CS 499/599: Machine Learning Security 02.14: Data Poisoning

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu

Notice

Due dates

- Checkpoint Presentation II (on the 16th)
 - 15-min presentation + 3-5 min Q&A
 - Presentation *MUST* cover:
 - 1 slide on your research topic
 - 1-2 slides on your motivation and goal(s)
 - 1-2 slides on your *ideas* (how do you plan to achieve your goals)
 - 1-2 slides on your *experimental design* (in detail)
 - 1-2 slides on your *hypotheses* and *preliminary results* [very important]
 - 1 slide on your *next steps* until the final presentation
- Sign-up (on Canvas)
 - Scribe Lecture Note [~5 more slots remain]
 - In-class Paper Presentation / Discussion [~4 more slots remain]

In-class Presentation (Quintin Pope) – Zoom-in: Introduction to Circuits

Topics for Today

- Motivation
 - Evade spam filter
 - DDoS detection
- Data Poisoning:
 - Attacks
 - Indiscriminate attacks on: SVMs and regression models
 - Targeted attacks on: DNNs (Poison Frogs and Meta-poison)
 - Defenses
 - Certified defenses
 - Differential privacy
 - Conclusion (and implications)

Steinhardt *et al.*, Certified Defenses for Data Poisoning Attacks Ma *et al.*, Data Poisoning Attacks against Differentially-Private Learners: Attacks and Defenses Traditionally, computer security seeks to ensure a system's integrity against attackers by creating clear boundaries between the system and the outside world (Bishop, 2002). In machine learning, however, the most critical ingredient of all-the training data-comes directly from the outside world.

– Steinhardt, Koh, and Liang, NeurIPS'17

Motivation

- Prior work
 - Many successful attacks, e.g., [Biggio et al. 2012], on classification tasks
 - Defenses, *e.g.*, RONI, showed their effectiveness against those attacks

Wait, What's the Worst-case of Data Poisoning?

Threat Model

- Setup [binary classification task!]
 - **Data:** $x \in X$ (ex. R^d), $y \in Y = \{-1, +1\}$
 - Clean train-set: D_c of size n / Test-set: S
 - Loss function: $l(\theta; x, y) = \max(0, 1 y\langle \theta, x \rangle)$
 - Test-loss: $L(\theta) = E_{(x,y)\sim S}[l(\theta; x, y)]$
- Attacker
 - **Goal:** Indiscriminate attack (increase the test-loss $L(\theta)$)
 - **Capability:** D_p : inject ϵn poisons, where $\epsilon \in [0, 1]$, into D_c
 - Knowledge: D_c and the defense algorithm that will be used [white-box]
- Defender
 - **Goal:** Trains a model on $D_c \cup D_p$ and produce a model $\hat{\theta}$ that minimizes $L(\hat{\theta})$

Threat Model: Defenses

- Setup [binary classification task!]
 - **Data:** $x \in X$ (ex. R^d), $y \in Y = \{-1, +1\}$
 - Clean train-set: D_c of size n / Test-set: S
 - Loss function: $l(\theta; x, y) = \max(0, 1 y\langle \theta, x \rangle)$
 - Test-loss: $L(\theta) = E_{(x,y)\sim S}[l(\theta; x, y)]$
- Data sanitization defenses
 - Goal: Examine $D_c \cup D_p$ and remove poisons (*e.g.*, outliers)

$$\hat{\theta} \stackrel{\text{def}}{=} \underset{\theta \in \Theta}{\operatorname{argmin}} L(\theta; (\mathcal{D}_{c} \cup \mathcal{D}_{p}) \cap \mathcal{F}), \text{ where } L(\theta; S) \stackrel{\text{def}}{=} \sum_{(x,y) \in S} \ell(\theta; x, y)$$

- Methods:

- Fixed (oracle) defense: when we know the true distribution of data (unrealistic)
- Data-dependent defense: when we don't know the true distribution (real-world!)

Example Data Sanitization Defenses

- Data sanitization defenses
 - **Goal:** Examine $D_c \cup D_p$ and remove poisons (*e.g.*, outliers)
 - Example defenses:

Oregon Stat

- sphere defense: removes points outside a spherical radius
- slab defense: first project points onto the line btw. the centroids and then remove

$$\max_{D_p} \mathcal{L}(\hat{\theta}) \leq \max_{D_p \subseteq F} \min_{\theta \in \Theta} \frac{1}{n} \mathcal{L}(\theta; D_c \cup D_p) \stackrel{\text{\tiny def}}{=} \mathbf{M}$$

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!

$$\max_{D_p} \mathcal{L}(\hat{\theta}) \leq \max_{D_p \subseteq F} \min_{\theta \in \Theta} \frac{1}{n} \mathcal{L}(\theta; D_c \cup D_p) \stackrel{\text{def}}{=} \mathbf{M}$$

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!
- Two defense scenarios
 - Fixed defense: when we know the true distribution of data
 - Data-dependent defense: when we don't know the true distribution of data

$$\max_{D_p} \mathcal{L}(\hat{\theta}) \leq \max_{D_p \subseteq F} \min_{\theta \in \Theta} \frac{1}{n} \mathcal{L}(\theta; D_c \cup D_p) \stackrel{\text{def}}{=} \mathbf{M}$$

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!
- Two defense scenarios
 - Fixed defense: we can fix F regardless of poisoning samples
 - Data-dependent defense: when we don't know the true distribution of data

$$\max_{D_p} \mathcal{L}(\hat{\theta}) \leq \max_{D_p \subseteq F} \min_{\theta \in \Theta} \frac{1}{n} \mathcal{L}(\theta; D_c \cup D_p) \stackrel{\text{def}}{=} \mathbf{M}$$

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!
- Two defense scenarios
 - Fixed defense: we can fix F regardless of poisoning samples
 - **Data-dependent defense:** we cannot fix *F* (and hence can be influenced by the attacker)

Upper-bounds

• Fixed defense scenario

- To simulate the worst-case, you craft poisons as follows and inject them

Evaluations: Fixed Defense

• On DogFish and MNIST-1/7

- (a), (b), (c): oracle defenses are strong (the loss < 0.1...)
- (a) and (b): the upper bound is *tight*
- (c): the upper bound is tighter than what existing attacks can inflict

Evaluations: Data-Dependent Defense

• On MNIST-1/7 in 2-class SVMs

- (a): data-dependent defenses are much weaker (the bound increases exponentially...)
- (a): the upper-bound is still *tight*
- (b): in data-dependent defenses, the F is affected by the poisons

Topics for Today

- Motivation
 - Evade spam filter
 - DDoS detection
- Data Poisoning:
 - Attacks
 - Indiscriminate attacks on: SVMs and regression models
 - Targeted attacks on: DNNs (Poison Frogs and Meta-poison)
 - Defenses
 - Certified defenses
 - Differential privacy
 - Conclusion (and implications)

Motivation

- Steinhardt et al.
 - Fixed defenses are strong, but they are unrealistic
 - Data-depended defenses are largely affected by the poisons; thus, they are weak

How Can We Address Those Problems?

The Key Idea: Differential Privacy

- Differential Privacy
 - *M* (*D*×*R*^{*d*} → Θ) is (ϵ , δ)-differentially-private if ∀*D*, $\widetilde{D} \in D$ that differ by one item, and ∀*S* ⊂ Θ,

$$\mathbf{P}\left(\mathcal{M}(D,b)\in\mathcal{S}
ight)\leq e^{\epsilon}\mathbf{P}\left(\mathcal{M}(ilde{D},b)\in\mathcal{S}
ight)+\delta$$

where the probability is taken over $b \sim v$. When $\delta = 0$, M is ϵ -differentially-private.

The Key Idea: Differential Privacy

- Differential Privacy
 - *M* (*D*×*R*^{*d*} → Θ) is (ϵ , δ)-differentially-private if ∀*D*, $\widetilde{D} \in D$ that differ by one item, and ∀*S* ⊂ Θ,

$$\mathbf{P}\left(\mathcal{M}(D,b)\in\mathcal{S}\right)\leq e^{\epsilon}\mathbf{P}\left(\mathcal{M}(\tilde{D},b)\in\mathcal{S}\right)+\delta$$

where the probability is taken over $b \sim v$. When $\delta = 0$, M is ϵ -differentially-private.

• Connection to Data Poisoning [Conceptually!]

Threat Model: Attacker

- Knowledge [white-box]
 - Train-set: D / Poisoned train-set: \widetilde{D}
 - Differentially-private learner: M
 - **Noise dist.:** *v*, but not the distribution *b*
- Capability
 - Modify *k* items in *D*
- Goals
 - Minimize the objective function $J(\widetilde{D})$ attack cost!
 - Objectives
 - Parameter-targeting attack: make the model $ilde{ heta}$ to be close to a target heta
 - Label-targeting attack: cause *small* prediction error on $\{z_i^*\}_{i \in [m]}$
 - Label-aversion attack: induce *large* prediction error on $\{z_i^*\}_{i \in [m]}$

Impact of Differential Privacy

- Construct the lower-bound on $J(\widetilde{D})$
 - $-J\big(\widetilde{D}\big) \geq e^{-k\epsilon}J(D)$
 - Data poisoning cannot make $J(\widetilde{D})$ infinitely small
- Lemma & Corollary

...

- Lemma 1: If k = 1, it becomes $J(\widetilde{D}) \ge e^{-\epsilon}J(D)$
- Corollary 1: To achieve $J(\widetilde{D}) \ge 1/\tau J(D)$, $k \ge \lfloor 1/\epsilon \log \tau \rfloor$ [Fun facts!]

Evaluations

- Setup [binary classification tasks]
 - Dataset: Synthetic data | Real data (UCI ML Repo.)
 - Models: Logistic regression | Ridge-regression
- Crafting poisons
 - Demonstrate on 2-D synthetic data

Evaluations

• Results of the three attacks on 2-D artificial data

University Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

Evaluations

- Results of the *label-targeting* attacks on real-world datasets
 - In DP, the attack costs significantly higher than the case w/o DP
 - ex. with 20 poisons, the cost w/o DP is almost zero whereas with DP, it's 0.4
- Interesting Observation!
 - Attacks are much easier with weak (small epsilon) privacy

Recap: Data Poisoning

- Motivation
 - Evade spam filter
 - DDoS detection
- Data Poisoning:
 - Attacks
 - Indiscriminate attacks on: SVMs and regression models
 - Targeted attacks on: DNNs (Poison Frogs and Meta-poison)
 - Defenses
 - Certified defenses
 - Differential privacy
 - Conclusion (and implications)

Thank You!

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

