \nabla_{\tilde{\theta}} \mathcal{L}_{\text{train}}(X_c \cup X_p, Y; \tilde{\theta})$$

- 10: Store adversarial loss $\mathcal{L}_m = \mathcal{L}_{adv}(x_t, y_{adv}; \tilde{\theta})$
- 11: Advance epoch $\theta_m = \theta_m \alpha \nabla_{\theta_m} \mathcal{L}_{\text{train}}(X, Y; \theta_m)$
- 12: If θ_m is at epoch T + 1:
- 13: Reset θ_m to epoch 0 and reinitialize
- 14: Average adversarial losses $\mathcal{L}_{adv} = \sum_{m=1}^{M} \mathcal{L}_m / M$
- 15: Compute $\nabla_{X_p} \mathcal{L}_{adv}$
- 16: Update X_p using Adam and project onto ϵ, ϵ_c ball
- 17: **Return** X_p

Evaluations

- Setup
 - Dataset: CIFAR-10
 - Models: 6-layer ConveNet (default), ResNet20, VGG13
 - Attack hyper-parameters:
 - C: 60 | M: 24 | K: 2
- Attacks
 - 30 randomly chosen targets
 - Increase the # poisons from 1 10% of the training data n
 - Baseline:
 - Poison Frog

Evaluations: Transfer Learning Scenario

• Results vs. Poison Frogs

Evaluations: End-to-End Scenario

Evaluations: Exploitation in Real-World

• Results

Recap

- Motivation
 - Evade spam filter
 - Evade DDoS detection
- Data Poisoning:
 - Indiscriminate Attacks
 - Support vector machines (SVMs)
 - Regression models
 - Targeted Attacks
 - Deep neural networks (DNNs)
 - Poison Frogs
 - Meta-Poison
 - Conclusion (and implications)

Thank You!

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

