CS 499/599: Machine Learning Security 02.23: Privacy

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu

Notice

• Due dates

- Written paper critique (28th)
- HW3 deadline (28th)
- Sign-up (on Canvas)
 - Scribe lecture note [3 slots remain]
 - In-class paper presentation / discussion [ONLY 1 slots remain, on the 2nd of Mar]

Topics for Today

- Privacy
 - Warm-boot
 - Threat Models
 - Differential privacy (DP)
- Privacy Attacks and Defenses
 - Non-ML: Data anonymization
 - Membership inference (Tracing attack)
 - Threat Model
 - Attacks
 - Shokri et al.
 - Yeom et al.
 - Defensive techniques

Shokri et al., Membership Inference Attacks against Machine Learning Models

Threat Model

- Membership Inference
 - Goal:
 - Identify if a specific instance y is IN the dataset D_{train} or is not (OUT)

Threat Model

- Membership Inference
 - Goal:
 - Identify if a specific instance y is IN the dataset D_{train} or is not (OUT)
 - Knowledge:
 - The format of inputs and outputs, such as:
 - What features do they collect?
 - What are those feature's values (range)?
 - ...
 - Some knowledge on the distribution of D_{train}
 - Capability:
 - Has a query access to the target model
 - Has computational power to train surrogate (*i.e.*, shadow) models

Membership Inference Attack (Shokri et al.)

- Shadow Models
 - Idea:
 - The attacker has some data samples
 - If the attacker trains models with those samples, we know their memberships!
 - If shadow models are trained similarity, we can exploit the membership info.!

- Attacker's data:

- Know the labeled records: (*x*, *y*)
- Query them to the target model and collect its predictions: ((x, y), y)
- How to train?
 - Create a train and test split
 - Use the train data to train the shadow models

Membership Inference Attack (Shokri et al.)

- Shadow Models
 - Attacker's data :
 - Require some data (x, y) from a distribution like the victim's
 - Data generation strategies:
 - Model-based synthesis
 - Statistics-based synthesis
 - Noisy real-data

Alg	orithm 1 Data synthesis using	the target model
1:	procedure SYNTHESIZE(class	s : c)
2:	$\mathbf{x} \leftarrow \text{RandRecord}()$	▷ initialize a record randomly
3:	$y_c^* \leftarrow 0$	
4:	$j \leftarrow 0$	
5:	$k \leftarrow k_{max}$	
6:	for $iteration = 1 \cdots iter_r$	nax do
7:	$\mathbf{y} \leftarrow f_{target}(\mathbf{x})$	\triangleright query the target model
8:	if $y_c \geq y_c^*$ then	\triangleright accept the record
9:	if $y_c > ext{conf}_{min}$ and	d $c = \arg \max(\mathbf{y})$ then
10:	if rand() $< y_c$	then ▷ sample
11:	return x	▷ synthetic data
12:	end if	
13:	end if	
14:	$\mathbf{x}^* \leftarrow \mathbf{x}$	
15:	$y_c^* \leftarrow y_c$	
16:	$j \leftarrow 0$	
17:	else	
18:	$j \leftarrow j+1$	
19:	if $j > rej_{max}$ then	▶ many consecutive rejects
20:	$k \leftarrow \max(k_{min})$	$(, \lceil k/2 \rceil)$
21:	$j \leftarrow 0$	
22:	end if	
23:	end if	
24:	$\mathbf{x} \leftarrow \text{RandRecord}(\mathbf{x})$	$(x^*, k) \triangleright$ randomize k features
25:	end for	
26:	return ⊥	▷ failed to synthesize
27:	end procedure	

Membership Inference Attack (Shokri et al.)

- Model for the attack
 - Attacker's data:
 - Data format ((x, y), y)
 - Some of them are "in" the shadow train, otherwise "out"
 - Combine three info. (*y*, *y*, *in*) or (*y*, *y*, *out*)
 - Make the attack model predict in or out

- Setup
 - Datasets:
 - MNIST | CIFAR-10/100
 - Purchases | Locations | Texas-100 | UCI Adult
 - Models
 - MLaaS: Google Prediction API | Amazon ML | NNs
 - MI Attack
 - Shadow models: 20 100 models
 - Defenses
 - Heuristics: Top-k | Precision | Regularization
 - [?!] In theory: DP

- MI Attacks on CIFAR
 - Shadow models: 100
 - Training set (for targets):
 - CIFAR-10: {2.5, 5, 10, 15}k samples
 - CIFAR-100: {4.5, 10, 20, 30}k samples
 - In-short: MI attacks work with a pretty reasonable acc.

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

- MI Attacks w. Different Models
 - Dataset: Purchase-100
 - Models (trained on 10k records):
 - Amazon ML
 - Google's Prediction API

ML Platform	Training	Test
Google	0.999	0.656
Amazon (10,1e-6)	0.941	0.468
Amazon (100,1e-4)	1.00	0.504
Neural network	0.830	0.670
	•	

- In-short: across all models, MI attacks work with a pretty reasonable acc.

- MI Attacks w. Different Shadow Models
 - Dataset: Location
 - Modification:
 - Noisy shadow training data
 - No data (synthesize it!)
 - In-short: MI attacks show robust acc. under the weak approximation of the dist.

Oregon State

- MI Attacks w. Different # classes
 - Dataset: Purchase
 - Modification:
 - # Classes: 10 100 classes (keep N(D_{tr}) the same)
 - Google Prediction API
 - In-short: More supporting data samples in the c

Dataset	Training	Testing	Attack
	Accuracy	Accuracy	Precision
Adult	0.848	0.842	0.503
MNIST	0.984	0.928	0.517
Location	1.000	0.673	0.678
Purchase (2)	0.999	0.984	0.505
Purchase (10)	0.999	0.866	0.550
Purchase (20)	1.000	0.781	0.590
Purchase (50)	1.000	0.693	0.860
Purchase (100)	0.999	0.659	0.935
TX hospital stays	0.668	0.517	0.657

Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack

Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack

- MI Attacks, Why Do They Work?
 - Dataset: Purchase
 - Modification:
 - # Classes: 10 100 classes (keep N(D_{tr}) the same)
 - Google Prediction API

- In-short: It may depend on a model's ability to distinguish members and non-members

• MI Attacks, Why Do They Work?

Purchase Dataset, 20 Classes, Google, Membership Inference Attack

Purchase Dataset, 100 Classes, Google, Membership Inference Attack

Purchase Dataset, 10 Classes, Google, Membership Inference Attack

Purchase Dataset, 20 Classes, Google, Membership Inference Attack

Purchase Dataset, 100 Classes, Google, Membership Inference Attack

Oregon State University Secur

Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

- Defenses
 - Top-k
 - Precision (round-ups)
 - Regularization (L_2)
- Results (on NNs)
 - Still MI attack works
 - in k = 1 (label)
 - with less precision (d = 1)
 - Regularization somewhat effective but care must be taken for a model's acc.

Purchase dataset	Testing Accuracy	Attack Total Accuracy	Attack Precision	Attack Recall
No Mitigation	0.66	0.92	0.87	1.00
Top $k = 3$	0.66	0.92	0.87	0.99
Top $k = 1$	0.66	0.89	0.83	1.00
Top $k = 1$ label	0.66	0.66	0.60	0.99
Rounding $d = 3$	0.66	0.92	0.87	0.99
Rounding $d = 1$	0.66	0.89	0.83	1.00
Temperature $t = 5$	0.66	0.88	0.86	0.93
Temperature $t = 20$	0.66	0.84	0.83	0.86
L2 $\lambda = 1e - 4$	0.68	0.87	0.81	0.96
L2 $\lambda = 1e - 3$	0.72	0.77	0.73	0.86
L2 $\lambda = 1e - 2$	0.63	0.53	0.54	0.52

Hospital dataset	Testing	Attack	Attack	Attack
	Accuracy	Total Accuracy	Precision	Recall
No Mitigation	0.55	0.83	0.77	0.95
Top $k = 3$	0.55	0.83	0.77	0.95
Top $k = 1$	0.55	0.82	0.76	0.95
Top $k = 1$ label	0.55	0.73	0.67	0.93
Rounding $d = 3$	0.55	0.83	0.77	0.95
Rounding $d = 1$	0.55	0.81	0.75	0.96
Temperature $t = 5$	0.55	0.79	0.77	0.83
Temperature $t = 20$	0.55	0.76	0.76	0.76
L2 $\lambda = 1e - 4$	0.56	0.80	0.74	0.92
L2 $\lambda = 5e - 4$	0.57	0.73	0.69	0.86
L2 $\lambda = 1e - 3$	0.56	0.66	0.64	0.73
L2 $\lambda = 5e - 3$	0.35	0.52	0.52	0.53

Topics for Today

- Privacy
 - Warm-boot
 - Threat Models
 - Differential privacy (DP)
- Privacy Attacks and Defenses
 - Non-ML: Data anonymization
 - Membership inference (Tracing attack)
 - Threat Model
 - Attacks
 - Shokri et al.
 - Yeom et al.
 - Defensive techniques

Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting

Motivation

• Prior work

- Shows the overfitting is one factor that contributes MI attacks

Let's Use the Paper

What We'll See

- Takeaways
 - Propose a metric that measures membership adv.
 - Make a connection between MI Attack's and overfitting formally
 - Propose a simple MI Attack (Yeom et al.)
 - It achieve am accuracy comparable with Shokri et al.
 - It requires less computational costs
 - Empirical evaluation of their theoretical connections and attacks

Recap

- Privacy
 - Warm-boot
 - Threat Models
 - Differential privacy (DP)
- Privacy Attacks and Defenses
 - Non-ML: Data anonymization
 - Membership inference (Tracing attack)
 - Threat Model
 - Attacks
 - Shokri et al.
 - Yeom et al.
 - Defensive techniques

Thank You!

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22

