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NOTES

• Call for actions
− In-class presentation sign-ups

− Term project team-up
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ADVERSARIAL EXAMPLES
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• A test-time input to a neural network
− Crafted with the objective of fooling the network’s decision(s)



NOT EVERY ADVERSARIAL EXAMPLES ARE INTERESTING
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• A test-time input to a neural network
− Crafted with the objective of fooling the network’s decision(s)

− That looks like a natural test-time input

Noisy test-time input



NOT EVERY ADVERSARIAL EXAMPLES ARE INTERESTING
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Prediction: Panda

+ 0.007 × =

Human-imperceptible Noise Prediction: Gibbon

Goodfellow et al., Explaining and Harnessing Adversarial Examples, International Conference on Learning Representations (ICLR) , 2015.

• A test-time input to a neural network
− Crafted with the objective of fooling the network’s decision(s)

− That looks like a natural test-time input



WHY DO THEY MATTER?

• from the security perspective: it makes ML-enabled systems unavailable
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WHY DO THEY MATTER?

• from the ML perspective: it is counter-intuitive
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ImageNet Classification Top-5 Error Rate (%)



TOPICS FOR PART I – ADVERSARIAL EXAMPLES

• Research questions
− What are the adversarial examples?

− How can we find adversarial examples?

− How can we exploit them in practice?

− How can we defeat adversarial examples?
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WHAT ARE THE ADVERSARIAL EXAMPLES?
EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, GOODFELLOW ET AL., ICLR 2015
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WHAT DID WE BELIEVE AT THAT TIME?

• Two common beliefs about neural networks
− Neurons represent certain features

• People use this intuition to find semantically-similar inputs

• Neural networks may have the ability to disentangle features at neuron-level

− Neural Networks are stable when there is small perturbations to their inputs

• Random perturbations to inputs are difficult to change networks’ predictions
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WHAT DID WE BELIEVE AT THAT TIME?

• Neurons represent certain features

• Re-visit this hypothesis1: 
− Find a set of inputs that maximally increases 

• The activation of i-th hidden neuron

• The activation of random vector

− Compare those two sets of inputs

− More formally:
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1 Szegedy et al., Intriguing Properties of Neural Networks, ICLR



WHAT DID WE BELIEVE AT THAT TIME?
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Images that activates a ce-
rtain neuron the most

Images that activates a 
random dir. the most



WHAT DID WE BELIEVE AT THAT TIME?

• Neural networks are resilient to small input perturbations

• Re-visit this hypothesis1: 
− Let’s find a small perturbation that changes a model’s classification result

− Initial work formulates this problem like:

− Formally:

Secure-AI Systems Lab (SAIL) - CS499/579: Trustworthy ML 13

1 Szegedy et al., Intriguing Properties of Neural Networks, ICLR



HOW TO SOLVE THIS CONSTRAINED OPTIMIZATION?
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• Intuitions
− Non-linearity, from activation functions like ReLU, is the root-cause 

− Downside:
• Computationally demanding, if we find adversarial examples in non-linear models

• It’s also not theoretically proven that non-linearity is the primary issue

− This work: 
• let’s only consider linearity in non-linear models!

• I will show the existence of adversarial examples exploiting the linearity



HOW TO SOLVE THIS CONSTRAINED OPTIMIZATION?
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• Fast gradient sign method (FGSM)
− A test-time input 𝑥 and its true label 𝑦

− A NN model 𝑓 and its parameters 𝜃

− A loss (or a cost) function 𝐽(𝜃, 𝑥, 𝑦)

− Find an adversarial perturbation 𝜂 such that 𝑓 𝑥 + 𝜂 ≠ 𝑦 and ||𝜂||∞ < 𝜀

• Results on the test-sets
− On MNIST: 99.9% error rate with an avg. confidence of 79.3% (eps = 0.25)

− On CIFAR10: 87.2% error rate with an avg. confidence of 96.6% (eps = 0.1)



RESULTS
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• Attacking AlexNet models trained on ImageNet

Incorrect Incorrect



RESULTS

• Empirical findings:

− Random perturbations are NOT the right way to measure the stability of neural networks

− Adversarial examples transfer

• Adversarial examples crafted on a model often work against others

• AEs crafted on a model (trained with a disjoint training set) also works against the others
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HOW CAN WE FIND ADVERSARIAL EXAMPLES?

• Sub research questions
− How can we define the adversarial examples?

− What are the methods we can develop for finding adversarial examples?

− What are the computational properties adversarial examples exploit?
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WHAT ARE THE ADVERSARIAL EXAMPLES (PRECISELY)?

• A test-time input 𝑥∗ to a neural network
− Crafted with the objective of fooling the network’s decision(s)

− That looks like a natural test-time input

− Formulation
• 𝑥: an adversarial example

• 𝑥0: a clean test-time input

• 𝑥∗: an optimal adversarial examples

• 𝑔(𝑥, 𝑦): error (loss) computed on a test-time sample with respect to the true label 𝑦

• 𝑑(𝑥, 𝑥0): pixel-wise distance between 𝑥 and 𝑥0
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WHAT ARE THE ADVERSARIAL EXAMPLES (PRECISELY)?

• A test-time input 𝑥∗ to a neural network

− Formulation
• 𝑥: an adversarial example

• 𝑥0: a clean test-time input

• 𝑥∗: an optimal adversarial examples

• 𝑔(𝑥, 𝑦): error (loss) computed on a test-time sample with respect to the true label 𝑦

• 𝑑(𝑥, 𝑥0): pixel-wise distance between 𝑥 and 𝑥0

− (In the context of supervised learning) Goals:
• Untargeted misclassification: 𝑥 to any class label other than 𝑦

• Targeted misclassification: 𝑥 to a specific class label 𝑦𝑡
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WHAT ARE THE METHODS FOR FINDING ADVERSARIAL EXAMPLES?

• A test-time input 𝑥∗ to a neural network

• Potential approaches
− Man-ual:

• Add Gaussian noise (or any type of noise) to the input 𝑥 

• Manipulate pixels of 𝑥 that are likely to lead to fool the neural network

− (or easily) Gradient-based approach:
• Compute gradients to the input

• In a way that the gradients increase the loss 𝑔 with respect to 𝑦

• You can do this easily with PyTorch, Tensorflow, Objax…
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GRADIENT-BASED METHOD

• Method formulated by Biggio et al.1
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1 Biggio et al., Evasion Attacks against Machine Learning Models at Test Time



GRADIENT-BASED METHOD

• Method formulated by Biggio et al.1
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1 Biggio et al., Evasion Attacks against Machine Learning Models at Test Time



GRADIENT-BASED METHOD

• Method formulated by Biggio et al.
− Start from a clean test-time sample 𝑥

− Iteratively do the followings:
• Compute the loss with respect to the clean label 𝑦

• Compute the gradients to the input (not to the model parameters!)

• Perturb the test-time input (by adding the gradients to the input)

• Bound the perturbation within a range defined by 𝑑

− Return the adv. example of 𝑥 
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1 Biggio et al., Evasion Attacks against Machine Learning Models at Test Time



DOES IT LEAD TO FINDING THE STRONGEST ADV. EXAMPELS?
TOWARDS EVALUATING THE ROBUSTNESS OF NEURAL NETWORKS, CARLINI AND WAGNER, IEEE S&P 2017
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REVISITING THE FORMULATION

• Test-time (evasion) attack
− Suppose

• A test-time input 𝑥, 𝑦 ; each element in 𝑥 ~ [0, 1]

• A NN model 𝑓 and its parameters 𝜃

− Objective

• Find an 𝑥𝑎𝑑𝑣 such that 𝑓 𝑥𝑎𝑑𝑣 ≠ 𝑦 while ||𝑥𝑎𝑑𝑣 − 𝑥||𝑝 ≤ 𝜀

Secure-AI Systems Lab (SAIL) - CS499/579: Trustworthy ML 43



REVISITING THE FORMULATION: WHAT ARE THE POSSIBILITIES?

• Test-time (evasion) attack
− Suppose

• A test-time input 𝑥, 𝑦 ; each element in 𝑥 ~ [0, 1]

• A NN model 𝑓 and its parameters 𝜃

− Objective

• Find an 𝑥𝑎𝑑𝑣 such that 𝑓 𝑥𝑎𝑑𝑣 = 𝒚′ while ||𝑥𝑎𝑑𝑣 − 𝑥||𝑝 ≤ 𝜀

− Possible misclassification (𝒚′)

• Best-case: to the class the least difficult to attack

• Average-case: to the class chosen uniformly at random

• Worst-case: to the class that was most difficult to attack
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REVISITING THE FORMULATION: WHAT ARE WE MISSING?

• Test-time (evasion) attack
− Suppose

• A test-time input 𝑥, 𝑦 ; each element in 𝑥 ~ [0, 1]

• A NN model 𝑓 and its parameters 𝜃

− Objective

• Find an 𝑥𝑎𝑑𝑣 such that 𝑓 𝑥𝑎𝑑𝑣 = 𝒚′ while ||𝑥𝑎𝑑𝑣 − 𝑥||𝑝 ≤ 𝜀

− Possible misclassification (𝒚′)

• Best-case: to the class the least difficult to attack

• Average-case: to the class chosen uniformly at random

• Worst-case: to the class that was most difficult to attack

− Ways to quantify the “human-imperceptibility”

• 𝑝 = 0, 1, 2, … ∞ (𝐿0, 𝐿1, 𝐿2, 𝐿∞)
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FINDING ADVERSARIAL EXAMPLES: RE-WRITE THE PROBLEM!

• Problem:

− 𝑥, 𝛿 are a test-time sample and perturbations

− 𝐷 is the distance between the original and adv. examples

− 𝐶 and 𝑡 are the target classifier and class

• Solution approach:
− Formulate it as an optimization problem

− Find a set of 𝑓s (algorithms) that can solve the optimization
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FINDING ADVERSARIAL EXAMPLES: RE-WRITE THE PROBLEM!

• Problem:

− 𝑥, 𝛿 are a test-time sample and perturbations

− 𝐷 is the distance between the original and adv. examples

− 𝐶 and 𝑡 are the target classifier and class

• Solution approach:
− Formulate it as an optimization problem

− Find a set of 𝑓s (algorithms) that can solve the optimization

− Possible choices of 𝑓
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FINDING ADVERSARIAL EXAMPLES: RE-WRITE THE PROBLEM!

• Problem:

− 𝑥, 𝛿 are a test-time sample and perturbations

− 𝐷 is the distance between the original and adv. examples

− 𝐶 and 𝑡 are the target classifier and class

• Solution approach:
− Formulate it as an optimization problem

− Find a set of 𝑓s (algorithms) that can solve the optimization

− Possible choices of 𝑓

− Possible choices of solvers: PGD, Clipped GD, Change of variables
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FINDING ADVERSARIAL EXAMPLES: INITIAL FINDINGS

• Choose the objective:

− MNIST; Test all 𝑓1- 𝑓7 the objectives; Measure 𝐿2 distances

− 𝑓2- 𝑓4 do not lead to the successful adversarial attacks

− 𝑓1 requires large 𝑐 value

− Choose one over 𝑓5- 𝑓7
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FINDING ADVERSARIAL EXAMPLES: PUTTING ALL TOGETHER

• Problem:

• Solution approach:
− Solver: Change of variables

− Objective function: 𝑓6

• Carlini and Wagner (C&W) Attack:
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FINDING STRONG ADVERSARIAL EXAMPLES: EMPIRICAL EVAL.

• Empirical evaluation
− 𝐷: MNIST, CIFAR-10, and ImageNet

− 𝑥: randomly chosen 1000 test-time images

• Baselines
− FGSM, BIM, JSMA, and DeepFool

• Results:
− C&W finds stronger adversarial examples

• It achieves 100% misclassification rate

• It uses 2x – 10x less perturbations than the baselines

• The weaker attacks (such as FGSM) shows only 0 – 42% success
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FINDING STRONG ADVERSARIAL EXAMPLES: EMPIRICAL EVAL.

• Defensive distillation1

− SoTA defense at that time

− Increase the distillation temperature 𝑇 
so that the student’s classification becomes more confident

• Results from the original paper
− Defeat the adversarial attacks (near completely)

• from 96% to 0% (MNIST)

• from 88% to 5% (CIFAR-10)

Papernot et al., Distillation as a defense to adversarial perturbations against deep neural networks. IEEE S&P 2016
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FINDING STRONG ADVERSARIAL EXAMPLES: EMPIRICAL EVAL.

• Re-examine their security promises
− Defensive distillation cannot defeat adversarial examples

• C&W achieves 100% misclassification rate against defensive distillation

• C&W’s misclassification rate does not depend on the distillation temperature

− If carefully crafted, 

• C&W attack transfers to the defended models

• It transfer with 0 – 100% success depending on the choice of k in [0, 40]
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TAKE AWAYS

• Re-examine their security promises
− Defensive distillation cannot defeat adversarial examples

• C&W achieves 100% misclassification rate against defensive distillation

• C&W’s misclassification rate does not depend on the distillation temperature

− If carefully crafted, 

• C&W attack transfers to the defended models

• It transfer with 0 – 100% success depending on the choice of k in [0, 40]

• Bottom-line
− Important to find strong attacks for future work

− Defenses should be evaluated with possible strongest attacks
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Thank You!

Secure AI Systems Lab

Instructor: Sanghyun Hong
https://secure-ai.systems/courses/MLSec/current
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