CS 499/579: TRUSTWORTHY ML ADVERSARIAL ATTACKS: USE QUERIES

Tu/Th 4:00 - 5:50 pm

Instructor: Sanghyun Hong

sanghyun.hong@oregonstate.edu

SAIL Secure AI Systems Lab

ADVERSARIAL EXAMPLES ATTACKS

- Test-time (evasion) attack
 - Given a test-time sample *x*
 - Craft an adversarial example x^* that fools the target neural network

ADVERSARIAL ATTACKS

• Example: An adversary wants to upload NSFW image to the cloud

(TRANSFER-BASED) BLACK-BOX ADVERSARIAL ATTACK

• Example: An adversary wants to upload NSFW image to the cloud

- Transfer-based attacks¹² : craft adv. examples on a transfer prior

(OPTIMIZATION-BASED) BLACK-BOX ADVERSARIAL ATTACK

• Example: An adversary wants to upload NSFW image to the cloud

- Transfer-based attacks¹² : craft adv. examples on a transfer prior
- Optimization-based attacks³ : craft them iteratively with query outputs and a transfer prior

Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015
 Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018
 Cheng et al., Improving Black-box Adversarial Attacks with a Transfer-based Prior, NeurIPS 2019

Now we talk about optimization-based attacks

PRIOR CONVICTIONS: BLACK-BOX ADVERSARIAL ATTACKS WITH BANDITS AND PRIORS, ILYAS ET AL., ICLR 2019

RECAP: THE FORMULATION

- Test-time (evasion) attack
 - Goal:
 - Craft human-imperceptible perturbations that can make a test-time sample misclassified by a model
 - (Black-box) Knowledge:
 - Do not know the model architecture and/or
 - Do not know the trained model's parameters and/or
 - Do not know the training data
 - Capability:
 - Sufficient computational power to craft adversarial examples

How Can An Adversary Launch Attacks on (Black-box) Models?

OPTIMIZATION-BASED ATTACK

- How can an adversary launch black-box attacks?
 - Brute-force attacks
 - Query-based attacks
 - Transfer attacks

- Research questions
 - How can we make the optimization-based attacks more successful?
 - How effective (and successful) is this new method?

- Suppose:
 - (x, y): a test-time sample; $x \in \mathbb{R}^d$ and $y \in [k]$; $x \in [0, 1]$
 - f: a neural network; θ : its parameters
 - $L(\theta, x, y)$: a loss function
- Goal (of the first order attacker):
 - Find an $x^{adv} = x + \delta$ such that $\max_{\delta \in S} L(\theta, x^{adv}, y)$ while $||\delta||_p \le \varepsilon$
- PGD Crafts:

$$x^{t+1} = \prod_{x+S} \left(x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$
We Need to Know This!

- Zeroth-order Optimization
 - Finite Difference Method (FDM):

$$D_v f(x) = \langle \nabla_x f(x), v \rangle \approx \left(f(x + \delta v) - f(x) \right) / \delta.$$

- Compute: derivative of a function f at a point x towards a vector v
- FDM for the gradient with *d*-components:

$$\widehat{\nabla}_{x}L(x,y) = \sum_{k=1}^{d} e_{k} \left(L(x + \delta e_{k}, y) - L(x, y) \right) / \delta \approx \sum_{k=1}^{d} e_{k} \langle \nabla_{x}L(x, y), e_{k} \rangle$$

The black-box cases:

PGD in the black-box cases:

$$x^{t+1} = \Pi_{x+\mathcal{S}} \left(x^t + \alpha \operatorname{sgn}(\overline{\nabla_x L(\theta, x, y)}) \right).$$

- Toy experiment
 - Setup
 - Compare the fraction of correctly estimated coordinates of gradients required
 - Compare top-k perturbations picked by magnitude or randomly
 - Measure the transfer-attack success rate
 - Results:

Oregon State University

- Adversarial attacks are effective even with the imperfect gradient estimate
- Perturbations picked by magnitude is much effective than the random perturbations

- Prior approaches to do this estimation
 - The Least Squares Method: $\min_{\widehat{g}} \|\widehat{g}\|_2$ s.t. $A\widehat{g} = y$.
 - Iteratively compute the estimate \hat{g} , where:
 - A: Queries {1, 2, ...}
 - y: the corresponding inner product values
 - Natural Evolution Strategy [Ilyas et al.] and Least Squares equivalence

$$\langle \hat{x}_{LSQ}, \boldsymbol{g}
angle - \langle \hat{x}_{NES}, \boldsymbol{g}
angle \leq O\left(\sqrt{rac{k}{d} \cdot \log^3\left(rac{k}{p}
ight)}
ight) \left|\left|g
ight|
ight|^2$$

- **Prior** (= knowledge an adversary can acquire)
 - Gradients are correlated in successive attack iterations
 - Pixels close to each other tend to have similar values

- **Prior** (= knowledge an adversary can acquire)
 - [Time-dependent] Gradients are correlated in successive attack iterations
 - [Data-dependent] Pixels close to each other tend to have similar values

• Time-dependent & Data-dependent Priors

PUTTING ALL TOGETHER

• Formulate the Problem to the Bandit Framework

- Bandit problem

Algorithm 1 Gradient Estimation with Bandit Optimization

1: procedure BANDIT-OPT-LOSS-GRAD-EST
$$(x, y_{init})$$

2: $v_0 \leftarrow \mathcal{A}(\phi)$
3: for each round $t = 1, ..., T$ do
4: // Our loss in round t is $\ell_t(g_t) = -\langle \nabla_x L(x, y_{init}), g_t \rangle$
5: $g_t \leftarrow v_{t-1}$
6: $\Delta_t \leftarrow \text{GRAD-EST}(x, y_{init}, v_{t-1}) // \text{Estimated Gradient of } \ell_t$
7: $v_t \leftarrow \mathcal{A}(v_{t-1}, \Delta_t)$
8: $g \leftarrow v_T$
9: return $\Pi_{\partial \mathcal{K}}[g]$

PUTTING ALL TOGETHER

- Formulate the Problem to the Bandit Framework
 - Gradient Estimation

Algorithm 2 Single-query spherical estimate of $\nabla_v \langle \nabla L(x, y), v \rangle$

1: procedure GRAD-EST
$$(x, y, v)$$

2: $u \leftarrow \mathcal{N}(0, \frac{1}{d}I) / / \text{Query vector}$
3: $\{q_1, q_2\} \leftarrow \{v + \delta \boldsymbol{u}, v - \delta \boldsymbol{u}\} / / \text{Antithetic samples}$
4: $\ell_t(q_1) = -\langle \nabla L(x, y), q_1 \rangle \approx \frac{L(x, y) - L(x + \epsilon \cdot q_1, y)}{\epsilon} / / \text{Gradient estimation loss at } q_1$
5: $\ell_t(q_2) = -\langle \nabla L(x, y), q_2 \rangle \approx \frac{L(x, y) - L(x + \epsilon \cdot q_2, y)}{\epsilon} / / \text{Gradient estimation loss at } q_2$
6: $\boldsymbol{\Delta} \leftarrow \frac{\ell_t(q_1) - \ell_t(q_2)}{\delta} \boldsymbol{u} = \frac{L(x + \epsilon q_2, y) - L(x + \epsilon q_1, y)}{\delta \epsilon} \boldsymbol{u}$
7: $// \text{Note that due to cancellations we can actually evaluate } \boldsymbol{\Delta} \text{ with only two queries to } L$
8: return $\boldsymbol{\Delta}$

PUTTING ALL TOGETHER

- Formulate the Problem to the Bandit Framework
 - Gradient Estimation

Algorithm 3 Adversarial Example Generation with Bandit Optimization for ℓ_2 norm perturbations

- 1: procedure Adversarial-Bandit-L2 (x_{init}, y_{init})
- 2: $// C(\cdot)$ returns top class
- 3: $v_0 \leftarrow \mathbf{0}_{1 \times d}$ // If data prior, $d < \dim(x)$; v_t (Δ_t) up (down)-sampled before (after) line 8

4:
$$x_0 \leftarrow x_{init} //$$
 Adversarial image to be constructed

5: while
$$C(x) = y_{init}$$
 do

6:
$$g_t \leftarrow v_{t-1}$$

7:
$$x_t \leftarrow x_{t-1} + h \cdot \frac{g_t}{||g_t||_2} / |$$
Boundary projection $\frac{g}{||g_t||}$ standard PGD: c.f. [Rig15]

8:
$$\Delta_t \leftarrow \text{GRAD-EST}(x_{t-1}, y_{init}, v_{t-1}) // \text{ Estimated Gradient of } \ell_t$$

9: $v_t \leftarrow v_{t-1} + \eta \cdot \Delta_t$

10:
$$t \leftarrow t+1$$

return x_{t-1}

- Setup
 - Dataset: ImageNet (10k randomly chosen samples)
 - Model: Inception-v3
 - Baseline: NES
- Results

Oregon State University

- Take aways
 - How accurate should we estimate a gradient for successful attacks?
 - PGD can be quite successful with imperfect gradient estimates
 - Query-efficiency is bounded by the prior work [Ilyas *et al.*] in practical scenarios
 - How can we estimate gradient accurately with smaller queries?
 - Use two priors: time- and data-dependent priors
 - Formulate the estimation into the bandit framework
 - How effective (and successful) is this new method?
 - Require 2.5 5x less queries for successful attacks compared to NES

Thank You!

Instructor: Sanghyun Hong

https://secure-ai.systems/courses/MLSec/Sp23

