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Notice

* Due dates
— Checkpoint Presentation Il (on the 16t)
* 15-min presentation + 3-5 min Q&A
* Presentation MUST cover:
- 1 slide on your research topic

1-2 slides on your motivation and goal(s)
1-2 slides on your ideas (how do you plan to achieve your goals)

1-2 slides on your experimental design (in detail)

1-2 slides on your hypotheses and preliminary results [very important]

1 slide on your next steps until the final presentation

* Sign-up (on Canvas)
— Scribe Lecture Note [~5 more slots remain]
— In-class Paper Presentation / Discussion [~4 more slots remain]
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In-class Presentation (Quintin Pope) - Zoom-in: Introduction to Circuits



Topics for Today

* Motivation
- Evade spam filter
— DDoS detection

* Data Poisoning:
— Attacks
* Indiscriminate attacks on: SVMs and regression models
* Targeted attacks on: DNNs (Poison Frogs and Meta-poison)
- Defenses
* Certified defenses
 Differential privacy
— Conclusion (and implications)
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Steinhardt et 4/, Certified Defenses for Data Poisoning Attacks
Ma et a/., Data Poisoning Attacks against Differentially-Private Learners: Attacks and Defenses



Traditionally, computer security seeks to ensure a system’s integrity against attackers
by creating clear boundaries between the system and the outside world (Bishop,
2002). In machine learning, however, the most critical ingredient of all-the training
data—comes directly from the outside world.

— Steinhardt, Koh, and Liang, NeurlPS'17
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Mativation

* Prior work
- Many successful attacks, e.g., [Biggio et al. 2012], on classification tasks
- Defenses, e.g., RONI, showed their effectiveness against those attacks

Wait, What’s the Worst-case of Data Poisoning?
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Threat Model

* Setup [ classification task!]
- Data:x € X (ex. R%),y €Y = {—1,+1}
— Clean train-set: D, of size n / Test-set: S
— Loss function: [(6; x,y) = max(0,1 — y(6, x))
- Test-loss: L(6) = E(y)~s[l(6; x,y)]

 Attacker
— Goal: Indiscriminate attack (increase the test-loss L(8))
- Capability: D,,: inject en poisons, where € € [0, 1], into D,
- Knowledge: D. and the defense algorithm that will be used [white-box]

e Defender

- Goal: Trains a model on D U D,, and produce a model 6 that minimizes L(@)
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Threat Model: Defenses

* Setup [ classification task!]
- Data:x € X (ex. R%),y €Y = {—1,+1}
— Clean train-set: D, of size n / Test-set: S
— Loss function: [(6; x,y) = max(0,1 — y(6, x))
- Test-loss: L(6) = E(y)~s[l(6; x,y)]

* Data sanitization defenses
- Goal: Examine D, U D,, and remove poisons (e.g., outliers)

0 %' argmin L(6;(D.UDy) N F), where L(6;5) e Z £(6;2,y)
6cO (z,y)ES

- Methods:
* Fixed (oracle) defense: when we know the true distribution of data (unrealistic)
* Data-dependent defense: when we don’t know the true distribution (real-world!)

Oregon State
& University

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security



Example Data Sanitization Defenses

 Data sanitization defenses
- Goal: Examine D, U D,, and remove poisons (e.g., outliers)
- Example defenses:
* sphere defense: removes points outside a spherical radius
* slab defense: first project points onto the line btw. the centroids and then remove

(a) MNIST-1-7 (with € = 0.3 poisoning) (b) 1 IMDB (w1th e=0. 05 poisoning)
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Effectlveness of Defenses Largely Depends on the Data
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The Worst-case Test Loss by Data Poisoning

* Upper-bou nd [refer to the paper for its derivation]

~ 1
max L(§) < maxmin—L(6;D,UD,) & M
Dy DpSF 0€O N

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!
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The Worst-case Test Loss by Data Poisoning

* Upper-bou nd [refer to the paper for its derivation]

~ 1
max L(§) < maxmin—L(6;D,UD,) & M
Dy DpSF 0€O N

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!

* Two defense scenarios
- Fixed defense: when we know the true distribution of data
- Data-dependent defense: when we don’t know the true distribution of data
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The Worst-case Test Loss by Data Poisoning

* Upper-bou nd [refer to the paper for its derivation]

~ 1
max L(§) < maxmin—L(6;D,UD,) & M
Dy DpSF 0€O N

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!

* Two defense scenarios
— Fixed defense: we can regardless of poisoning samples
- Data-dependent defense: when we don’t know the true distribution of data
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The Worst-case Test Loss by Data Poisoning

* Upper-bou nd [refer to the paper for its derivation]

~ 1
max L(§) < maxmin—L(6;D,UD,) & M
Dy DpSF 0€O N

- M: the minimax loss
- It means: the attack is bounded to a scenario where all poisons are alive under F!

* Two defense scenarios
— Fixed defense: we can regardless of poisoning samples
— Data-dependent defense: we cannot fix ' (and hence can be influenced by the attacker)
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Upper-bounds

* Fixed defense scenario

- To simulate the worst-case, you craft poisons as follows and inject them

Algorithm 1 Online learning algorithm for generating an up

Input: clean data D, of size n, feasible set F, radius p, pq
Initialize 2(9) « 0, A(0) « %, 0 0, U* + oo.
fort=1,...,endo
Compute (z(*), y®) = argmax, .y £(0¢~V; z,y)
U* < min (U*, 2L(0¢Y;D;) + e£(0¢~V; 20,y
g®  LYLOCD. D) 1 eve(9ED; o, y0).
Update: z(®) « 20D — g X(®) « max(\¢-1
end for
Output: upper bound U* and candidate attack D, = {(z

~
o))
N

Distance along orthonormal vector

MNIST-1-7 (with € = 0.3 poisoning)

Fslab

7:‘
Fsphere

XOX®

=10.0 =7.5 =5.0 =25 0.0 2.5 5.0
Distance along vector between true centroids

s>

T®
Oregon State
& University - - -
: Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

15




Evaluations: Fixed Defense

* On DogFish and MNIST-1/7
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(a) Dogfish: upper bounds vs. attack
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(c) MNIST: baseline comparison

; (b) MNIST: upper bounds vs. attack
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€ (fraction of poisoned data added)

- (a), (b), (c): oracle defenses are strong (the loss < 0.1...)
- (a) and (b): the upper bound is tight
- (c): the upper bound is tighter than what existing attacks can inflict
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Evaluations: Data-Dependent Defense

* On MNIST-1/7 in 2-class S\VMs
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- (a): data-dependent defenses are much weaker (the bound increases exponentially...)

(a) MNIST-1-7: attack on data-dep defense
U”* (oracle)

----U" (data-dependent) 7
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(b) MNIST-1-7: effect of shifting centroids
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- (a): the upper-bound is still tight
- (b): in data-dependent defenses, the F is affected by the poisons
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Topics for Today

- Defenses
* Certified defenses
 Differential privacy

— Conclusion (and implications)

T®
Oregon State
& University - - -
Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

18



Mativation

 Steinhardt et al.
- Fixed defenses are strong, but they are unrealistic
- Data-depended defenses are largely affected by the poisons; thus, they are weak

How Can We Address Those Problems?
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The Key Idea: Differential Privacy

* Differential Privacy
—~ M (DXR? - 0) is (¢, §)-differentially-private
if vD, D € D that cand VS c O,

P (M(D,b) € S) < P (M(D,b) c s) +4

where the probability is taken over b ~ v. When § = 0, M is e-differentially-private.
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The Key Idea: Differential Privacy

* Differential Privacy
—~ M (DXR? - 0) is (¢, §)-differentially-private
if vD, D € D that cand VS c O,

P (M(D,b) € S) < P (M(D,b) c s) 4o

where the probability is taken over b ~ v. When § = 0, M is e-differentially-private.

* Connection to Data Poisoning | ]

D: clean train-set D: poisoned train-set
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Threat Model: Attacker

° Knowledge [white-box]
— Train-set: D / Poisoned train-set: D
- Differentially-private learner: M
- Noise dist.: v, but not the distribution b

e Capability
- Modify k itemsin D

* Goals
— Minimize the objective function J(D) — attack cost!
- Objectives
* Parameter-targeting attack: make the model 8 to be close to a target 6
* Label-targeting attack: cause small prediction error on {z; };e[m
* Label-aversion attack: induce large prediction error on {Z;}ie[m]
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Impact of Differential Privacy

* Construct the lower-bound on J(D)
- J(D) = e7*¢J (D)

— Data poisoning cannot make J(D) infinitely small

* Lemma & Corollary
-Llemmal:lfk =1,it becomes](ﬁ) > e €J(D)
— Corollary 1: To achieve /(D) = 1/zJ(D), k = [Y/elogT]
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Evaluations

* Setup [binary classification tasks]

- Dataset: Synthetic data | Real data (UCI ML Repo.)
- Models: Logistic regression | Ridge-regression

 Crafting poisons

- Demonstrate on 2-D synthetic data
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(b) training set

1.0

0.5

0.0

-0.5

-1.0

---------
.............
.................
...................
...................
...................
.....................
...................
...................
.................
.................
.............

.........

(c) evaluation set



Evaluations

B}

e Results of the three attacks on 2-D artificial data
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Evaluations

* Results of the label-targeting attacks on real-world datasets
— In DP, the attack costs significantly higher than the case w/o DP
— ex. with 20 poisons, the cost w/o DP is almost zero whereas

* Interesting Observation!
— Attacks are much easier with weak (small epsilon) privacy

2.0 shallow-SV
shallow-DPV
1.51 deep-SV
= deep-DPV
= 1.0 lower bound
0.5
0.0 === ‘—-———-———————-—-'-———-—ﬁ—-‘
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Recap: Data Poisoning

* Motivation
- Evade spam filter
— DDoS detection

* Data Poisoning:
— Attacks
* Indiscriminate attacks on: SVMs and regression models
* Targeted attacks on: DNNs (Poison Frogs and Meta-poison)
- Defenses
* Certified defenses
 Differential privacy
— Conclusion (and implications)
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Thank You!

Mon/Wed 12:00 — 1:50 pm

Sanghyun Hong
https://secure-ai.systems/courses/MLSec/W22
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