NOTES

- Call for actions
 - In-class presentation sign-ups
 - Do not forget to check-in slides with Sanghyun, ~0.5 week before your presentation day
 - Checkpoint presentation I (on the 30th)
 - 10 min presentation + 3 min Q&A
 - Presentation MUST cover:
 - A research problem your team chose
 - A review of the prior work relevant to your problem

 \gg How is your team's work different from the prior work?

 \gg What's the paper your team picked and the results your team will reproduce?

- Next steps (+ how each member will contribute to the work)
- No class before the presentation day (Tuesday, the 28th)

CS 499/579: TRUSTWORTHY ML (CERTIFIED) DEFENSES AGAINST ADVERSARIAL EXAMPLES

Sanghyun Hong

sanghyun.hong@oregonstate.edu

HOW CAN WE DEFEAT ADVERSARIAL ATTACKS?

Secure-AI Systems Lab (SAIL) - CS499/599: Trustworthy ML

DEFENSES SO FAR

- Existing defenses
 - Defensive distillation
 - Feature squeezing
 - Adversarial training

DEFENSES SO FAR

- Existing defenses
 - Defensive distillation
 - Feature squeezing
 - Adversarial training
 - Many more on heuristics... but broken if one relies on "obfuscated gradients"

Defense	Dataset	Distance	Accuracy
Buckman et al. (2018)	CIFAR	$0.031(\ell_{\infty})$	0%*
Ma et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	5%
Guo et al. (2018)	ImageNet	$0.005 \ (\ell_2)$	0%*
Dhillon et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	0%
Xie et al. (2018)	ImageNet	$0.031~(\ell_{\infty})$	0%*
Song et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	9%*
Samangouei et al. (2018)	MNIST	$0.005 (\ell_2)$	55%**
Madry et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	47%
Na et al. (2018)	CIFAR	$0.015(\ell_\infty)$	15%

Secure-AI Systems Lab (SAIL) - CS499/599: Trustworthy ML

- Existing defenses
 - Defensive distillation
 - Feature squeezing
 - Adversarial training
 - Many more on heuristics... but broken if one relies on "obfuscated gradients"

	Defense	Dataset	Distance	Accuracy
	Buckman et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	0%*
	Ma et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	5%
	Guo et al. (2018)	ImageNet	$0.005 \ (\ell_2)$	0%*
	Dhillon et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	0%
	Xie et al. (2018)	ImageNet	$0.031(\ell_\infty)$	0%*
	Song et al. (2018)	CIFAR	$0.031~(\ell_{\infty})$	9%*
How Can We Make Sure They Are "Provably" Robust?				
	Madry et al. (2018) Na et al. (2018)	CIFAR CIFAR	$0.031 \ (\ell_{\infty}) \ 0.015 \ (\ell_{\infty})$	$47\% \\ 15\%$

"PROVABLY" ROBUST

- Research questions:
 - What does it mean by your model is robust?
 - How can you make your model provably robust?
 - How can you certify that your model is robust?
 - How can we make the certification computationally feasible?

HOW CAN WE MAKE MODELS "PROVABLY" ROBUST?

CERTIFIED ADVERSARIAL ROBUSTNESS VIA RANDOMIZED SMOOTHING, COHEN ET AL., ICML 2019

- Suppose:
 - (x, y): a test-time input and its oracle label
 - $x + \delta$: an adversarial example of x with small l_p -bounded (ε) perturbation δ
 - *f*: a neural network
- Robustness:
 - For any δ where $||\delta||_p \leq \varepsilon$
 - The most probable class y_M for $f(x + \delta)$
 - Make f to be $P[f(x + \delta) = y_M] > \max_{y \neq y_M} P[f(x + \delta) = y]$

WHAT DOES IT MEAN BY "PROVABLY" ROBUST?

- Suppose:
 - (x, y): a test-time input and its oracle label
 - $x + \delta$: an adversarial example of x with small l_p -bounded (ε) perturbation δ
 - *f*: a neural network
- Robustness:
 - Most probable class: $P[f(x + \delta) = c_A] \approx P_A$
 - A runner-up class : $\max_{y \neq y_M} P[f(x + \delta) = y] \approx P_B$
 - "Provably" robust $: P_A > P_B$

 $\overline{p_B}$

HOW CAN YOU MAKE YOUR MODEL PROVABLY ROBUST?

- Randomized Smoothing:
 - Make a neural network f less sensitive to input details
 - Prior work:
 - Adversarial training (or robust training)
 - Denoising (we will talk about it in a bit later)
- Smoothing
 - In image processing: reducing noise (high frequency components)
 - In our context: reduce noise in inputs
- Randomized
 - In statistics: the practice of using chance methods (random)
 - In this context: add Gaussian random noise to the input

HOW CAN YOU MAKE YOUR MODEL PROVABLY ROBUST?

- Certified robustness
 - Randomized smoothing transforms a base classifier f into a smoothed classifier g
 - The smoothed classifier g is robust around x with the l_2 radius of R

$$R = \frac{\sigma}{2} (\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}))$$

- Certification
 - g is a smoothed classifier
 - g outputs a prediction of c_A (a class)
 - within radius R around x
 - with a confidence of α

 $\overline{p_B}$

HOW CAN YOU MAKE YOUR MODEL PROVABLY ROBUST?

- Certification
 - g is a smoothed classifier
 - g outputs a prediction of c_A (a class)
 - within radius R around x
 - with a confidence of α
- Observations
 - R becomes large when we use high noise
 - R becomes infinite as $P_A \approx 1$ and $P_B \approx 0$

 $\overline{p_B}$

• Practical algorithms for prediction and certification


```
# certify the robustness of g around x

function CERTIFY(f, \sigma, x, n_0, n, \alpha)

counts0 \leftarrow SAMPLEUNDERNOISE(f, x, n_0, \sigma)

\hat{c}_A \leftarrow top index in counts0

counts \leftarrow SAMPLEUNDERNOISE(f, x, n, \sigma)

\underline{p}_A \leftarrow LOWERCONFBOUND(counts[\hat{c}_A], n, 1 - \alpha)

if \underline{p}_A > \frac{1}{2} return prediction \hat{c}_A and radius \sigma \Phi^{-1}(\underline{p}_A)

else return ABSTAIN
```

Guarantee the probability of *PREDICT* returning a class other than g(x) is α

Oregon State University

• Practical algorithms for prediction and certification

Oregon State University

- Practical algorithms for prediction and certification (empirical observation)
 - R becomes infinite as $P_A \approx 1$ and $P_B \approx 0$
 - The paper's algorithm offers a tighter estimation of R
 - The approximation of *R* becomes accurate if we use more samples

- Setup
 - CIFAR10: ResNet-110 and its full test-set
 - ImageNet: ResNet-50 and 500 random chosen test-set samples
- Measure
 - Certified test-set accuracy under a radius R with a confidence of α
 - Under various smoothing factor σ (std. of Gaussian noise used)

• Radius *R* vs. certified accuracy (left: CIFAR10, right: ImageNet)

• Certified accuracy vs. prior work (ImageNet, $\sigma = 0.25$)

• Certified accuracy vs. { # samples or confidence α }

Oregon State

"PROVABLY" ROBUST

- Research questions:
 - What does it mean by your model is robust?
 - A classifier f returns a prediction c within a radius R with a confidence α
 - How can you make your model provably robust?
 - Randomized smoothing (by Cohen et al.)
 - How can you certify that your model is robust?
 - Cohen et al., present practical algorithms for prediction and certification

HOW CAN WE MAKE CERTIFIED DEFENSES COMPUTATIONALLY FEASIBLE?

DENOISED SMOOTHING: A PROVABLE DEFENSE FOR PRETRAINED CLASSIFIERS, SALMAN ET AL., NEURIPS 2020

Secure-AI Systems Lab (SAIL) - CS499/599: Trustworthy ML

MAKING A SMOOTHED CLASSIFIER

- Conversion to a smoothed classifier g
 - Adversarial (or robust) training
 - Train a classifier f with noised samples $\sim N(x, \sigma^2 I)$ with x's oracle label
- Problem:
 - What if a classifier *f* is already trained?
 - Should we re-train all the classifiers, already on-service?
- Solution:
 - Denoised smoothing: train a denoiser that works with a pre-trained classifier

DENOISED SMOOTHING

- Conversion to a smoothed classifier
 - Train a denoiser $D_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ that removes the input perturbations for f
 - Pre-process an input x with the denoiser D_{θ} before x is fed to f
 - Pre-process step: generate noisy versions of x, denoise, and fed them to f

Figure 1: Given a clean image x, our denoised smoothing procedure creates a smoothed classifier by appending a denoiser to any pretrained classifier (e.g. online commercial APIs) so that the pipeline predicts in majority the correct class under Gaussian noise corrupted-copies of x. The resultant classifier is *certifiably* robust against ℓ_2 -perturbations of its input.

DENOISED SMOOTHING

- Goal
 - Not to train *f* on noise
 - But, to provide certification to f
- Denoiser $D_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$
 - $g(x) = \underset{c \in \mathcal{Y}}{\operatorname{arg\,max}} \mathbb{P}[f(\mathcal{D}_{\theta}(x+\delta)) = c] \text{ where } \delta \sim \mathcal{N}(0, \sigma^{2}I)$
- Training D_{θ}
 - MSE objective: Just train D_{θ} to remove Gaussian noise $L_{\text{MSE}} = \mathbb{E}_{S,\delta} \|\mathcal{D}_{\theta}(x_i + \delta) x_i\|_2^2$
 - + Stability objective: (White-box) Preserve f's predictions $L_{\text{Stab}} = \underset{S,\delta}{\mathbb{E}} \ell_{\text{CE}}(F(\mathcal{D}_{\theta}(x_i + \delta)), f(x_i))$

- Setup
 - ImageNet:
 - Pre-trained classifiers: ResNet-18/34/50 (white-box)
 - Baseline: ResNet-110 certified with $\sigma=1.0$
 - Denoisers: DnCNN and MemNet trained with $\sigma = 0.25, 0.5, 1.0$
 - Objectives: MSE / Stab / Stab+MSE
 - White-box (as-is) | Black-box (14-surrogate models)
- Measure
 - Certified test-set accuracy under a radius R with a confidence of α
 - Under various smoothing factor σ (std. of Gaussian noise used)

- Certified accuracy vs. prior work (ImageNet, $\sigma = 0.25$)
 - (left: white-box) Denoiser offers certified accuracy close to that of Cohen et al.
 - (right: black-box) The certified accuracy is slightly smaller than the white-box case

- Certified accuracy vs. prior work (ImageNet, $\sigma = 0.25$)
 - (left: white-box) Denoiser offers certified accuracy close to that of Cohen et al.
 - (right: black-box) The certified accuracy is slightly smaller than the white-box case

CAN WE CERTIFY OFF-THE-SHELF MODELS?

• Radius R vs. certified accuracy (with $\sigma = 0.25$)

(a) Azure

(b) Google Cloud Vision

CAN WE CERTIFY OFF-THE-SHELF MODELS?

• Radius R vs. certified accuracy (with $\sigma = 0.25$)

HOW CAN WE GET CERTIFIED DEFENSES FOR FREE?

(CERTIFIED!!) ADVERSARIAL ROBUSTNESS FOR FREE!, CALNINI ET AL., ICLR 2023

- Goal
 - Not to train f on noise
 - But, to provide certification to f
- Denoiser $D_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$
 - $g(x) = \operatorname*{arg\,max}_{c \in \mathcal{Y}} \mathbb{P}[f(\mathcal{D}_{\theta}(x + \delta)) = c] \quad \text{where } \delta \sim \mathcal{N}(0, \sigma^{2}I)$
- Training D_{θ}
 - MSE objective: Just train D_{θ} to remove Gaussian noise $L_{\text{MSE}} = \mathop{\mathbb{E}}_{\mathcal{S},\delta} \|\mathcal{D}_{\theta}(x_i + \delta) x_i\|_2^2$
 - + Stability objective: (White-box) Preserve f's predictions $L_{\text{Stab}} = \underset{S,\delta}{\mathbb{E}} \ell_{\text{CE}}(F(\mathcal{D}_{\theta}(x_i + \delta)), f(x_i))$

WE HAVE PRE-TRAINED DENOISERS

- Denoising diffusion probabilistic models (DDPMs)
 - Generative models trained to gradually denoise the data
 - The *diffusion* process transforms an image x to the purely random noise

$$\begin{pmatrix} \mathbf{x}_T \leftarrow \cdots \leftarrow \mathbf{x}_t \end{pmatrix} \xleftarrow{q(\mathbf{x}_t | \mathbf{x}_{t-1})} \begin{pmatrix} \mathbf{x}_{t-1} \leftarrow \cdots \leftarrow \mathbf{x}_0 \end{pmatrix}$$

- Given an image x, the model samples a noisy image: $x_t \coloneqq \sqrt{\alpha_t} \cdot x + \sqrt{1 - \alpha_t} \cdot \mathcal{N}(0, \mathbf{I})$ α is a constant derived from t and determines the amount of noise to be added

WE HAVE PRE-TRAINED DENOISERS

- Denoising diffusion probabilistic models (DDPMs)
 - Generative models trained to gradually denoise the data
 - The *diffusion* process transforms an image x to the purely random noise

– The *reverse* process synthesizes x from random Gaussian noise

$$\begin{pmatrix} \mathbf{x}_T \longrightarrow \cdots \longrightarrow \mathbf{x}_t \end{pmatrix} \xrightarrow{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} \begin{pmatrix} \mathbf{x}_{t-1} \longrightarrow \cdots \longrightarrow \mathbf{x}_0 \end{pmatrix}$$

WE HAVE PRE-TRAINED DENOISERS

- Denoising diffusion probabilistic models (DDPMs)
 - Generative models trained to gradually denoise the data
 - The *diffusion* process transforms an image x to the purely random noise
 - The *reverse* process synthesizes x from random Gaussian noise
- Use DDPMs as a denoiser $D_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$
 - One-shot denoising: apply the diffusion model once for a fixed noise level
 - *Multi-step* denoising: apply the diffusion process multiple times

• Practical algorithms for prediction and certification

```
Algorithm 2 Randomized smoothing (Cohen et al., 2019)
 1: PREDICT(x, \sigma, N, \eta):
 2:
         counts \leftarrow 0
       for i \in \{1, 2, ..., N\} do
 3:
 4:
             y \leftarrow \text{NOISEANDCLASSIFY}(x, \sigma)
 5:
              counts[y] \leftarrow counts[y] + 1
        \hat{y}_A, \hat{y}_B \leftarrow \text{top two labels in counts}
 6:
         n_A, n_B \leftarrow \text{counts}[\hat{y}_A], \text{counts}[\hat{y}_B]
 7:
         if BINOMPTEST(n_A, n_A + n_B, 1/2) \leq \eta then
 8:
              return \hat{y}_A
 9:
10:
         else
              return Abstain
11:
```

Guarantee the probability of *PREDICT*

returning a class other than g(x) is α

```
Algorithm 1 Noise, denoise, classify
  1: NOISEANDCLASSIFY(x, \sigma):
        t^{\star}, \alpha_{t^{\star}} \leftarrow \text{GetTimestep}(\sigma)
  2:
  3: x_{t^{\star}} \leftarrow \sqrt{\alpha_{t^{\star}}} (x + \mathcal{N}(0, \sigma^2 \mathbf{I}))
  4:
           \hat{x} \leftarrow \text{denoise}(x_{t^{\star}}; t^{\star})
  5:
           y \leftarrow f_{\rm clf}(\hat{x})
  6:
             return y
  7:
       GETTIMESTEP(\sigma):
  8:
            t^* \leftarrow \text{find } t \text{ s.t. } \frac{1-\alpha_t}{\alpha_t} = \sigma^2
  9:
             return t^{\star}, \alpha_{t^{\star}}
10:
```


- Setup
 - Data: CIFAR-10 and ImageNet-21k
 - Model: Wide-ResNet-28-10 (white-box)
 - Denoisers: DDPMs
- Measure
 - Certified test-set accuracy under a radius R with a confidence of α
 - Under various smoothing factor ε (std. of Gaussian noise used)

- Certified accuracy vs. prior work (ImageNet-21k)
 - DDPM denoisers offer the highest certified accuracy compared to the prior work
 - To achieve the highest accuracy, one can use this off-the-shelf model w/o training

Method	Off-the-shelf	Extra data	0.5	1.0	1.5	2.0	3.0
PixelDP (Lecuyer et al., 2019)	0	×	(33.0) 16.0	-	-		
RS (Cohen et al., 2019)	0	×	^(67.0) 49.0	^(57.0) 37.0	^(57.0) 29.0	^(44.0) 19.0	$^{(44.0)}$ 12.0
SmoothAdv (Salman et al., 2019)	0	×	$^{(65.0)}$ 56.0	(54.0)43.0	^(54.0) 37.0	$^{(40.0)}27.0$	$^{(40.0)}20.0$
Consistency (Jeong & Shin, 2020)	0	×	$^{(55.0)}$ 50.0	^(55.0) 44.0	^(55.0) 34.0	$^{(41.0)}$ 24.0	$^{(41.0)}$ 17.0
MACER (Zhai et al., 2020)	0	×	^(68.0) 57.0	(64.0)43.0	^(64.0) 31.0	$^{(48.0)}25.0$	$^{(48.0)}14.0$
Boosting (Horváth et al., 2022a)	0	×	$^{(65.6)}$ 57.0	^(57.0) 44.6	^(57.0) 38.4	^(44.6) 28.6	^(38.6) 21.2
DRT (Yang et al., 2021)	0	×	$^{(52.2)}46.8$	$^{(55.2)}44.4$	^(49.8) 39.8	^(49.8) 30.4	^(49.8) 23.4
SmoothMix (Jeong et al., 2021)	\bigcirc	×	$^{(55.0)}$ 50.0	^(55.0) 43.0	^(55.0) 38.0	$^{(40.0)}$ 26.0	$^{(40.0)}20.0$
ACES (Horváth et al., 2022b)	lacksquare	×	(63.8) 54.0	(57.2)42.2	(55.6)35.6	^(39.8) 25.6	^(44.0) 19.8
Denoised (Salman et al., 2020)	D	×	(60.0)33.0	(38.0) 14.0	(38.0)6.0	-	-
Lee (Lee, 2021)	•	×	41.0	24.0	11.0	-	-
Ours	۲	✓	^(82.8) 71.1	^(77.1) 54.3	^(77.1) 38.1	^(60.0) 29.5	(60.0) 13.1

Certified Accuracy at ε (%)

Oregon Stat

Secure-AI Systems Lab (SAIL) - CS499/599: Trustworthy ML

- One-shot vs. multi-step denoising (ImageNet-21k)
 - One-shot denoising offers more faithful results
 - Multi-step denoising destroys the information about the original image

Figure 3: Intuitive examples for why multi-step denoised images are less recognized by the classifier. From left to right: clean images, noisy images with $\sigma = 1.0$, one-step denoised images, multi-step denoised images. For the denoised images, we show the prediction by the pretrained BEiT model.

OTHER WORK ON THE "PROVABLE" ROBUSTNESS

- Further readings
 - PixelDP (Lecuyer et al.): Use differential privacy (DP) for the certification
 - Li et al.: Propose a tighter bound for the certification, based on Renyi-divergence

Lecuyer et al., Certified Robustness to Adversarial Examples with Differential Privacy, IEEE S&P 2019

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23

