AI 539: Trustworthy ML INDISCRIMINATE POISONING ATTACKS

Sanghyun Hong

sanghyun.hong@oregonstate.edu

SAIL Secure AI Systems Lab Goal

- Manipulate a ML model's behavior by compromising the training data
- Harm the integrity of the training data
- Capability
 - Perturb a subset of samples (D_p) in the training data
 - Inject a few malicious samples (D_p) into the training data
- Knowledge
 - D_{train} : training data
 - *D*_{test}: test-set data
 - f: a model architecture and its parameters heta
 - A: training algorithm (e.g., SGD)

Goal

- Manipulate a ML model's behavior by contaminating the training data
- Harm the integrity of the training data
- Two well-studied objectives
 - Indiscriminate attack: I want to degrade a model's accuracy
 - Targeted attack: I want misclassification of a specific test-time data

CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY

Neural Network \rightarrow

 \leftarrow Linear model (SVM)

CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY

← Linear model (SVM)

CONCEPTUAL ILLUSTRATION OF THE VULNERABILITY TO POISONING

 \leftarrow Linear model (SVM)

HOW VULNERABLE SVMS ARE?

POISONING ATTACKS AGAINST SUPPORT VECTOR MACHINES, BIGGIO ET AL., ICML 2012

• DIT [<u>Link</u>]

- 1: let's put green points
- 2: let's put red points on the other side
- 3: let's put red points closer to the green cluster
- 4: let's put red points in the middle of the green cluster
- 5: let's use another kernel.

Goal

- Manipulate a ML model's accuracy by compromising the training data
- In short: indiscriminate attack
- Capability
 - Pick a set of test-time samples and craft poisons (x_c, y_c)
 - Inject them into the training data
- Knowledge

Dregon State

- D_{tr} : training data
- *D_{test}*: test-set data (validation data)
- f: a linear SVM and its parameters heta
- A: training algorithm (e.g., Sub-gradient descent)

POISONING THREAT MODEL

Label noise in ImageNet¹

Old label: pier ReaL: dock; pier; speedboat: sandbar: seashore

Old label: quill Real .: feather boa

Old label: sunglass ReaL: sunglass;

Old label: water jug ReaL: water bottle

Old label: sunglasses

ReaL: sunglass:

sunglasses

Old label: monitor

ReaL: mouse: desk:

desktop computer; lamp;

studio couch; monitor;

Old label: laptop ReaL: notebook:

Old label: notebook

Old label: zucchini

ReaL: broccoli:

Old label: purse

ReaL: wallet

Old label: ant

Old label: passenger car ReaL: school bus

Old label: laptop ReaL: notebook;

Figure 2: Example failures of the ImageNet labeling procedure. Red: original ImageNet label, green: proposed ReaL labels. Top row: ImageNet currently assigns a single label per image, yet these often contain several equally prominent objects. Middle row: Even when a single object is present, ImageNet labels present systematic inaccuracies due to their labeling procedure. Bottom row: ImageNet classes contain a few unresolvable distinctions.

¹Beyer et al., Are we done with ImageNet? arXiv 2020

PROPOSED ATTACK ON SUPPORT VECTOR MACHINE

- Indiscriminate attack procedure
 - Draw a set of poison candidates from the validation data
 - Craft poisoning samples
 - Inject them into the original training data
 - Increase the loss of the model trained on the compromised data

PROPOSED ATTACK ON SUPPORT VECTOR MACHINE

Algorithm 1 Poisoning attack against SVM **Input:** \mathcal{D}_{tr} , the training data; \mathcal{D}_{val} , the validation data; y_c , the class label of the attack point; $x_c^{(0)}$, the initial attack point; t, the step size. **Output:** x_c , the final attack point. 1: $\{\alpha_i, b\} \leftarrow \text{learn an SVM on } \mathcal{D}_{\text{tr}}.$ // train an SVM on the clean data 2: $k \leftarrow 0$. 3: repeat Re-compute the SVM solution on $\mathcal{D}_{\mathrm{tr}} \cup \{x_c^{(p)}, y_c\}$ // train an SVM with the poison 4: using incremental SVM (e.g., Cauwenberghs & Poggio, 2001). This step requires $\{\alpha_i, b\}$. Compute $\frac{\partial L}{\partial u}$ on \mathcal{D}_{val} according to Eq. (10). 5:// compute the gradient Set u to a unit vector aligned with $\frac{\partial L}{\partial u}$. 6: 7: $k \leftarrow k+1 \text{ and } x_c^{(p)} \leftarrow x_c^{(p-1)} + tu$ // update the poison, to increase the loss 8: until $L\left(x_{c}^{\left(p\right)}\right) - L\left(x_{c}^{\left(p-1\right)}\right) < \epsilon$ // stop if the loss doesn't increase more than ϵ 9: return: $x_c = x_c^{(p)}$

PROPOSED ATTACK ON SUPPORT VECTOR MACHINE

- Indiscriminate attack procedure
 - Draw a set of poison candidates from the validation data
 - Craft poisoning samples
 - Inject them into the original training data
 - Increase the loss of the model trained on the compromised data

- Setup
 - Datasets
 - Artificial data:
 - Binary classification: Gaussian dist. $[N(-1.5, 0.6^2) \text{ and } N(1.5, 0.6^2)]$
 - Training data : 50 samples, 25 per class
 - Validation data: 1k samples, 500 per class
 - Real data: MNIST
 - Model(s)
 - SVM [Linear vs. RBF-Kernel]

EVALUATION: POISON CRAFTING IN ARTIFICIAL DATA

• Linear SVM

EVALUATION: POISON CRAFTING IN ARTIFICIAL DATA

• SVM with RBF Kernel

- Setup
 - Datasets
 - Artificial data:
 - Binary classification: Gaussian dist. $[N(-1.5, 0.6^2) \text{ and } N(1.5, 0.6^2)]$
 - Training data : 50 samples, 25 per class
 - Validation data: 1k samples, 500 per class
 - Real data: MNIST
 - 7 vs 1 | 9 vs 8 | 4 vs 0
 - Training data : 200 samples, 100 per class
 - Validation data: 1k samples, 500 per class
 - Testing data : 4k samples, 2k per class
 - Model(s)
 - SVM [Linear vs. RBF-Kernel]

EVALUATION: REAL-DATA (MNIST)

• Linear SVM

- Results
 - Use a *single* poison
 - Error increases by 15 20%

EVALUATION: REAL-DATA (MNIST)

• Linear SVM

- Results
 - Use a *single* poison
 - Error increases by 15 20%
 - Increasing # poisons leads to a higher error

HOW VULNERABLE REGRESSION MODELS ARE?

MANIPULATING MACHINE LEARNING: POISONING ATTACKS AND COUNTERMEASURES FOR REGRESSION LEANING, JAGIELSKI ET AL., IEEE SECURITY AND PRIVACY SYMPOSIUM 2018

BACKGROUND: REGRESSION MODELS

- Regression Models [Demo]
 - DIT
 - 1. let's add some more points
 - 2. let's see how much error (*RMSE*) it increases
 - In the Paper
 - Ordinary Least Squares (OLS)
 - Ridge regression
 - LASSO
 - Elastic-net regression

THREAT MODEL

- Goal
 - Indiscriminate attack (increase the error on D_{val})
- Capability
 - Train a model f on D_{tr}
 - Inject p poisons into the training set (N(D_{tr}) = n + p)
- Knowledge [White-box vs. Black-box]
 - D_{tr} : training data (black-box adversary only has partial knowledge of D_{tr})
 - D_{val} : validation data
 - f: a model and its parameters (black-box attacker doesn't know the parameters)
 - L: training algorithm

 $\begin{array}{ll} \arg \max_{\mathcal{D}_p} & \quad \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}_p^\star) \,, \\ \text{s.t.} & \quad \boldsymbol{\theta}_p^\star \in \arg \min_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \mathcal{D}_p, \boldsymbol{\theta}) \end{array}$

- Outer-optimization: maximize the error of a model on the validation data
- Inner-optimization: minimize the model's error on the training data

PROPOSED POISONING ATTACK ON REGRESSION MODELS

Algorithm 1 Poisoning Attack Algorithm

1: $i \leftarrow 0$ (iteration counter)

2: $\boldsymbol{\theta}^{(i)} \leftarrow \arg\min_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D} \cup \mathcal{D}_n^{(i)}, \boldsymbol{\theta})$

Input: $\mathcal{D} = \mathcal{D}_{tr}$ (white-box) or \mathcal{D}'_{tr} (black-box), $\mathcal{D}', \mathcal{L}, \mathcal{W}$, the initial poisoning attack samples $\mathcal{D}_p^{(0)} = (\boldsymbol{x}_c, y_c)_{c=1}^p$, a small positive constant ε .

// train a model on the contaminated data

3: repeat $w^{(i)} \leftarrow \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}^{(i)})$ 4: $\hat{\boldsymbol{\theta}}^{(i+1)} \leftarrow \hat{\boldsymbol{\theta}}^{(i)}$ 5. for c = 1, ..., p do 6: $\boldsymbol{x}_{c}^{(i+1)} \leftarrow ext{line_search}\left(\boldsymbol{x}_{c}^{(i)}, \nabla_{\boldsymbol{x}_{c}} \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}^{(i+1)})
ight)$ 7: $\boldsymbol{\theta}^{(i+1)} \leftarrow rgmin_{\boldsymbol{ heta}} \mathcal{L}(\mathcal{D} \cup \mathcal{D}_{p}^{(i+1)}, \boldsymbol{ heta})$ 8: $w^{(i+1)} \leftarrow \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}^{(i+1)})$ 9: $i \leftarrow i + 1$ 10: 11: **until** $|w^{(i)} - w^{(i-1)}| < \varepsilon$

Output: the final poisoning attack samples $\mathcal{D}_p \leftarrow \mathcal{D}_p^{(i)}$

// update poisons to increase the loss of the model

// stop when the model doesn't change more than e

- Setup
 - Datasets: Health care | Loan | Housing
 - Models
 - Ordinary Least Square (OLS)
 - Ridge regression
 - LASSO
 - Elastic-net regression
 - Attacks
 - OptP | StatP | BGD (Prior work by Xiao et al.)
 - Defenses
 - Huber | RANSAC | Chen et al. | RONI | TRIM

- Results Summary
 - Attacks
 - OptP > StatP, BGD (Prior work)
 - StatP, BGD: varies from datasets
 - StatP > OptP: computational efficiency; StatP still shows a reasonable success rate
 - Poisons transfer: crafted on one model works for the three others

Secure-Al Systems Lab (SAIL) - CS499/579: Trustworthy Machine Learning

- Results Summary
 - Defenses
 - TRIM > Huber | RANSAC | Chen et al. | RONI
 - TRIM is computationally efficient (< 0.02 seconds on the House dataset)
 - Prior work's defenses sometimes increase errors

AI 539: TRUSTWORTHY ML TARGETED POISONING ATTACKS

Sanghyun Hong

sanghyun.hong@oregonstate.edu

RECAP: CONCEPTUAL ILLUSTRATION OF THE VULNERABILITY TO POISONING

ដ

ន

ដ

Ο

റ

ස

ដ

ន

O

TARGETED POISONING THREAT MODEL

- Goal
 - Targeted attack
 - Model causes a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Know a target (x_t, y_t)
 - Pick p candidates from test data (x_{c1}, y_{c1}) , $(x_{c2}...$ and craft poisons (x_{p1}, y_{p1}) , $(x_{p2}...$
 - Inject them into the training data
- Knowledge
 - D_{tr} : training data
 - *D_{test}*: test-set data (validation data)
 - f: a model and its parameters heta
 - A: training algorithm (e.g., mini-batch SGD)

- Goal
 - Targeted **clean-label** ($y_{c1} = y_{p1}$) attack
 - Model causes a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Know a target (x_t, y_t)
 - Pick *p* candidates from test data (x_{c1}, y_{c1}) , $(x_{c2}$... and craft poisons (x_{p1}, y_{p1}) , $(x_{p2}$...
 - Inject them into the training data
- Knowledge
 - $-D_{tr}$: training data
 - *D_{test}*: test-set data (validation data)
 - f: a model and its parameters heta
 - A: training algorithm (*e.g.*, mini-batch SGD)
 Oregon State

HOW VULNERABLE NEURAL NETWORKS ARE TO TARGETED ATTACKS?

POISON FROGS! TARGETED CLEAN-LABEL POISONING ATTACKS ON NEURAL NETWORKS, SHAFAHI ET AL., NEURIPS 2018

BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS

- A conventional view:
 - Convolutions: extract features, embeddings, latent representations, ...
 - Last layer: uses the output for a classification task

BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS

- Input-space ≠ Feature-space:
 - Two samples similar in the input-space can be far from each other in the feature-space
 - Two samples very different in the input-space can be close to each other in f

THE KEY IDEA: FEATURE COLLISION

• Goal

- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*

THE KEY IDEA: FEATURE COLLISION

• Goal

- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*

THE KEY IDEA: FEATURE COLLISION

• Goal

- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*

Goal

- You want your any poison to be closer to your target (x_t, y_t) in the feature space
- Objective:

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

- Optimization:

Algorithm 1 Poisoning Example Generation

Input: target instance t, base instance b, learning rate λ Initialize x: $x_0 \leftarrow b$ Define: $L_p(x) = ||f(\mathbf{x}) - f(\mathbf{t})||^2$ for i = 1 to maxIters do Forward step: $\widehat{x_i} = x_{i-1} - \lambda \nabla_x L_p(x_{i-1})$ Backward step: $x_i = (\hat{x}_i + \lambda \beta b)/(1 + \beta \lambda)$ end for

// construct input perturbations

// decide how much we will perturb

regon State

• Scenarios

- Scenario 1: Transfer learning
- Scenario 2: End-to-end learning

- Setup
 - Dataset: Dog vs. Fish (ImageNet)
 - Models: Inception-V3 (Pretrained on ImageNet)
- "one-shot kill" Attacks
 - Goal: Dog > Fish or Fish > Dog | All 1099 targets from the test-set
 - Craft a poison using a single image chosen from the other class
 - Train the last layer on $D_{tr} \cup (x_p, y_p)$ and check if the target's label is flipped
- Results
 - The attack succeeds with 100% accuracy
 - The accuracy drop caused by the attack is 0.2% on average

EVALUATIONS: TRANSFER LEARNING

• Examples

EVALUATIONS: END-TO-END LEARNING

- Setup
 - Dataset: CIFAR-10
 - Models: AlexNet (Pretrained on CIFAR-10)
- "end-to-end" Attacks
 - Goal: Bird > Dog or Airplane > Frog
 - Craft 1-70 poisons using the images chosen from the (Dog or Frog) class
 - Trick: watermarking!
 - Train the entire model on $D_{tr} \cup (x_p, y_p)$ and check the misclassification rate

EVALUATIONS: END-TO-END LEARNING

• Results

CAN WE IMPROVE THE TRANSFERABILITY OF TARGETED ATTACKS?

METAPOISON! PRACTICAL GENERAL-PURPOSE CLEAN-LABEL DATA POISONING, HUANG ET AL., NEURIPS 2020

- Goal
 - Targeted **clean-label** ($y_{c1} = y_{p1}$) attack
 - Model causes a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Know a target (x_t, y_t)
 - Pick p candidates from test data (x_{c1}, y_{c1}) , $(x_{c2}...$ and craft poisons (x_{p1}, y_{p1}) , $(x_{p2}...$
 - Inject them into the training data
- Knowledge

Oregon State

- $-D_{tr}$: training data
- *D_{test}*: test-set data (validation data)
- f: a model and its parameters heta
 - A: training algorithm (*e.g.,* mini-batch SGD)

• Goal

regon St

– Your poisons should work against any f and heta

- Objective:

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \quad \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

Now you don't know the f, how can you estimate this?

- Revisit the previous idea
 - Bi-level optimization

$$\begin{array}{ll} \arg \max_{\mathcal{D}_p} & \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}_p^{\star}) \,, & X_p^{\star} = \operatorname*{argmin}_{X_p} \\ \text{s.t.} & \boldsymbol{\theta}_p^{\star} \in \arg \min_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \mathcal{D}_p, \boldsymbol{\theta}) & \boldsymbol{\theta}^{\star}(X_p) = \mathrm{argmin}_{X_p} \end{array}$$

$$X_{p}^{*} = \underset{X_{p}}{\operatorname{argmin}} \mathcal{L}_{\operatorname{adv}}(x_{t}, y_{\operatorname{adv}}; \theta^{*}(X_{p}))$$
$$\theta^{*}(X_{p}) = \underset{\theta}{\operatorname{argmin}} \mathcal{L}_{\operatorname{train}}(X_{c} \cup X_{p}, Y; \theta)$$

Problem: no control over θ

THE CHALLENGE: LEARNING PROCESS

- Mode parameters are not fixed!
 - Initialization
 - Mini-batch-ed data
 - # of training epochs

Algorithm

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly **for** $t \in [T]$ **do Compute gradient** For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ **Descent** $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

THE KEY IDEA: UNROLLING

- Goal
 - You simulate all the training procedures with possible $f, \theta s$ while crafting your poisons

Algorithm 1 Craft poison examples via MetaPoison

- 1: Input Training set of images and labels (X, Y) of size N, target image x_t , adversarial class y_{adv} , ϵ and ϵ_c thresholds, $n \ll N$ subset of images to be poisoned, T range of training epochs, M randomly initialized models.
- 2: Begin
- 3: Stagger the M models, training the mth model weights θ_m up to $\lfloor mT/M \rfloor$ epochs
- 4: Select n images from the training set to be poisoned, denoted by X_p . Remaining clean images denoted X_c
- 5: For $i = 1, \ldots, C$ crafting steps:
- 6: For $m = 1, \ldots, M$ models:
- 7: Copy $\tilde{\theta} = \theta_m$
- 8: For k = 1, ..., K unroll steps^{*a*}:
- 9: $\tilde{\theta} = \tilde{\theta} \alpha \nabla_{\tilde{\theta}} \mathcal{L}_{\text{train}}(X_c \cup X_p, Y; \tilde{\theta})$
- 10: Store adversarial loss $\mathcal{L}_m = \mathcal{L}_{adv}(x_t, y_{adv}; \tilde{\theta})$
- 11: Advance epoch $\theta_m = \theta_m \alpha \nabla_{\theta_m} \mathcal{L}_{\text{train}}(X, Y; \theta_m)$
- 12: If θ_m is at epoch T + 1:
- 13: Reset θ_m to epoch 0 and reinitialize
- 14: Average adversarial losses $\mathcal{L}_{adv} = \sum_{m=1}^{M} \mathcal{L}_m / M$
- 15: Compute $\nabla_{X_p} \mathcal{L}_{adv}$
- 16: Update X_p using Adam and project onto ϵ, ϵ_c ball 17: **Return** X_p

- Setup
 - Dataset: CIFAR-10
 - Models: 6-layer ConveNet (default), ResNet20, VGG13
 - Attack hyper-parameters:
 - C: 60 | M: 24 | K: 2
- Attacks
 - 30 randomly chosen targets
 - Increase the # poisons from 1 10% of the training data n
 - Baseline:
 - Poison Frogs!

EVALUATION: TRANSFER LEARNING SCENARIO

• MetaPoison vs. Poison Frogs

EVALUATION: END-TO-END SCENARIO

EVALUATION: EXPLOITATION IN REAL-WORLD

• Results

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/current

