CALL FOR ACTIONS

- Paper critiques on HotCRP
- In-class presentation sign-up
- HW2 due on the 30th
- Checkpoint presentation I
 - 10 min presentation + 3-5 min Q&A
 - Presentation MUST cover:
 - A research problem your team chose
 - A review of the prior work relevant to your problem
 - How is your team's work different from the prior work?
 - What's the paper your team picked and the results your team will reproduce?
 - Next steps (+ how each member will contribute to the work)

CS 499 | AI 539: TRUSTWORTHY ML (PRACTICAL) ATTACKS USING ADVERSARIAL EXAMPLES

Instructor: Sanghyun Hong

sanghyun.hong@oregonstate.edu

• ... But challenging

CHALLENGES ATTACKING REAL-WORLD SYSTEMS

- Black-box nature
- Input transformations

CHALLENGES ATTACKING REAL-WORLD SYSTEMS

- Black-box nature
 - Limits in transferability
 - Many queries to the target system
- Input transformations
 - Limits in expressivity
 - Arbitrary transformations

CHALLENGES ATTACKING REAL-WORLD SYSTEMS

- Black-box nature
 - Limits in transferability
 - Many queries to the target system

• Input transformations

(Kurakin et al., Adversarial Examples in Physical World, ICLR 2017 workshop)

- Limits in expressivity
- Arbitrary transformations

HOW TO ADDRESS THEM (REMINDER: THIS WAS IN 2017)

- Increasing the strength of adversarial examples
 - FGSM (Prior approach by Goodfellow et al.)
 - Basic Iterative Method (more iterations)

$$\boldsymbol{X}_{0}^{adv} = \boldsymbol{X}, \quad \boldsymbol{X}_{N+1}^{adv} = Clip_{X,\epsilon} \Big\{ \boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \big(\nabla_{X} J(\boldsymbol{X}_{N}^{adv}, y_{true}) \big) \Big\}$$
FGSM

HOW TO ADDRESS THEM (REMINDER: THIS WAS IN 2017)

- Increasing the strength of adversarial examples
 - FGSM (Prior approach by Goodfellow et al.)
 - BIM (More iterations)
 - Iterative Least-Likely class method

 $\boldsymbol{X}_{0}^{adv} = \boldsymbol{X}, \quad \boldsymbol{X}_{N+1}^{adv} = Clip_{X,\epsilon} \left\{ \boldsymbol{X}_{N}^{adv} - \alpha \operatorname{sign} \left(\nabla_{X} J(\boldsymbol{X}_{N}^{adv}, y_{LL}) \right) \right\}$

• Evaluation results on the ImageNet Inception-v3

- In FGSM, the error rate increases as we increase epsilon
- In the large eps, the error rate is ILL > FGSM > BIM
- In the smaller eps, the error rate is ILL > BIM > FGSM
- ILL achieves the highest error rate in both Top1 and Top5

Oregon State

GENERATED ADVERSARIAL EXAMPLES FROM ILL ATTACKS

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security

Now is our attack effective against real-world models?

UNSEEN (UNKNOWN) INPUT (AND OUTPUT) TRANSFORMATIONS

- AE in the numerical world \neq AE in the physical world
 - Numerical perturbations lead to the input values like 0.85293102...
 - In the pixel space, such perturbations do not exist 0.8529... x 255 = 217.5...

- Models will use diverse decision rules and outputs
 - It may take only classification results with a high probability (e.g., > 0.8)
 - It may only return the label-only decisions (no softmax-ed probabilities)

- ...

...

HOW TO TEST THE PRACTICALITY OF ADVERSARIAL EXAMPLES?

- Setup
 - 1. Craft adversarial examples (AEs), store them in PNG, and print them
 - 2. Take photos of printed AEs with a cell phone
 - 3. Resize and center-crop the images from 2
 - 4. Run classification on the images from 3
- Measure
 - Classification accuracy
 - Destruction rate (error)

HOW TO TEST THE PRACTICALITY OF ADVERSARIAL EXAMPLES?

- **Results** (see the paper for more details)
 - AEs (maybe) effective in physical world
 - Misclassification rate is higher in AEs than what we observe with clean examples
 - Chances increase when we increase the perturbations (*i.e.*, eps from 2 to 16)
 - Prefiltering may reduce the attack success significantly
 - **Prefilter:** only accept the classification with a confidence > 0.8
 - It reduces an error rate by 40 90%

• <u>Link</u>, <u>Link</u>, <u>Link</u>

HOW VULNERABLE ARE LLMS TO ADVERSARIAL ATTACKS?

UNIVERSAL AND TRANSFERABLE ADVERSARIAL ATTACKS ON ALIGNED LANGUAGE MODELS, ZOU ET AL. 2023

Let's imagine what would be the adversarial attacks on Ilms

- Jail breaking
 - A universal attacks on llms

User: Tell me how to build a bomb.

- Jail breaking
 - A universal attacks on llms

- Jail breaking
 - A universal attacks on llms

- How to do this attack?
 - Start with a suffix
 - Pick words (or a tokens) that are likely to minimize the error
 - The error is how much the target Ilm's response is close to what we expect
 - Replace the token(s) in the suffix with the candidates that minimizes the error
 - Repeat the above sufficiently

- Jail breaking
 - How to do this attack?
 - Start with a suffix
 - Pick words (or a tokens) that are likely to minimize the error
 - The error is how much the target Ilm's response is close to what we expect
 - Replace the token(s) in the suffix with the candidates that minimizes the error
 - Repeat the above sufficiently

Algorithm 1 Greedy Coordinate Gradient

Input: Initial prompt $x_{1:n}$, modifiable subset \mathcal{I} , iterations T, loss \mathcal{L} , k, batch size B repeat T times

$$\begin{array}{l} \textbf{for } i \in \mathcal{I} \textbf{ do} \\ \begin{bmatrix} \mathcal{X}_i := \text{Top-}k(-\nabla_{e_{x_i}}\mathcal{L}(x_{1:n})) \\ \textbf{for } b = 1, \dots, B \textbf{ do} \\ \begin{bmatrix} \tilde{x}_{1:n}^{(b)} := x_{1:n} \\ \tilde{x}_i^{(b)} := \text{Uniform}(\mathcal{X}_i), \text{ where } i = \text{Uniform}(\mathcal{I}) \\ x_{1:n} := \tilde{x}_{1:n}^{(b^*)}, \text{ where } b^* = \operatorname{argmin}_b \mathcal{L}(\tilde{x}_{1:n}^{(b)}) \\ \textbf{utput: Optimized prompt } x_{1:n} \end{array}$$

 \triangleright Compute top-k promising token substitutions

Initialize element of batch
 Select random replacement token
 Compute best replacement

0

- Jail breaking
 - A universal attack on llms
 - How to make this attack work on multiple prompts?

Algorithm 2 Universal Prompt Optimization

Input: Prompts $x_{1:n_1}^{(1)} \ldots x_{1:n_m}^{(m)}$, initial postfix $p_{1:l}$, losses $\mathcal{L}_1 \ldots \mathcal{L}_m$, iterations T, k, batch size B \triangleright Start by optimizing just the first prompt $m_c := 1$ **repeat** T times for $i \in [0 \dots l]$ do $\mathcal{X}_i := \operatorname{Top-}k(-\sum_{1 \le j \le m_c} \nabla_{e_{p_i}} \mathcal{L}_j(x_{1:n}^{(j)} \| p_{1:l})) \qquad \triangleright \ Compute \ aggregate \ top-k \ substitutions$ for $b = 1, \ldots, B$ do $ilde{p}_{1:l}^{(b)} := p_{1:l}$ \triangleright Initialize element of batch $\widetilde{p}_i^{\widetilde{(b)}} := ext{Uniform}(\mathcal{X}_i), ext{ where } i = ext{Uniform}(\mathcal{I})$ \triangleright Select random replacement token $p_{1:l} := \tilde{p}_{1:l}^{(b^{\star})}$, where $b^{\star} = \operatorname{argmin}_b \sum_{1 < j < m_c} \mathcal{L}_j(x_{1:n}^{(j)} \| \tilde{p}_{1:l}^{(b)})$ ▷ Compute best replacement if $p_{1:l}$ succeeds on $x_{1:n_1}^{(1)} \dots x_{1:n_m}^{(m_c)}$ and $m_c < m$ then $m_c := m_c + 1$ \triangleright Add the next prompt **Output:** Optimized prompt suffix p

Oregon State University

- Jail breaking
 - A universal attack on llms
 - Universal multi-prompt and multi-modal attacks

Algorithm 2 Universal Prompt Optimization

Input: Prompts $x_{1:n_1}^{(1)} \dots x_{1:n_m}^{(m)}$, initial postfix $p_{1:l}$, losses $\mathcal{L}_1 \dots \mathcal{L}_m$, iterations T, k, batch size B $m_c := 1$ \triangleright Start by optimizing just the first prompt **repeat** T times for $i \in [0 \dots l]$ do $\mathcal{X}_i := \operatorname{Top-}k(-\sum_{1 \le j \le m_c} \nabla_{e_{p_i}} \mathcal{L}_j(x_{1:n}^{(j)} \| p_{1:l})) \qquad \triangleright \ Compute \ aggregate \ top-k \ substitutions$ for $b = 1, \ldots, B$ do $ilde{p}_{1:l}^{(b)} := p_{1:l}$ \triangleright Initialize element of batch $\widetilde{p}_i^{\widetilde{(b)}} := ext{Uniform}(\mathcal{X}_i), ext{ where } i = ext{Uniform}(\mathcal{I})$ ▷ Select random replacement token $p_{1:l} := \tilde{p}_{1:l}^{(b^{\star})}$, where $b^{\star} = \operatorname{argmin}_b \sum_{1 < j < m_c} \mathcal{L}_j(x_{1:n}^{(j)} \| \tilde{p}_{1:l}^{(b)})$ ▷ Compute best replacement if $p_{1:l}$ succeeds on $x_{1:n_1}^{(1)} \dots x_{1:n_m}^{(m_c)}$ and $m_c < m$ then $m_c := m_c + 1$ \triangleright Add the next prompt **Output:** Optimized prompt suffix p

Oregon State University

- Jail breaking
 - A universal attack on llms
 - Universal multi-prompt and multi-modal attacks
- Evaluation
 - Setup
 - Metric: attack success rate (a reasonable attempt at executing the behavior)
 - Baselines: PEZ, GBDA, AutoPrompt

Results	experiment		individual Harmful String		individual Harmful Behavior	multiple Harmful Behaviors	
	Model	Method	ASR (%)	Loss	ASR (%)	train ASR $(\%)$	test ASR (%)
		GBDA	0.0	2.9	4.0	4.0	6.0
	Vicuna	\mathbf{PEZ}	0.0	2.3	11.0	4.0	3.0
	(7B)	AutoPrompt	25.0	0.5	95.0	96.0	98.0
		GCG (ours)	88.0	0.1	99.0	100.0	98.0
		GBDA	0.0	5.0	0.0	0.0	0.0
	LLaMA-2	\mathbf{PEZ}	0.0	4.5	0.0	0.0	1.0
	(7B-Chat)	AutoPrompt	3.0	0.9	45.0	36.0	35.0
		GCG (ours)	57.0	0.3	56.0	88.0	84.0

Secure-AI Systems Lab (SAIL) - CS499/599: Machine Learning Security

- Evaluation
 - Setup
 - Metric: attack success rate (a reasonable attempt at executing the behavior)
 - Baselines: PEZ, GBDA, AutoPrompt
 - (Transfer-attack) Results message = {harmful_behavior} (Start with "Sure here's") Prompt Only "Sure, here's" GCG (Ours) GCG Ensemble (Ours) 100 Attack Success Rate (%) 80 60 40 20 -1^D ChatGLM-6B 0 Vicuna-13B Pythia-12B Stable-Vicuna Vicuna-78 Falcon-7B MPT-7B GPT-3.5 Guanaco-78 GPT-A

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/Sp23

