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RECAP: CONCEPTUAL ILLUSTRATION OF THE VULNERABILITY TO POISONING

5
\ & Linear model (SVM)

TO% Training Instances = Pristine Decision Boundary

Neural Network =>
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TARGETED POISONING THREAT MODEL

* Goal
— Targeted attack
- Model causes a misclassification of (x;, y;), while preserving acc. on D,,;

* Capability
- Know a target (x;, y;)

— Pick p candidates from test data (x.1,y.1), (xc2... and craft poisons (x,1, V1), (Xp2-..
- Inject them into the training data

* Knowledge
- D¢y :training data
— Dyt test-set data (validation data)
- f:amodel and its parameters 6

- A: training algorithm (e.g., mini-batch SGD)
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TARGETED POISONING THREAT MODEL

* Goal
— Targeted clean-label (y., = y,,) attack
- Model causes a misclassification of (x;, y;), while preserving acc. on D,,;

* Capability
- Know a target (x;, y;)

— Pick p candidates from test data (x.1,y.1), (xc2... and craft poisons (x,1, V1), (Xp2-..
- Inject them into the training data

* Knowledge

— Dyt test-set data (validation data)
- f:amodel and its parameters 6
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TOPICS FOR PART Il — DATA POISONING

* Research questions

- How can we synthesize poisoning samples for targeted attacks?
- How can we mitigate data poisoning attacks?
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HOW CAN WE PERFORM CLEAN-LABEL TARGETED ATTACKS?

POISON FROGS! TARGETED CLEAN-LABEL POISONING ATTACKS ON NEURAL NETWORKS, SHAFAHI ET AL., NEURIPS 2018
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BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS
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* A conventional view:

- Convolutions: extract features, embeddings, latent representations, ...
- Last layer: uses the output for a classification task
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BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS
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* Input-space # Feature-space:

- Two samples similar in the input-space can be far from each other in the feature-space
- Two samples very different in the input-space can be close to each otherin f
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THE KEY IDEA: FEATURE COLLISION

* Goal
- You want your any poison to be closer to your target (x;, y;) in the feature space

Fish Decision boundary
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THE KEY IDEA: FEATURE COLLISION

* Goal
- You want your any poison to be closer to your target (x;, y;) in the feature space

Decision boundary

The Fish Becomes DogFish! l
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THE KEY IDEA: FEATURE COLLISION

* Goal
- You want your any poison to be closer to your target (x;, y;) in the feature space

Decision boundary

“.,,; Oregon State
%E‘E y . 2

<7 University

Secure Al Systems Lab (SAIL) :: CS499/579 - Trustworthy ML 12



THE KEY IDEA: FEATURE COLLISION

* Goal
- You want your any poison to be closer to your target (x;, y;) in the feature space
- Objective:

p = argmin [ £(x) — f(£)l;+ 8 )x — |3

- Optimization:

Algorithm 1 Poisoning Example Generation

Input: target instance ¢, base instance b, learning rate A
Initialize x: xg < b

Define: L,(z) = || f(x) — f(t)||?

for : = 1 to mazlters do

Forward step: Z; = x;—1 — AV, Ly(zi—1) // construct input perturbations
Backward step: z; = (Z; + A8b)/(1 + BA) // decide how much we will perturb
end for
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EVALUATIONS

* Scenarios
- Scenario 1: Transfer learning
- Scenario 2: End-to-end learning
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EVALUATIONS: TRANSFER LEARNING

* Setup
- Dataset: Dog vs. Fish (ImageNet)
- Models: Inception-V3 (Pretrained on ImageNet)

* “one-shot kill” Attacks
— Goal: Dog > Fish or Fish > Dog | All 1099 targets from the test-set
- Craft a poison using a single image chosen from the other class
- Train the last layer on Dy, U (xp, ¥,) and check if the target’s label is flipped

* Results
- The attack succeeds with 100% accuracy
- The accuracy drop caused by the attack is 0.2% on average
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EVALUATIONS: TRANSFER LEARNING

* Examples

Target instances from Fish class

Clean
Base :

Poison
instances
made for
fish class
from dog
base
instances

Target instances from Dog class

Poisons
made for
dog class
from fish
bases

LR
e
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EVALUATIONS: END-TO-END LEARNING

* Setup
- Dataset: CIFAR-10
- Models: AlexNet (Pretrained on CIFAR-10)

* “end-to-end” Attacks
- Goal: Bird > Dog or Airplane > Frog
- Craft 1-70 poisons using the images chosen from the (Dog or Frog) class
- Trick: watermarking!
— Train the entire model on Dy, U (x,, y;,) and check the misclassification rate
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EVALUATIONS: END-TO-END LEARNING

e Results

success rates of various experiments 0.9 [ Successful
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HOW CAN WE IMPROVE THE TRANSFERABILITY OF CLEAN-LABEL ATT.?

METAPOISON! PRACTICAL GENERAL-PURPOSE CLEAN-LABEL DATA POISONING, HUANG ET AL., NEURIPS 2020
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REVISIT: POISONING THREAT MODEL

e Goal
— Targeted clean-label (y., = y,) attack
- Model causes a misclassification of (x;, y;), while preserving acc. on D,

e Capability
- Know a target (x;, y;)
— Pick p candidates from test data (x.1,y.1), (xc2... and craft poisons (x,1, V1), (Xp2-..
- Inject them into the training data

* Knowledge

— Diest: test-set data (validation data)
- f:amodel and its parameters 0
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REVISIT: THE KEY IDEA — FEATURE COLLISION

* Goal
- Your poisons should work against any f and 6
- Objective:

p = argmin | £(x) — f(£)[;+ 8 )x — b]3

Now you don’t know the f, how can you estimate this?

* Revisit the previous idea
- Bi-level optimization
arg maxp_ W(D',6;), X, = argmm Laay(Tt, Yadv; 0" (Xp))
s.t. 9; € argming L(Dy; U Dy, 0) 0*(X,) = argmln Lirain(Xc U X, Y 0).

|\ J
Y

Problem: no control over 6
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THE CHALLENGE: LEARNING PROCESS

* Mode parameters are not fixed!
- Initialization
- Mini-batch-ed data
- # of training epochs

Algorithm
Input: Examples {z1,...,zn}, loss function L£(0) =
~ >, £(0,z;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.
Initialize 0y randomly
for t € [T] do
Compute gradient
For each i € L;, compute g:(z;) + Vo, L(0¢, x;)
Descent
Orr1 < 0 — M8t
Output 07 and compute the overall privacy cost (e, d)
using a privacy accounting method.
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THE KEY IDEA: UNROLLING

e Goal

- You simulate all the training procedures
with possible f, 8s while crafting your poisons
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Algorithm 1 Craft poison examples via MetaPoison

1:

E

9.

10:
11:
12:
13:
14
15:
16:
17:

Input Training set of images and labels (X, Y") of size
N, target image x:, adversarial class y,4v, € and €.
thresholds, n < N subset of images to be poisoned, T’
range of training epochs, M randomly initialized mod-
els.

Begin

: Stagger the M models, training the mmth model weights

O up to [mT /M | epochs
Select n images from the training set to be poisoned,
denoted by X,. Remaining clean images denoted X
Fori=1,...,C crafting steps:
Form =1,..., M models:
Copy 0 = 0,
For k =1,..., K unroll steps®:
0 =0 — aViLiain(Xc U Xp,Y56)
Store adversarial loss L = Ladv(Tt, Yadv; 9~)
Advance epoch 0, =0.,—aVy,, Lirain(X,Y;0m)
If 0, is at epoch T" + 1:
Reset 6,,, to epoch 0 and reinitialize
Average adversarial losses La4y = Zﬂ]\le Ly /M
Compute Vx, Lagy
Update X, using Adam and project onto €, €. ball
Return X,
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EVALUATION

* Setup
- Dataset: CIFAR-10
- Models: 6-layer ConveNet (default), ResNet20, VGG13
- Attack hyper-parameters:
e C:60| M:24 | K:2

e Attacks
- 30 randomly chosen targets
- Increase the # poisons from 1 —10% of the training datan
- Baseline:
* Poison Frogs!
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EVALUATION: TRANSFER LEARNING SCENARIO

* MetaPoison vs. Poison Frogs
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EVALUATION: END-TO-END SCENARIO

* MetaPo

Oregon State

Clean Images Clean Images

Poisons

Poisons

University
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EVALUATION: EXPLOITATION IN REAL-WORLD

e Results

Google Cloud Platform

Model
unpoisoned v
Test your model
Up 10 10 images can be uploaded at a time
Predictions
1 object
bird — 0.82

Google Cloud Platform

Model
poisoned A

Test your model

UPLOAD IMAGES

Up to 10images can be uploaded at a time

Predictions

1 object

dog — 0.69
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Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/current
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