#### CS 499/599: Machine Learning Security 03.07: (Differential) Privacy

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

sanghyun.hong@oregonstate.edu





#### Notice

- Due dates (in Mar.)
  - 9<sup>th</sup>: Final project presentation
    - 11 min presentation + 3-5 min Q&A (strict)
    - Presentation *MUST* cover:
      - 1-2 slides on your research *motivation* and *goals*
      - 1-2 slides on your *ideas* (how do you plan to achieve your goals)
      - 1 slides on your *experimental design*
      - 2-3 slides on your *most interesting results*
      - 1 slides on your *conclusions* and *next steps*
  - 14<sup>th</sup>: Final exam (online, 24 hrs., unlimited trials)
  - 14<sup>th</sup>: Final project report (Template is on the website)
  - 16<sup>th</sup>: HW4 deadline (HW 1-3 late submissions are available; HW4 won't have late submissions)
- Sign-up (on Canvas)
  - Scribe lecture note [only 1 slots remain; today!]



In-class Presentation (Akshith Gunasekaran) – Red Teaming Language Models (LMs) with LMs

# **Topics for Today**

- Privacy Attacks and Defenses
  - Non-ML: Data anonymization
  - Membership inference
    - Attacks: Yeom et al. and Shokri et al.
    - Defensive techniques
  - Model inversion
    - Attacks: Fredrikson et al. and Carlini et al.
    - Defensive techniques
  - Model extraction
    - Attacks: Tramer et al. and Jagielski et al.
    - Defensive techniques
  - Differential Privacy
    - DP-SGD
    - DP-SGD in Practice



#### What Can We Do To Reduce Privacy Risks of ML?

#### Abadi et al., Deep Learning with Differential Privacy

- $\epsilon$ -Differential Privacy
  - A randomized algorithm  $M: D \to R$  with domain D and a range R satisfies  $\epsilon$ -differential privacy if for any two adjacent inputs  $d, d' \in D$  and any subset of outputs  $S \subset R$  it holds

$$\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S]$$

•  $(\epsilon, \delta)$ -Differential Privacy

 $\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta$ 

- $\delta$ : Represent some catastrophic failure cases [Link, Link]
- $\delta < 1/|d|$ , where |d| is the number of samples in a database



### **Revisit'ed – Differential Privacy**

•  $(\epsilon, \delta)$ -Differential Privacy [Conceptually]

 $\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta$ 

- You have two databases d, d' differ by one item
- You make the same query M to each and have results M(d) and M(d')
- You ensure the distinguishability between the two under a measure  $\epsilon$ 
  - $\epsilon$  is large: those two are distinguishable, less private
  - $\epsilon$  is small: the two outputs are similar, more private
- You also ensure the catastrophic failure probability  $\delta$



#### **Revisit'ed - Differential Privacy**

•  $(\epsilon, \delta)$ -Differential Privacy

 $\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta$ 

• Mechanism for  $(\epsilon, \delta)$ -DP: Gaussian noise

 $\mathcal{M}(d) \stackrel{\Delta}{=} f(d) + \mathcal{N}(0, S_f^2 \cdot \sigma^2)$ 

- M(d):  $(\epsilon, \delta)$ -DP query output on d
- f(d): non  $(\epsilon, \delta)$ -DP (original) query output on d
- $N(0, S_f^2 \cdot \sigma^2)$ : Gaussian normal distribution with mean 0 and the std. of  $S_f^2 \cdot \sigma^2$

#### **Post-hoc:** Set the Goal $\epsilon$ and Calibrate the noise $S_f^2 \cdot \sigma^2$ !



#### How Do We Use DP for ML?

- Revisit'ed Stochastic Gradient Descent (SGD)
  - 1. At each step t, it takes a mini-batch  $L_t$
  - 2. Computes the loss  $\mathcal{L}(\theta)$  over the samples in  $L_t$ , w.r.t. the label y
  - 3. Computes the gradients  $g_t$  of  $\mathcal{L}(\theta)$
  - 4. Update the model parameters  $\theta$  towards the direction of reducing the loss



# Make an SGD Step ( $\epsilon, \delta$ )-DP

- Stochastic Gradient Descent (SGD)
  - 1. At each step t, it takes a mini-batch  $L_t$
  - 2. Computes the loss  $\mathcal{L}(\theta)$  over the samples in  $L_t$ , w.r.t. the label y
  - 3. Computes the gradients  $g_t$  of  $\mathcal{L}(\theta)$
  - 4. Clip (scale) the gradients to 1/C, where C > 1
  - 5. Add Gaussian random noise  $N(0, \sigma^2 C^2 \mathbf{I})$  to  $g_t$
  - 6. Update the model parameters  $\theta$  towards the direction of reducing the loss



#### Make the Whole SGD Process ( $\epsilon, \delta$ )-DP

- Stochastic Gradient Descent (SGD)
  - SGD iteratively computes the ( $\epsilon$ ,  $\delta$ )-DP step T times
  - Problem: how do we compute the total privacy leakage  $\epsilon_{tot}$  over T iterations?
- Privacy accounting with moment accountant
  - Key intuition: DP has the composition property
    - Suppose the two mechanism  $M_1$  and  $M_2$  satisfies  $(\varepsilon_1, \delta_1)$  and  $(\varepsilon_2, \delta_2)$ -DP the composition of those mechanisms  $M_3 = M_2(M_1)$  satisfies  $(\varepsilon_1 + \varepsilon_2, \delta_1 + \delta_2)$ -DP
    - If each step t satisfies ( $\varepsilon$ ,  $\delta$ )-DP, the total SGD process satisfies ( $\varepsilon$ T,  $\delta$ T)-DP
  - Moment accountant: tracking the total privacy leakage  $\varepsilon T$  over T iterations



# **Putting All Together**

#### DP-Stochastic Gradient Descent (DP-SGD)

Algorithm 1 Differentially private SGD (Outline) // we train a model  $\theta$  with the privacy budget  $\varepsilon_{budget}$ **Input:** Examples  $\{x_1, \ldots, x_N\}$ , loss function  $\mathcal{L}(\theta)$ = $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$ . Parameters: learning rate  $\eta_{t}$ , noise scale  $\sigma$ , group size L, gradient norm bound C. **Initialize**  $\theta_0$  randomly // iterate over T mini-batches for  $t \in [T]$  do Take a random sample  $L_t$  with sampling probability L/N// compute the gradient Compute gradient For each  $i \in L_t$ , compute  $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ **Clip** gradient // clip the magnitude of the gradients  $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise // add Gaussian random noise to the gradients  $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left( \sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent  $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ // compute the privacy cost (leakage) up to t iterations  $\varepsilon, \delta \leftarrow$  compute the privacy cost (leakage) so far If  $\varepsilon > \varepsilon_{buget}$ : then break; // if the cost is over the budget, then stop training **Output**  $\theta_T$  and compute the overall privacy cost  $(\varepsilon, \delta)$ using a privacy accounting method.



- Setup
  - Datasets: MNIST | CIFAR-10/100
  - Models:
    - MNIST: 2-layer feedforward NN on 60-dim. PCA projected inputs
    - CIFAR-10/100: A CNN with 2 conv. layers and 2 fully-connected layers
  - Metrics:
    - Classification accuracy
    - Privacy cost ( $\varepsilon_{budget}$ )



- Impact of Noise
  - Dataset, Models: MNIST, 2-layer feedforward NN
  - Setup: 60-dim PCA projected inputs | Clipping threshold (C): 4 | Noise ( $\sigma$ ): 8, 4, 2 (from the left)
  - Summary:
    - On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)
    - The accuracy of private models decreases as we decrease the privacy cost



- Impact of Noise
  - Dataset, Models: MNIST, 2-layer feedforward NN
  - Setup: 60-dim PCA projected inputs | Clipping threshold (C): 4 | Noise ( $\sigma$ ): 8, 4, 2 (from the left)
  - ummary:
    - On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)
    - The accuracy of private models decreases as we decrease the privacy cost



University

- Impact of Hyper-parameter Choices
  - Dataset, Models: MNIST, 2-layer feedforward NN
  - Setup: 60-dim PCA projected inputs



- Impact of Noise
  - Dataset, Models: CIFAR-10, CNN
  - Setup: Clipping threshold (C): 3 | Noise ( $\sigma$ ): 6
  - Summary:

**Oregon State** 

- On CIFAR-10, DP-SGD offers reasonable acc. under various privacy costs (clean: 80%)
- The accuracy of private models decreases as we decrease the privacy cost



# **Topics for Today**

#### • Privacy Attacks and Defenses

- Non-ML: Data anonymization
- Membership inference
  - Attacks: Yeom *et al.* and Shokri *et al.*
  - Defensive techniques
- Model inversion
  - Attacks: Fredrikson et al. and Carlini et al.
  - Defensive techniques
- Model extraction
  - Attacks: Tramer *et al*. and Jagielski *et al*.
  - Defensive techniques
- Differential Privacy
  - DP-SGD
  - DP-SGD in Practice



#### What Does It Mean by Epsilon = 2/4/6 in CIFAR-10?

Jayaraman et al., Evaluating Differentially Private Machine Learning in Practice

# **Empirical Evaluations of Privacy Risks in DP-Models**

- Setup
  - Datasets: Purchase-100 | CIFAR-100 (on 50-dim PCA projected inputs)
  - Models: Logistic regressions | 2-layer feedforward NNs
  - Privacy Attacks:
    - Membership inference: Yeom *et al*. and Shokri *et al*.
  - DP-SGD:
    - Set the clipping norm (C) to 1
    - Set the prob. of catastrophic failures ( $\delta$ ) to  $10^{-5} < 1/|N|$  (N~60k in MNIST and 50k in CIFAR)
    - Set the batch size to 200
    - Set the learning rate to 0.01 for Adam optimizer
    - Vary  $\varepsilon$  from 0.01 to 1000
    - Compare  $(\epsilon, \delta)$ -DP with other DP-mechanisms: AC, CDP, zCDP, and RDP
    - Run 5-times and measure the (TPR FPR) and accuracy loss on average



# Evaluation on CIFAR-100, LRs

- Summary
  - Yeom et al. and Shokri et al. are weak privacy attacks
  - In other words,  $(\epsilon, \delta)$ -DP theoretically offers very strong privacy bounds
  - If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly



# **Evaluation on CIFAR-100, NNs**

- Summary
  - Yeom et al. and Shokri et al. are weak privacy attacks
  - In other words,  $(\epsilon, \delta)$ -DP theoretically offers very strong privacy bounds
  - If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly
  - Compared to LRs, NNs leak more in higher privacy budgets



### **Evaluation on MI Predictions: LRs vs. NNs**

- Summary
  - Yeom et al. and Shokri et al. are weak privacy attacks
  - In other words,  $(\epsilon, \delta)$ -DP theoretically offers very strong privacy bounds
  - If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly
  - Compared to LRs, NNs leak more in higher privacy budgets
  - Predictions (TPRs and FPRs) are more consistent in LRs than NNs in CIFAR-100



# **Recap: Privacy!**

- Privacy Attacks and Defenses
  - Non-ML: Data anonymization
  - Membership inference
    - Attacks: Yeom et al. and Shokri et al.
    - Defensive techniques
  - Model inversion
    - Attacks: Fredrikson et al. and Carlini et al.
    - Defensive techniques
  - Model extraction
    - Attacks: Tramer et al. and Jagielski et al.
    - Defensive techniques
  - Differential Privacy
    - DP-SGD
    - DP-SGD in Practice



# **Thank You!**

Mon/Wed 12:00 – 1:50 pm

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/W22



