### CS 499/599: Machine Learning Security 02.21: Privacy

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu





### Checkpoint Presentation II (Akshith and Matt)

### Notice

- Due dates
  - Written paper critique (21<sup>st</sup>)
- Sign-up (on Canvas)
  - Scribe lecture note [3 slots remain]
  - In-class paper presentation / discussion [2 slots remain]
- Notice

)regon State

- You can receive 50% of the total credits if you submit HW1 4 by 03.16
- Grading scheme (total: 143 pts = 120 pts + 23 pts)
  - A: 108 <= total <= 143
  - **B:** 96 <= total < 108
  - C: 84 <= total < 96
  - **D:** 72 <= total < 84
  - **F:** total < 72

Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

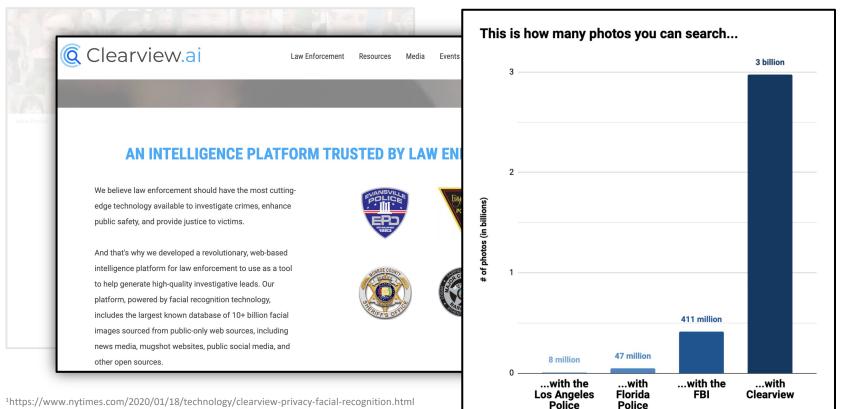
# **Topics for Today**

- Privacy
  - Warm-boot
  - Threat Models
    - Reconstruction attack
    - Tracing attack
    - Model extraction [controversial]
  - Differential privacy (DP)
- Privacy Attacks and Defenses
  - Non-ML
    - Data anonymization



#### Dwork *et al.*, Exposed! A Survey of Attacks on Private Data

### Your Data Is Very Privately Managed!



<sup>2</sup>https://www.muckrock.com/news/archives/2020/jan/18/clearview-ai-facial-recogniton-records/



# Privacy, Privacy, Privacy



#### Let's Talk A Threat Model to Study Privacy Risks!



Facebook has agreed to pay a £500,000 fine imposed by the UK's data protection watchdog for its role in the Cambridge Analytica scandal.

Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

### **Threat Model**

- Goal
  - Attacker: extract some sensitive information about you (*e.g.*, data analyst in insurance firm)
  - Victim : minimize the leakage of such information (e.g., your driving habits)
- Knowledge of the attacker
  - Additional (or auxiliary information) about the dataset  $D_{tr}$ 
    - Ex.: Your friends on Facebook have 90% chances to drive recklessly
- Capability of the attacker
  - Query your data with some mechanisms
    - **Def:** a randomized algorithm *M* mapping datasets to an arbitrary set of outputs *q*
    - Ex.: how many times you were pulled over by police?
  - Perform post-processing computations on q (outputs)



## Threat Model

- Privacy Attacks
  - Re-identification
    - Goal: de-identify anonymized datasets
    - Ex. : in an election poll, is this vote for President candidate A from you?

#### - Reconstructions

- Goal: reconstruct all the properties of a target instance in the dataset
- Ex. : in the Census dataset, what are the attribute values associated with you?

#### - Tracing

- Goal: identify whether some instances are in the dataset or not
- Ex. : do you participate in a clinical trial?
- [Note]
  - Extract well-known facts or highly-correlated information is not the attacker's goal



- Setup
  - Victim:
    - For each *i*-th instance, the victim has  $(x_i, s_i)$  information
    - $x_i \in \{0, 1\}^d$ : public info. accessible by an adversary and  $s_i$ : is the one-bit secret
  - Attacker:
    - Perform an attack A that reconstructs  $s_i$  by exploiting query outputs  $\hat{q}$  and the public information A(x, M(x, s)), where the attacker knows k > 1 public attributes
  - Formally





### Reconstruction Attack

- Setup
  - Victim:

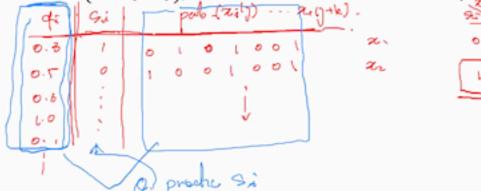
0.3 6

0

¢,

D

- For each *i*-th instance, the victim has (x<sub>i</sub>, s<sub>i</sub>) information
- $x_i \in \{0, 1\}^d$ : public info. accessible by an adversary and  $s_i$ : is the one-bit secret
- Attacker:
- 0 : Trup 1: Braken Perform an attack A that reconstructs s<sub>i</sub> by exploiting query outputs q̂ and the public information A(x, M(x, s)), where the attacker knows k > 1 public attributes





- Setup
  - Victim:
    - For each *i*-th instance, the victim has  $(x_i, s_i)$  information
    - $x_i \in \{0, 1\}^d$ : public info. accessible by an adversary and  $s_i$ : is the one-bit secret
  - Attacker:
    - Perform an attack A that reconstructs  $s_i$  by exploiting query outputs  $\hat{q}$  and the public information A(x, M(x, s)), where the attacker knows k > 1 public attributes

#### - Approximation:

- Linear statistics (e.g., linear SVM, linear regression, ...)
- Practical constraints (# Queries)
  - Ideally  $2^n$  queries to solve the subset-sum problem
  - Practically, considering the tradeoff btw error and accuracy, we can do it in polynomial time



## Tracing (less strong) Attack

- Setup
  - Victim:
    - Has a dataset  $x = \{x_1, ..., x_n\}$  with *n*-i.i.d samples where each  $x_i$  is drawn from *P* over  $\{\pm 1\}^d$
    - For each query M, the victim returns the sample mean q over given sample  $x_i$ 's
  - Attacker:
    - Perform an attack A(y, q, z) that identify whether a target instance  $y \in \{\pm 1\}^d$  IN the dataset x or not (OUT) with m-i.i.d reference samples  $z = \{z_1, ..., z_n\}$  and the sample mean q
  - Procedure:





### Tracing (less strong) Attack

- Setup
  - Victim:
    - Has a dataset  $x = \{x_1, ..., x_n\}$  with *n*-i.i.d samples where each  $x_i$  is drawn from *P* over  $\{\pm 1\}^d$
    - For each query M, the victim returns the sample mean q over given sample x<sub>i</sub>'s
  - Attacker:
    - Perform an attack A(y, q, z) that identify whether a target instance y ∈ {±1}<sup>d</sup> IN the dataset x or not (OUT) with m-i.i.d reference samples z = {z<sub>1</sub>, ..., z<sub>n</sub>} and the sample mean q
  - Procedure:

$$\begin{cases} z_1, z_2, z_2, z_3 \\ [y_1, z_1, z_2] \rightarrow \hat{q}_1 \\ [z_1, z_1, z_3] \rightarrow \hat{q}_1 \\ \vdots \end{cases}$$



# **Topics for Today**

- Privacy
  - Warm-boot
  - Privacy attacks:
    - Reconstruction attack
    - Tracing attack
    - Model extraction [controversial]
  - Defense: differential privacy (DP)
- Privacy Attacks and Defenses
  - Non-ML:
    - Data anonymization



# **Proposing Defenses**

- Challenges
  - How can we define a privacy guarantee?
    - Problem: Adversaries may break some heuristic defenses (arms-race)
    - Example: A defense and its pitfall:
      - In DB query responses, a defender can randomly drop k rows ( $k \ll r, r$ : # rows in resp.)
      - One can submit the same query multiple times, and then they compares responses
  - What if we apply the strongest privacy guarantee?
    - Problem:
      - Well, if you do not share, you do not leak any information
      - But it is *NOT* what we want (the end of arms-race)
  - How can we offer an upper-bound of privacy leakage?
    - **Problem:** It is hard to define what is the leakage of private information
    - Example: Many definitions are feasible (e.g., certain attributes, specific samples, etc...)



- Differential Privacy (DP)
  - How can we offer an upper-bound of privacy leakage?
    - Focus on the smallest perturbations on a dataset we protect: a single instance
    - Make the outputs of any algorithms (*e.g.*, query processing) compute on datasets with a single item difference cannot be different from each other with ε probability
  - Formally,
    - An algorithm (or a mechanism) M satisfies  $\varepsilon$ -differential privacy if, for any datasets x and y differing only on the data of a single instance and any potential outcome  $\hat{q}$ ,

$$\mathbb{P}\left[\mathcal{M}(x)=\hat{q}\right] \leq e^{\varepsilon} \cdot \mathbb{P}\left[\mathcal{M}(y)=\hat{q}\right].$$





- Differential Privacy (DP)
  - How can we offer an upper-bound of privacy leakage?
    - Focus on the smallest perturbations on a dataset we protect: a single instance
    - Make the outputs of any algorithms (e.g., query processing) compute on datasets with a single item difference cannot be different from each other with ε probability
  - Formally,
    - An algorithm (or a mechanism) M satisfies ε-differential privacy if, for any datasets x and y differing only on the data of a single instance and any potential outcome q̂,

$$\mathbb{P}[\mathcal{M}(x) = \hat{q}] \leq e^{\varepsilon} \cdot \mathbb{P}[\mathcal{M}(y) = \hat{q}]. \quad \xi = -\log \frac{1}{P[x]}$$

$$\ln P[\mathcal{M}(x) = \hat{q}] \leq \varepsilon + \ln P[\mathcal{M}(y) = \hat{q}]$$

$$\ln P[\mathcal{M}(x) = \hat{q}] \leq \varepsilon - \ln \frac{1}{P[\mathcal{M}(y) = \hat{q}]} = \frac{1}{\varepsilon}.$$

$$E_x - \ln \frac{1}{P[\mathcal{M}(y) = \hat{q}]} \leq \varepsilon.$$



- 3 Important Properties of DP
  - DP-Definition
    - An algorithm (or a mechanism) M satisfies  $\varepsilon$ -differential privacy if, for any datasets x and y differing only on the data of a single instance and any potential outcome  $\hat{q}$ ,

$$\mathbb{P}\left[\mathcal{M}(x)=\hat{q}\right] \leq e^{\varepsilon} \cdot \mathbb{P}\left[\mathcal{M}(y)=\hat{q}\right].$$

- Post-processing
  - Any post-processing of differentially-private data won't change the DP guarantee
- Composition
  - If the same instance in multiple datasets (where each satisfies ε-DP), the combination of those releases also satisfies kε-DP (*i.e.*, the guarantees will degrade by k)

#### - Group-privacy

• If we want to protect k instances, instead of a single item, we require  $k\epsilon$ -DP guarantee



- Implementation
  - DP-Definition
    - An algorithm (or a mechanism) M satisfies  $\varepsilon$ -differential privacy if, for any datasets x and y differing only on the data of a single instance and any potential outcome  $\hat{q}$ ,

$$\mathbb{P}\left[\mathcal{M}(x)=\hat{q}\right] \leq e^{\varepsilon} \cdot \mathbb{P}\left[\mathcal{M}(y)=\hat{q}\right].$$

- Gaussian mechanism-Definition
  - Formally: Suppose properties  $q = (q_1, ..., q_k)$ , the Gaussian mechanism  $M_{q,\sigma^2}$  takes x as input and releases  $\hat{q} = (\hat{q_1}, ..., \hat{q_k})$  where each  $\hat{q_i}$  is independent sample from  $N(q_i(x), \sigma^2)$ , for an appropriate variance  $\sigma^2$
  - Easy-way: I will add Gaussian noise with a variance  $\sigma^2$  to the output  $\hat{q}$ , such that the output satisfies  $\varepsilon$ -differential privacy guarantee



# **Recap!**

- Privacy
  - Warm-boot
  - Privacy attacks:
    - Reconstruction attack
    - Tracing attack
    - Model extraction [controversial]
  - Defense: differential privacy (DP)
- Privacy Attacks and Defenses
  - Non-ML:
    - Data anonymization [Left for you]



# **Thank You!**

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22



