# CS 499/579: TRUSTWORTHY ML ADVERSARIAL EXAMPLES: WHITE-BOX ATTACKS

Instructor: Sanghyun Hong

sanghyun.hong@oregonstate.edu





#### NOTES

- Call for actions
  - Homework 1 due
  - In-class presentation sign-ups
  - Term project team-up (by today)



- Research questions
  - What are the adversarial examples?
  - How can we find adversarial examples?
  - How can we exploit them in practice?
  - How can we defeat adversarial examples?



# How can we train models robust to adversarial inputs?

TOWARDS DEEP LEARNING MODELS RESISTANT TO ADVERSARIAL ATTACKS, MADRY ET AL., ICLR 2018

# HOW DID THE RESEARCH GO?

- Many attack proposals
  - FGSM
  - JSMA
  - DeepFool
  - DeepXplore<sup>1</sup>
  - C&W
  - ...
- Many defense proposals
  - Regularization ... broken
  - Defensive distillation ... broken
  - Adversarial training ... but with which attack?

- ...



Pei et al., DeepXplore: Automated Whitebox Testing of Deep Learning Systems, SOSP 2017

- Main research question
  - How can we train neural networks robust to adversarial examples?



## **R**EVISITING THE FORMULATION

- Test-time (evasion) attack
  - Suppose
    - A test-time input (*x*, *y*)
    - $(x, y) \sim D$ , D: data distribution;  $x \in \mathbb{R}^d$  and  $y \in [k]$ ;  $x \in [0, 1]$
    - A NN model f and its parameters heta
    - $L(\theta, x, y)$ : a loss function
  - Objective
    - Find an  $x^{adv} = x + \delta$  such that  $f(x^{adv}) \neq y$  while  $||\delta||_p \leq \varepsilon$



## **REVISITING THE FORMULATION**

- Test-time (evasion) attack
  - Suppose
    - A test-time input (*x*, *y*)
    - $(x, y) \sim D$ , D: data distribution;  $x \in \mathbb{R}^d$  and  $y \in [k]$ ;  $x \in [0, 1]$
    - A NN model f and its parameters  $\theta$
    - $L(\theta, x, y)$ : a loss function
  - Attacker's objective
    - Find an  $x^{adv} = x + \delta$  such that  $\max_{\delta \in S} L(\theta, x^{adv}, y)$  while  $||\delta||_p \le \varepsilon$



## **R**EVISITING THE FORMULATION

- Test-time (evasion) attack
  - Suppose
    - A test-time input (*x*, *y*)
    - $(x, y) \sim D$ , D: data distribution;  $x \in \mathbb{R}^d$  and  $y \in [k]$ ;  $x \in [0, 1]$
    - A NN model f and its parameters heta
    - $L(\theta, x, y)$ : a loss function
  - Attacker's objective
    - Find an  $x^{adv} = x + \delta$  such that  $\max_{\delta \in S} L(\theta, x^{adv}, y)$  while  $||\delta||_p \le \varepsilon$
  - Defender's objective
    - Train a neural network *f* robust to adversarial attacks
    - Find  $\theta$  such that  $\min_{\theta} \rho(\theta)$  where  $\rho(\theta) = \mathbb{E}_{(x,y)\sim D} [L(\theta, x^{adv}, y)]$



# **PUTTING ALL TOGETHER**

- (Models resilient to) test-time (evasion) attack
  - Suppose
    - A test-time input (*x*, *y*)
    - $(x, y) \sim D$ , D: data distribution;  $x \in \mathbb{R}^d$  and  $y \in [k]$ ;  $x \in [0, 1]$
    - A NN model f and its parameters heta
    - $L(\theta, x, y)$ : a loss function
  - Min-max optimization (between attacker's and defender's objectives)
    - Find  $\min_{\theta} \rho(\theta)$  where  $\rho(\theta) = \mathbb{E}_{(x,y)\sim D} \left[ \max_{\delta \in S} L(\theta, x + \delta, y) \right]$  while  $||\delta||_p \le \varepsilon$
    - s: a set of test-time samples

#### SADDLE POINT PROBLEM: INNER MAXIMIZATION AND OUTER MINIMIZATION



#### **INNER MAXIMIZATION USING THE FIRST-ORDER ADVERSARY**

• Revisit FGSM (Fast Gradient Sign Method)

```
x + \varepsilon \operatorname{sgn}(\nabla_x L(\theta, x, y)).
```

- FGSM can be viewed as a simple one-step toward maximizing the loss (inner part)



#### **INNER MAXIMIZATION**

• Revisit FGSM (Fast Gradient Sign Method)

 $x + \varepsilon \operatorname{sgn}(\nabla_x L(\theta, x, y)).$ 

- FGSM can be viewed as a simple one-step toward maximizing the loss (inner part)
- PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+S} \left( x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$
FGSM

- Multi-step adversary; much stronger than FGSM attack



• PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+\mathcal{S}} \left( x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$

- Multi-step adversary; much stronger than FGSM attack
- Hyper-parameters
  - *t*: number of iterations
  - *α*: step-size
  - $\varepsilon$ : perturbation bound  $|x^* x|_p$
- Notation: PGD-t, bounded by  $\varepsilon$ , used the step-size of  $\alpha$



# **OUTER MINIMIZATION**

PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+\mathcal{S}} \left( x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$

- Multi-step adversary; much stronger than FGSM attack
- Adversarial training
  - Make a model do correct prediction on adversarial examples
  - Training procedure
    - At each iteration of training
    - Craft PGD-t adversarial examples
    - Update the model towards making it correct on those adv examples



- Findings
  - (1, 3) PGD increases the loss values in a fairly consistent way
  - (2, 4) Models trained with PGD attacks are resilient to the same attacks





#### • Findings

University

- PGD increases the loss values in a fairly consistent way
- Models trained with PGD attacks are resilient to the same attacks
- Final loss of PGD attacks are concentrated (both for defended/undefended models)



- Why adversarial training (AT) works?
  - Capacity is crucial for the robustness: robust models need complex decision boundary
  - Capacity alone helps: high-capacity models show more robustness w/o AT





• ... Cont'd

Oregon State University

- Capacity is crucial for the robustness: robust models need complex decision boundary
- Capacity alone helps: high-capacity models show more robustness w/o AT
- AT with weak attacks (like FGSM) can't defeat a strong one like PGD
- (optional) Robustness may be at odds with accuracy



# SUMMARY

- Bottom-line
  - PGD is a strong attack we can use
  - Training a model with PGD can make it resilient to the first-order adversary
  - To achieve such robustness, we need sufficient model complexity



# CS 499/579: TRUSTWORTHY ML ADVERSARIAL ATTACKS: TRANSFERABILITY

Instructor: Sanghyun Hong

sanghyun.hong@oregonstate.edu





#### **ADVERSARIAL EXAMPLES ATTACKS**

- Test-time (evasion) attack
  - Given a test-time sample *x*
  - Craft an adversarial example  $x^*$  that fools the target neural network



#### **A**DVERSARIAL ATTACKS

• Example: An adversary wants to upload NSFW image to the cloud





## WHITE-BOX ADVERSARIAL ATTACKS

• Example: An adversary wants to upload NSFW image to the cloud



- FGSM, C&W, PGD, ...: the attacker has complete access to the target model



#### **BLACK-BOX ADVERSARIAL ATTACKS**

• Example: An adversary wants to upload NSFW image to the cloud





# (TRANSFER-BASED) BLACK-BOX ADVERSARIAL ATTACK

• Example: An adversary wants to upload NSFW image to the cloud



- Transfer-based attacks<sup>12</sup> : craft adv. examples on a transfer prior





# (OPTIMIZATION-BASED) BLACK-BOX ADVERSARIAL ATTACK

• Example: An adversary wants to upload NSFW image to the cloud



- Transfer-based attacks<sup>12</sup> : craft adv. examples on a transfer prior
- Optimization-based attacks<sup>3</sup> : craft them iteratively with query outputs and a transfer prior

Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015
 Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018
 Cheng et al., Improving Black-box Adversarial Attacks with a Transfer-based Prior, NeurIPS 2019



#### **TODAY WE TALK ABOUT TRANSFER-BASED ATTACKS**

DELVING INTO TRANSFERABLE ADVERSARIAL EXAMPLES AND BLACK-BOX ATTACKS, LIU ET AL., ICLR 2017

- Research questions
  - How well do adversarial examples transfer?
  - How practical are the transfer-based attacks?
  - What factors influence the transferability?
  - How can we reduce the transferability?



- Empirical evaluation
  - Train two models on a dataset
  - Craft adversarial examples on a model A (targeted and non-targeted)
  - Measure the success of these examples on the other model B
- Setup
  - Choose 100 images randomly from the ImageNet test-set
  - Use ResNet-50/-101/-152, GoogleNet, and VGG-16 models
  - Matching rate and distortion ( $l_2$ -distance)
- Adversarial attacks
  - Optimization-based approach (similar to C&W)
  - Fast Gradient-based approach (similar to PGD)

| • | Results | from | non-targeted | attacks | (Top-5 acc.) |
|---|---------|------|--------------|---------|--------------|
|---|---------|------|--------------|---------|--------------|

| RMSD  | ResNet-152                    | ResNet-101                                            | ResNet-50                                                                     | VGG-16                                                                                               | GoogLeNet                                                                                                                |
|-------|-------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 22.83 | 0%                            | 13%                                                   | 18%                                                                           | 19%                                                                                                  | 11%                                                                                                                      |
| 23.81 | 19%                           | 0%                                                    | 21%                                                                           | 21%                                                                                                  | 12%                                                                                                                      |
| 22.86 | 23%                           | 20%                                                   | 0%                                                                            | 21%                                                                                                  | 18%                                                                                                                      |
| 22.51 | 22%                           | 17%                                                   | 17%                                                                           | 0%                                                                                                   | 5%                                                                                                                       |
| 22.58 | 39%                           | 38%                                                   | 34%                                                                           | 19%                                                                                                  | 0%                                                                                                                       |
|       | RMSD22.8323.8122.8622.5122.58 | RMSDResNet-15222.830%23.8119%22.8623%22.5122%22.5839% | RMSDResNet-152ResNet-10122.830%13%23.8119%0%22.8623%20%22.5122%17%22.5839%38% | RMSDResNet-152ResNet-101ResNet-5022.830%13%18%23.8119%0%21%22.8623%20%0%22.5122%17%17%22.5839%38%34% | RMSDResNet-152ResNet-101ResNet-50VGG-1622.830%13%18%19%23.8119%0%21%21%22.8623%20%0%21%22.5122%17%17%0%22.5839%38%34%19% |

Panel A: Optimization-based approach

| RMSD  | ResNet-152                    | ResNet-101                                            | ResNet-50                                                                     | VGG-16                                                                                               | GoogLeNet                                                                                                                |
|-------|-------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 23.45 | 4%                            | 13%                                                   | 13%                                                                           | 20%                                                                                                  | 12%                                                                                                                      |
| 23.49 | 19%                           | 4%                                                    | 11%                                                                           | 23%                                                                                                  | 13%                                                                                                                      |
| 23.49 | 25%                           | 19%                                                   | 5%                                                                            | 25%                                                                                                  | 14%                                                                                                                      |
| 23.73 | 20%                           | 16%                                                   | 15%                                                                           | 1%                                                                                                   | 7%                                                                                                                       |
| 23.45 | 25%                           | 25%                                                   | 17%                                                                           | 19%                                                                                                  | 1%                                                                                                                       |
|       | RMSD23.4523.4923.4923.7323.45 | RMSDResNet-15223.454%23.4919%23.4925%23.7320%23.4525% | RMSDResNet-152ResNet-10123.454%13%23.4919%4%23.4925%19%23.7320%16%23.4525%25% | RMSDResNet-152ResNet-101ResNet-5023.454%13%13%23.4919%4%11%23.4925%19%5%23.7320%16%15%23.4525%25%17% | RMSDResNet-152ResNet-101ResNet-50VGG-1623.454%13%13%20%23.4919%4%11%23%23.4925%19%5%25%23.7320%16%15%1%23.4525%25%17%19% |

Panel B: Fast gradient approach



- More distortion leads to successful attacks?
  - Setup: VGG-16 to ResNet-152



**Oregon State** 

#### • Results from targeted attacks (Matching rate)

|            | RMSD  | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet |
|------------|-------|------------|------------|-----------|--------|-----------|
| ResNet-152 | 23.13 | 100%       | 2%         | 1%        | 1%     | 1%        |
| ResNet-101 | 23.16 | 3%         | 100%       | 3%        | 2%     | 1%        |
| ResNet-50  | 23.06 | 4%         | 2%         | 100%      | 1%     | 1%        |
| VGG-16     | 23.59 | 2%         | 1%         | 2%        | 100%   | 1%        |
| GoogLeNet  | 22.87 | 1%         | 1%         | 0%        | 1%     | 100%      |

- What if we use just random perturbations? Does *not* transfer



- Take aways
  - Non-targeted adversarial attacks transfer
  - Targeted adversarial attacks does not transfer well
  - Sub-research question: How we can make targeted attacks transferable?



#### **IMPROVING TRANSFERABILITY OF TARGETED ATTACKS**

#### • "Ensemble" (Used optimization-based attacks)

|             | RMSD  | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet |
|-------------|-------|------------|------------|-----------|--------|-----------|
| -ResNet-152 | 30.68 | 38%        | 76%        | 70%       | 97%    | 76%       |
| -ResNet-101 | 30.76 | 75%        | 43%        | 69%       | 98%    | 73%       |
| -ResNet-50  | 30.26 | 84%        | 81%        | 46%       | 99%    | 77%       |
| -VGG-16     | 31.13 | 74%        | 78%        | 68%       | 24%    | 63%       |
| -GoogLeNet  | 29.70 | 90%        | 87%        | 83%       | 99%    | 11%       |

#### - What about non-targeted attacks?

|             | RMSD  | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet |
|-------------|-------|------------|------------|-----------|--------|-----------|
| -ResNet-152 | 17.17 | 0%         | 0%         | 0%        | 0%     | 0%        |
| -ResNet-101 | 17.25 | 0%         | 1%         | 0%        | 0%     | 0%        |
| -ResNet-50  | 17.25 | 0%         | 0%         | 2%        | 0%     | 0%        |
| -VGG-16     | 17.80 | 0%         | 0%         | 0%        | 6%     | 0%        |
| -GoogLeNet  | 17.41 | 0%         | 0%         | 0%        | 0%     | 5%        |



#### **IMPROVING TRANSFERABILITY OF TARGETED ATTACKS**

- Why does ensemble work?
  - Hypothesis: it makes computed gradients are aligned to that of the target model
  - Evaluation approach
    - Compute the gradients of inputs from the models
    - Compute the cosine similarity between the gradients from two different models
  - Results

|            | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet |
|------------|------------|------------|-----------|--------|-----------|
| ResNet-152 | 1.00       | _          |           | —      | _         |
| ResNet-101 | 0.04       | 1.00       | _         | _      |           |
| ResNet-50  | 0.03       | 0.03       | 1.00      | —      | —         |
| VGG-16     | 0.02       | 0.02       | 0.02      | 1.00   | _         |
| GoogLeNet  | 0.01       | 0.01       | 0.01      | 0.02   | 1.00      |



- Method
  - Craft adversarial examples on ImageNet models
  - Use them to fool the object recognition service in Clarifai.com (You can do as well)
- Setup
  - Choose 100 images randomly from the ImageNet test-set
  - Use models: ResNet-50/-101, GoogleNet and VGG-16
  - Matching rate
- Attacks
  - Optimization-based approach (similar to C&W)



- Transfer attack results
  - Non-targeted:
    - Most attacks transfer (= fooled Clarifai.com)
      - 57% AEs crafted on VGG-16 transfer
      - 76% AEs crafted on the ensemble transfer
  - Targeted:
    - Misclassification towards a target label
      - 2% AEs crafted on VGG-16 transfer
      - 18% AEs crafted on the ensemble transfer



#### • Transfer attack results

| original<br>image | true<br>label                | Clarifai.com<br>results of<br>original image    | target<br>label  | targeted<br>adversarial<br>example | Clarifai.com results<br>of targeted<br>adversarial example |
|-------------------|------------------------------|-------------------------------------------------|------------------|------------------------------------|------------------------------------------------------------|
|                   | viaduct                      | bridge,<br>sight,<br>arch,<br>river,<br>sky     | window<br>screen |                                    | window,<br>wall,<br>old,<br>decoration,<br>design          |
|                   | hip, rose<br>hip,<br>rosehip | fruit,<br>fall,<br>food,<br>little,<br>wildlife | stupa,<br>tope   |                                    | Buddha,<br>gold,<br>temple,<br>celebration,<br>artistic    |



# **Thank You!**

Instructor: Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23



