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NOTES

e Call for actions
- In-class presentation sign-ups
- Term project team-up
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ADVERSARIAL EXAMPLES

* A test-time input to a neural network
- Crafted with the objective of fooling the network’s decision(s)
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NOT EVERY ADVERSARIAL EXAMPLES ARE INTERESTING

* A test-time input to a neural network

- Crafted with the objective of fooling the network’s decision(s)
- That looks like a natural test-time input
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NOT EVERY ADVERSARIAL EXAMPLES ARE INTERESTING

* A test-time input to a neural network

- Crafted with the objective of fooling the network’s decision(s)
- That looks like a natural test-time mput
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Goodfellow et al., Explaining and Harnessing Adversarial Examples, International Conference on Learning Representations (ICLR), 2015.
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WHY DO THEY MATTER?

* from the security perspective: it makes ML-enabled systems unavailable
S | Realword [T
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WHY DO THEY MATTER?

* from the ML perspective: it is counter-intuitive
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TOPICS FOR PART | — ADVERSARIAL EXAMPLES

* Research questions
- What are the adversarial examples?
- How can we find adversarial examples?
- How can we exploit them in practice?
- How can we defeat adversarial examples?

AR
Oregon State
University

Secure-Al Systems Lab (SAIL) - C5499/579: Trustworthy ML



WHAT ARE THE ADVERSARIAL EXAMPLES?

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, GOODFELLOW ET AL., ICLR 2015
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WHAT DID WE BELIEVE AT THAT TIME?

* Two common beliefs about neural networks

- Neurons represent certain features
* People use this intuition to find semantically-similar inputs
* Neural networks may have the ability to disentangle features at neuron-level

— Neural Networks are stable when there is small perturbations to their inputs
* Random perturbations to inputs are difficult to change networks’ predictions
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WHAT DID WE BELIEVE AT THAT TIME?

* Neurons represent certain features

* Re-visit this hypothesis?:
- Find a set of inputs that maximally increases
* The activation of i-th hidden neuron
* The activation of random vector
- Compare those two sets of inputs
- More formally:

x’ = arg max{¢(z), e;) ' = arg max(¢(x), v)
<A xel

1Szegedy et al., Intriguing Properties of Neural Networks, ICLR
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WHAT DID WE BELIEVE AT THAT TIME?

» e gq :

(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.
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WHAT DID WE BELIEVE AT THAT TIME?

* Neural networks are resilient to small input perturbations

* Re-visit this hypothesis?:
- Let’s find a small perturbation that changes a model’s classification result
— Initial work formulates this problem like:

* Minimize ||7||2 subject to:

1. flz+7r)=1
2. z+rel0,1™

- Formally:

 Minimize c|r| + loss¢(z + r,[) subjectto z + r € [0, 1]™
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1Szegedy et al., Intriguing Properties of Neural Networks, ICLR

13



HOW TO SOLVE THIS CONSTRAINED OPTIMIZATION?

* |Intuitions

- Non-linearity, from activation functions like RelLU, is the root-cause
- Downside:

* Computationally demanding, if we find adversarial examples in non-linear models
* It’s also not theoretically proven that non-linearity is the primary issue

- This work:

* let’s only consider in non-linear models!
* | will show the existence of adversarial examples exploiting the linearity

Oregon State
University
Secure-Al Systems Lab (SAIL) - C5499/599: Machine Learning Security

14



HOW TO SOLVE THIS CONSTRAINED OPTIMIZATION?

* Fast gradient sign method (FGSM)
- A test-time input x and its true label y
— A NN model f and its parameters 6
— Aloss (or a cost) function J (6, x, y)
— Find an adversarial perturbation  such that f(x + 1) # y and ||n]]e < €

n = esign (V. J(0,2,y)) .

* Results on the test-sets
— On MNIST: 99.9% error rate with an avg. confidence of 79.3% (eps = 0.25)
— On CIFAR10: 87.2% error rate with an avg. confidence of 96.6% (eps = 0.1)
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RESULTS

 Attacking AlexNet models trained on ImageNet

(a) Incorrect (b) Incorrect
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RESULTS

* Empirical findings:

FC10(10 74) FC10(10— 2) FC10(1) FC100-100-10 FC200-200-10 AE400-10 Av. distortion
FC10(1074) 100% 11.7% 22.7% 2% 3.9% 2.7% 0.062
FC10(1072) 87.1% 100% 35.2% 35.9% 27.3% 9.8% 0.1
FC10(1) 71.9% 76.2% 100% 48.1% 47% 34.4% 0.14
FC100-100-10 28.9% 13.7% 21.1% 100% 6.6% 2% 0.058
FC200-200-10 38.2% 14% 23.8% 20.3% 100% 2.7% 0.065
AEA400-10 23.4% 16% 24.8% 9.4% 6.6% 100% 0.086
Gaussian noise, stddev=0.1 5.0% 10.1% 18.3% 0% 0% 0.8% 0.1
Gaussian noise, stddev=0.3 15.6% 11.3% 22.7% 5% 4.3% 3.1% 0.3

- Random perturbations are NOT the right way to measure the stability of neural networks
- Adversarial examples transfer

* Adversarial examples crafted on a model often work against others

* AEs crafted on a model (trained with a disjoint training set) also works against the others
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HOW CAN WE FIND ADVERSARIAL EXAMPLES?

» Sub research questions
- How can we define the adversarial examples?
- What are the methods we can develop for finding adversarial examples?
- What are the computational properties adversarial examples exploit?
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WHAT ARE THE ADVERSARIAL EXAMPLES (PRECISELY)?

* A test-time input x* to a neural network
- Crafted with the objective of fooling the network’s decision(s)
- That looks like a natural test-time input

X" = arg max g(x,y)

s.t. d(x,x°) < dpax.

— Formulation

e x:an adversarial example

+ x%: aclean test-time input

* x™*:an optimal adversarial examples
g(x,y): error (loss) computed on a test-time sample with respect to the true label y
d(x, x°): pixel-wise distance between x and x°
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WHAT ARE THE ADVERSARIAL EXAMPLES (PRECISELY)?

* A test-time input x* to a neural network

X" = arg max g(x,y)

s.t. d(x,xo) < dmax-

- Formulation

e Xx:an adversarial example

« x%: aclean test-time input

* x*:an optimal adversarial examples
g(x,y): error (loss) computed on a test-time sample with respect to the true label y
d (x, x°): pixel-wise distance between x and x°

- (In the context of supervised learning) Goals:
* Untargeted misclassification: x to any class label other than y
* Targeted misclassification: x to a specific class label y,
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WHAT ARE THE METHODS FOR FINDING ADVERSARIAL EXAMPLES?

* A test-time input x* to a neural network

X" = arg max g(x,y)

s.t. d(x,xo) < dmax-

* Potential approaches

- Man-ual:

* Add Gaussian noise (or any type of noise) to the input x

e Manipulate pixels of x that are likely to lead to fool the neural network
— (or easily) approach:

e Compute gradients to the input

* In a way that the gradients increase the loss g with respectto y

* You can do this easily with PyTorch, Tensorflow, Objax...
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GRADIENT-BASED METHOD

* Method formulated by Biggio et al.t

Algorithm 1 Gradient-descent evasion attack

Input: x°, the initial attack point; ¢, the step size; A, the trade-off parameter; € > 0 a
small constant.
Output: x*, the final attack point.

1: m « 0.

2: repeat

3 m<+m+1

4:  Set VF(x™ ') to a unit vector aligned with Vg(x™ ") — AVp(x™ '|y° = —1).
5: X"+ x" —tVF(x™ )

6: if d(x™,x°) > dmax then

7 Project x™ onto the boundary of the feasible region.

8: end if
9: until F (x™) — F (x™7') <e
10: return: x* = x™

A2 1 Biggio et al., Evasion Attacks against Machine Learning Models at Test Time
Oregon State
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GRADIENT-BASED METHOD

* Method formulated by Biggio et al.t

Algorithm 1 Gradient-descent evasion attack

Input: x°, the initial attack point; ¢, the step size;
small constant.
Output: x*, the final attack point.

1: m + 0.

2: repeat

3 m<+m+1

4:  Set VF(x™ ') to a unit vector aligned with Vg(x™ ') — AVp(x" '|y¢ = —1).
5: X"+ x" —tVF(x™ )

6: if d(x™,x°) > dmax then

7 Project x™ onto the boundary of the feasible region.

8: end if

9: until F (x™) — F (x™7') <e
10: return: x* = x™

1 Biggio et al., Evasion Attacks against Machine Learning Models at Test Time
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GRADIENT-BASED METHOD

* Method formulated by Bigg

io et al.

— Start from a clean test-time sample x

- Iteratively do the followings:

* Compute the loss with respe
* Compute the gradients to th
* Perturb the test-time input (
* Bound the perturbation with

- Return the adv. example of

Before attack (3 vs 7)
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DOES IT LEAD TO FINDING THE STRONGEST ADV. EXAMPELS?

TOWARDS EVALUATING THE ROBUSTNESS OF NEURAL NETWORKS, CARLINI AND WAGNER, |IEEE S&P 2017
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REVISITING THE FORMULATION

» Test-time (evasion) attack
- Suppose
* Atest-time input (x, y); each element in x ~ [0, 1]
* ANN model f and its parameters
- Objective
* Find an x%%¥ such that f(x®7) # y while ||x — x||, < &
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REVISITING THE FORMULATION: WHAT ARE THE POSSIBILITIES?

» Test-time (evasion) attack
- Suppose

%‘9

-0

— Possible misclassification (')

Oregon State
University

* Atest-time input (x, y); each elemen
* ANN model f and its parameters
bjective

* Find an x%7 such that f(x%") =y’

Adversarial image
From "airplane" to “cat"

%

1

Original dataset labels

truck

ship {m B Adversarial img

horse 1

frog s

dog i

deer i
R
bird | —

automobile 1
airplane | m———————

CIFAR-10 labels
Used to get adversary

EEm Original img

0.00 0.25 0.50 0.75
Probability

1.00

* Best-case: to the class the least difficult to attack

e Average-case: to the class chosen uniformly at random

* Worst-case: to the class that was most difficult to attack
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REVISITING THE FORMULATION: WHAT ARE WE MISSING?

%‘9

Test-time (evasion) attack
- Suppose
* Atest-time input (x, y); each elemen
* ANN model f and its parameters
- Objective
* Find an x%7 such that f(x%") =y’

Adversarial image
From "airplane" to “cat"

“

’

Original dataset labels

automobile 1

CIFAR-10 labels
Used to get adversary

truck
ship
horse
frog
dog 1
deer
cat
bird 1

airplane -

EEm Original img
EEm Adversarial img

0.50

— Possible misclassification (')

* Best-case: to the class the least difficult to attack

* Average-case: to the class chosen uni
* Worst-case: to the class that was mos

- Ways to quantify the “human-impercepti
e« p=0,1,2,..0 (Ly, Ly, Ly, Loy)

0.00 0.25 0.75  1.00
Probability
. _ l[o-norm=5000
Original l,-norm=10 l.-norm=0,05 (sparse)

traffic light
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(28%)

traffic light
(96%)

traffic light
(80%)
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FINDING ADVERSARIAL EXAMPLES: RE-WRITE THE PROBLEM!

* Problem: | minimize D(z,z + 6)
such that C(z +9§) =t
x + 5 € [05 1]7@

- x, 0 are a test-time sample and perturbations
- D is the distance between the original and adv. examples
- C and t are the target classifier and class

* Solution approach:
- Formulate it as an optimization problem
- Find a set of fs (algorithms) that can solve the optimization
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FINDING ADVERSARIAL EXAMPLES: RE-WRITE THE PROBLEM!

* Problem: | minimize D(z,z + 6)
such that C(z +9§) =t
x + 5 S [07 1]7@

- x, 0 are a test-time sample and perturbations
- D is the distance between the original and adv. examples

- C and t are the target classifier and class

* Solution approach:
- Formulate it as an optimization problem
- Find a set of fs (algorithms) that can solv
— Possible choices of f

fi(z") = —losspt(z') + 1

fala') = (max(F(z)) ~ F(a))*

fa(z') = softplus(rglggc(F(a:’)i) — F(z')s) —log(2)
fa(z") = (0.5 — F(z")e)*

fs(z') = —log(2F (z'); — 2)

fole!) = (max(2(2")) ~ 2(a"))*

fr(z') = softplus(r?igc(Z(x’)i) — Z(z)¢) —log(2)

Oregon State
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FINDING ADVERSARIAL EXAMPLES: RE-WRITE THE PROBLEM!

* Problem: | minimize D(z,z + 6)
such that C(z +9§) =t
x + 5 S [07 1]n

- x, 0 are a test-time sample and perturbations
- D is the distance between the original and adv. examples
- C and t are the target classifier and class

* Solution approach:
- Formulate it as an optimization problem
- Find a set of fs (algorithms) that can solve the optimization
— Possible choices of f
— Possible choices of solvers: PGD, Clipped GD, Change of variables

Oregon State
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FINDING ADVERSARIAL EXAMPLES: INITIAL FINDINGS

* Choose the objective:

Best Case Average Case Worst Case
Change of Clipped Projected Change of Clipped Projected Change of Clipped Projected
Variable Descent Descent Variable Descent Descent Variable Descent Descent
mean prob mean prob mean prob || mean prob mean prob mean prob || mean prob mean prob mean prob

f1 246 100% 293 100% 231 100% 435 100% 521 100% 4.11 100% 776 100% 9.48 100% 7.37 100%
f2 455 80% 397 83% 349 83% 322 4% 899 63% 15060 74% 293 18% 1022 40% 1890 353%
fa 454 7% 407 B81% 376 82% 347 4% 955 63% 1584 74% 309 17% 1191 41% 24.01 59%
fa 501 86% 652 100% 7.53 100% 403 55% 749 71% 760 71% 355 24% 425 35% 410 35%
fs 1.97 100% 220 100% 1.94 100% 3.58 100% 420 100% 3.47 100% 642 100% 7.86 100% 6.12 100%
fe 1.94 100% 2.18 100% 1.95 100% 347 100% 411 100% 3.41 100% 6.03 100% 7.50 100% 5.89 100%
f7 1.96 100% 221 100% 1.94 100% 3.53 100% 4.14 100% 3.43 100% 620 100% 7.57 100% 594 100%

- MNIST; Test all f;- f; the objectives; Measure L, distances
- f>- f, do not lead to the successful adversarial attacks

- f1 requires large c value

— Choose one over fs- f

iR
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FINDING ADVERSARIAL EXAMPLES: PUTTING ALL TOGETHER

* Problem: | minimize D(z,z + 6)
such that C(z +9§) =t
x + 5 S [07 1]n

 Solution approach:
— Solver: Change of variables
— Objective function: f;

 Carlini and Wagner (C&W) Attack:

Change of variables introduces a new variable w and
instead of optimizing over the variable J defined above,
we apply a change-of-variables and optimize over w,
setting

1
§; = g(tanh(wz—) +1) — ;.

Since —1 < tanh(w;) < 1, it follows that 0 < x; +6; <
1, so the solution will automatically be valid. 8

with f defined as

minimize ||%(tanh(w) +1) —z|z+c- f(%(tanh('w) +1)

f(z") = max(max{Z(z'); : i # t} — Z(z')s, — k).

Oregon State
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FINDING STRONG ADVERSARIAL EXAMPLES: EMPIRICAL EVAL.

* Empirical evaluation
— D: MNIST, CIFAR-10, and ImageNet
- x: randomly chosen 1000 test-time images

* Baselines
- FGSM, BIM, JSMA, and DeepFool

e Results:

- C&W finds stronger adversarial examples
* It achieves 100% misclassification rate
* It uses 2x — 10x less perturbations than the baselines
* The weaker attacks (such as FGSM) shows only 0 —42% success

Oregon State
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FINDING STRONG ADVERSARIAL EXAMPLES: EMPIRICAL EVAL.

* Defensive distillation?
— SoTA defense at that time

- Increase the distillation temperature T
so that the student’s classification becomes more confident

* Results from the original paper

- Defeat the adversarial attacks (near completely)
* from 96% to 0% (MNIST)
* from 88% to 5% (CIFAR-10)

Oregon State Papemot et al., Distillation as a defense to adversarial perturbations against deep neural networks |EEE S&P 2016
University
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FINDING STRONG ADVERSARIAL EXAMPLES: EMPIRICAL EVAL.

* Re-examine their security promises
- Defensive distillation cannot defeat adversarial examples
e C&W achieves 100% misclassification rate against defensive distillation
* C&W’s misclassification rate does not depend on the distillation temperature
— If carefully crafted,
e C&W attack transfers to the defended models
* It transfer with 0 — 100% success depending on the choice of kin [0, 40]

Oregon State
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TAKE AWAYS

* Re-examine their security promises

- Defensive distillation cannot defeat adversarial examples

e C&W achieves 100% misclassification rate against defensive distillation

* C&W’s misclassification rate does not depend on the distillation temperature
— If carefully crafted,

e C&W attack transfers to the defended models

* It transfer with 0 — 100% success depending on the choice of kin [0, 40]

* Bottom-line
- Important to find strong attacks for future work
- Defenses should be evaluated with possible strongest attacks

Oregon State
University
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Thank You!

Instructor: Sanghyun Hong

https://secure-ai.systems/courses/MLSec/current
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