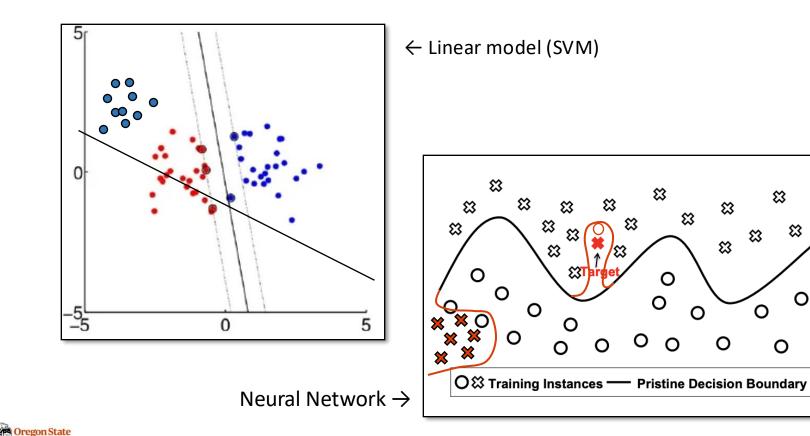
AI 539: TRUSTWORTHY ML TARGETED POISONING ATTACKS

Sanghyun Hong

sanghyun.hong@oregonstate.edu

RECAP: CONCEPTUAL ILLUSTRATION OF THE VULNERABILITY TO POISONING



Iniversity Secure AI Systems Lab (SAIL) :: CS499/579 - Trustworthy ML ដ

ឌ

ដ

Ο

റ

ස

ដ

O

TARGETED POISONING THREAT MODEL

- Goal
 - Targeted attack
 - Model causes a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Know a target (x_t, y_t)
 - Pick p candidates from test data (x_{c1}, y_{c1}) , $(x_{c2}...$ and craft poisons (x_{p1}, y_{p1}) , $(x_{p2}...$
 - Inject them into the training data
- Knowledge
 - D_{tr} : training data
 - *D_{test}*: test-set data (validation data)
 - f: a model and its parameters θ
 - A: training algorithm (e.g., mini-batch SGD)

Oregon State University

- Goal
 - Targeted **clean-label** ($y_{c1} = y_{p1}$) attack
 - Model causes a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Know a target (x_t, y_t)
 - Pick *p* candidates from test data (x_{c1}, y_{c1}) , $(x_{c2}...$ and craft poisons (x_{p1}, y_{p1}) , $(x_{p2}...$
 - Inject them into the training data
- Knowledge
 - $-D_{tr}$: training data
 - *D_{test}*: test-set data (validation data)
 - f: a model and its parameters θ
 - A: training algorithm (*e.g.*, mini-batch SGD)
 Oregon State

• Research questions

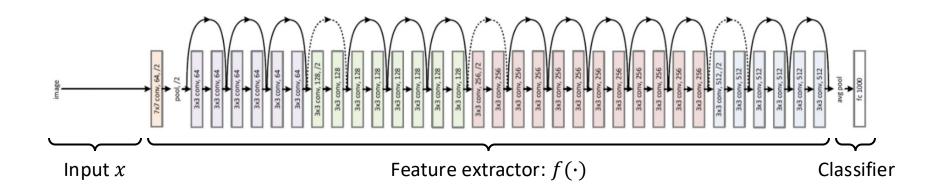
- What are some examples of poisoning attacks?
- How can we generate *indiscriminate* poisoning examples?
- How can we synthesize poisoning samples for targeted attacks?
- How can we mitigate data poisoning attacks?

HOW CAN WE PERFORM CLEAN-LABEL TARGETED ATTACKS?

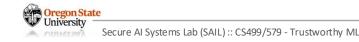
POISON FROGS! TARGETED CLEAN-LABEL POISONING ATTACKS ON NEURAL NETWORKS, SHAFAHI ET AL., NEURIPS 2018

Secure-AI Systems Lab (SAIL) - CS499/599: Trustworthy ML

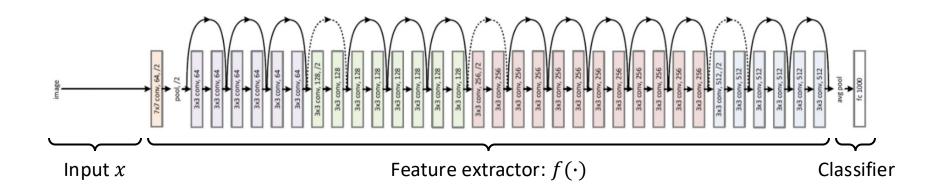
BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS



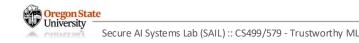
- A conventional view:
 - Convolutions: extract features, embeddings, latent representations, ...
 - Last layer: uses the output for a classification task



BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS



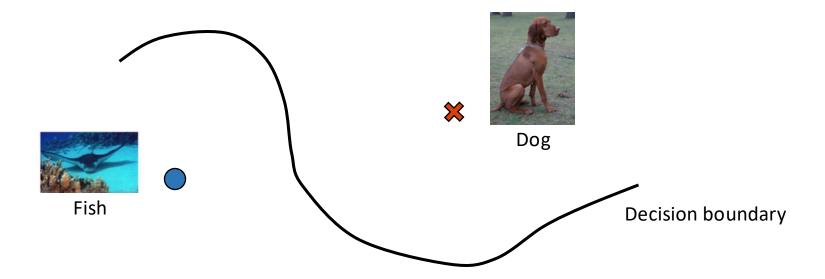
- Input-space ≠ Feature-space:
 - Two samples similar in the input-space can be far from each other in the feature-space
 - Two samples very different in the input-space can be close to each other in f



THE KEY IDEA: FEATURE COLLISION

• Goal

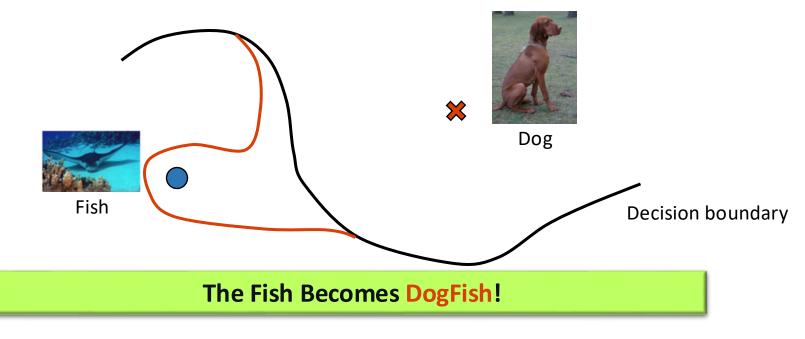
- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*



THE KEY IDEA: FEATURE COLLISION

• Goal

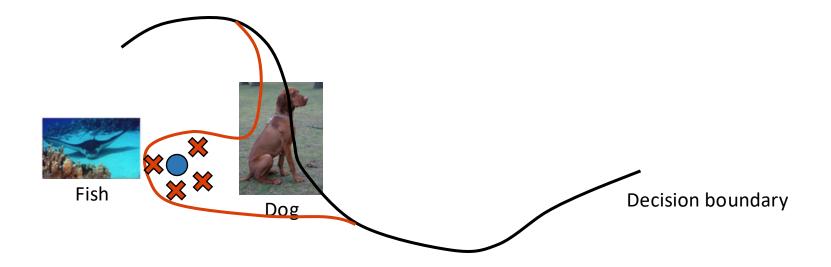
- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*



THE KEY IDEA: FEATURE COLLISION

• Goal

- You want your *any* poison to be closer to your target (x_t, y_t) in the *feature space*



Goal

- You want your any poison to be closer to your target (x_t, y_t) in the feature space
- Objective:

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

- Optimization:

Algorithm 1 Poisoning Example Generation

Input: target instance t, base instance b, learning rate λ Initialize x: $x_0 \leftarrow b$ Define: $L_p(x) = ||f(\mathbf{x}) - f(\mathbf{t})||^2$ for i = 1 to maxIters do Forward step: $\widehat{x_i} = x_{i-1} - \lambda \nabla_x L_p(x_{i-1})$ Backward step: $x_i = (\hat{x}_i + \lambda \beta b)/(1 + \beta \lambda)$ end for

// construct input perturbations

// decide how much we will perturb

EVALUATIONS

• Scenarios

- Scenario 1: Transfer learning
- Scenario 2: End-to-end learning

- Setup
 - Dataset: Dog vs. Fish (ImageNet)
 - Models: Inception-V3 (Pretrained on ImageNet)
- "one-shot kill" Attacks
 - Goal: Dog > Fish or Fish > Dog | All 1099 targets from the test-set
 - Craft a poison using a single image chosen from the other class
 - Train the last layer on $D_{tr} \cup (x_p, y_p)$ and check if the target's label is flipped
- Results
 - The attack succeeds with 100% accuracy
 - The accuracy drop caused by the attack is 0.2% on average

EVALUATIONS: TRANSFER LEARNING

• Examples

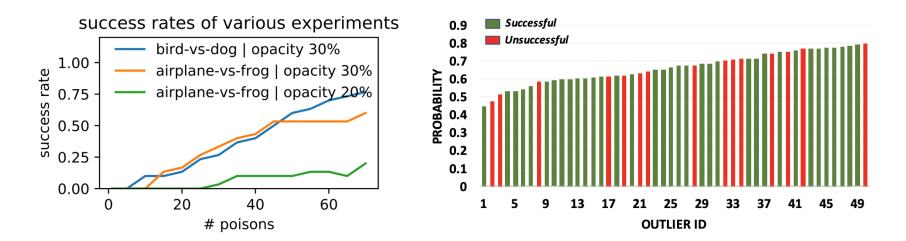


EVALUATIONS: END-TO-END LEARNING

- Setup
 - Dataset: CIFAR-10
 - Models: AlexNet (Pretrained on CIFAR-10)
- "end-to-end" Attacks
 - Goal: Bird > Dog or Airplane > Frog
 - Craft 1-70 poisons using the images chosen from the (Dog or Frog) class
 - Trick: watermarking!
 - Train the entire model on $D_{tr} \cup (x_p, y_p)$ and check the misclassification rate

EVALUATIONS: END-TO-END LEARNING

• Results



HOW CAN WE IMPROVE THE TRANSFERABILITY OF CLEAN-LABEL ATT.?

METAPOISON! PRACTICAL GENERAL-PURPOSE CLEAN-LABEL DATA POISONING, HUANG ET AL., NEURIPS 2020

Secure-AI Systems Lab (SAIL) - CS499/599: Trustworthy ML

- Goal
 - Targeted **clean-label** ($y_{c1} = y_{p1}$) attack
 - Model causes a misclassification of (x_t, y_t) , while preserving acc. on D_{val}
- Capability
 - Know a target (x_t, y_t)
 - Pick p candidates from test data (x_{c1}, y_{c1}) , $(x_{c2}...$ and craft poisons (x_{p1}, y_{p1}) , $(x_{p2}...$
 - Inject them into the training data
- Knowledge

Oregon State

- $-D_{tr}$: training data
- *D_{test}*: test-set data (validation data)
- f: a model and its parameters heta
 - A: training algorithm (*e.g.,* mini-batch SGD)

• Goal

regon St

– Your poisons should work against any f and heta

- Objective:

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \quad \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

Now you don't know the f, how can you estimate this?

- Revisit the previous idea
 - Bi-level optimization

$$\begin{array}{ll} \arg \max_{\mathcal{D}_p} & \mathcal{W}(\mathcal{D}', \boldsymbol{\theta}_p^{\star}) \,, & X_p^{\star} = \arg \max_{X_p} \\ \text{s.t.} & \boldsymbol{\theta}_p^{\star} \in \arg \min_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D}_{\mathrm{tr}} \cup \mathcal{D}_p, \boldsymbol{\theta}) & \boldsymbol{\theta}^{\star}(X_p) = \end{array}$$

$$X_{p}^{*} = \underset{X_{p}}{\operatorname{argmin}} \mathcal{L}_{\operatorname{adv}}(x_{t}, y_{\operatorname{adv}}; \theta^{*}(X_{p}))$$
$$\theta^{*}(X_{p}) = \underset{\theta}{\operatorname{argmin}} \mathcal{L}_{\operatorname{train}}(X_{c} \cup X_{p}, Y; \theta)$$

Problem: no control over θ

THE CHALLENGE: LEARNING PROCESS

- Mode parameters are not fixed!
 - Initialization
 - Mini-batch-ed data
 - # of training epochs

Algorithm

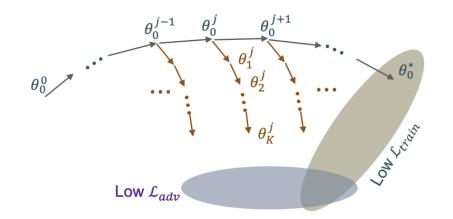
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly **for** $t \in [T]$ **do Compute gradient** For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ **Descent** $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

THE KEY IDEA: UNROLLING

Goal

Oregon State

- You *simulate all* the training procedures with *possible* $f, \theta s$ while crafting your poisons



Algorithm 1 Craft poison examples via MetaPoison

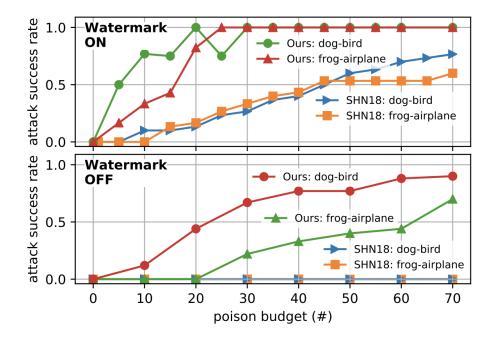
- 1: Input Training set of images and labels (X, Y) of size N, target image x_t , adversarial class y_{adv} , ϵ and ϵ_c thresholds, $n \ll N$ subset of images to be poisoned, T range of training epochs, M randomly initialized models.
- 2: Begin
- 3: Stagger the M models, training the mth model weights θ_m up to $\lfloor mT/M \rfloor$ epochs
- 4: Select n images from the training set to be poisoned, denoted by X_p . Remaining clean images denoted X_c
- 5: For $i = 1, \ldots, C$ crafting steps:
- 6: For $m = 1, \ldots, M$ models:
- 7: Copy $\tilde{\theta} = \theta_m$
- 8: For k = 1, ..., K unroll steps^{*a*}:
- 9: $\tilde{\theta} = \tilde{\theta} \alpha \nabla_{\tilde{\theta}} \mathcal{L}_{\text{train}}(X_c \cup X_p, Y; \tilde{\theta})$
- 10: Store adversarial loss $\mathcal{L}_m = \mathcal{L}_{adv}(x_t, y_{adv}; \tilde{\theta})$
- 11: Advance epoch $\theta_m = \theta_m \alpha \nabla_{\theta_m} \mathcal{L}_{train}(X, Y; \theta_m)$
- 12: If θ_m is at epoch T + 1:
- 13: Reset θ_m to epoch 0 and reinitialize
- 14: Average adversarial losses $\mathcal{L}_{adv} = \sum_{m=1}^{M} \mathcal{L}_m / M$
- 15: Compute $\nabla_{X_p} \mathcal{L}_{adv}$
- 16: Update X_p using Adam and project onto ϵ, ϵ_c ball 17: **Return** X_p

EVALUATION

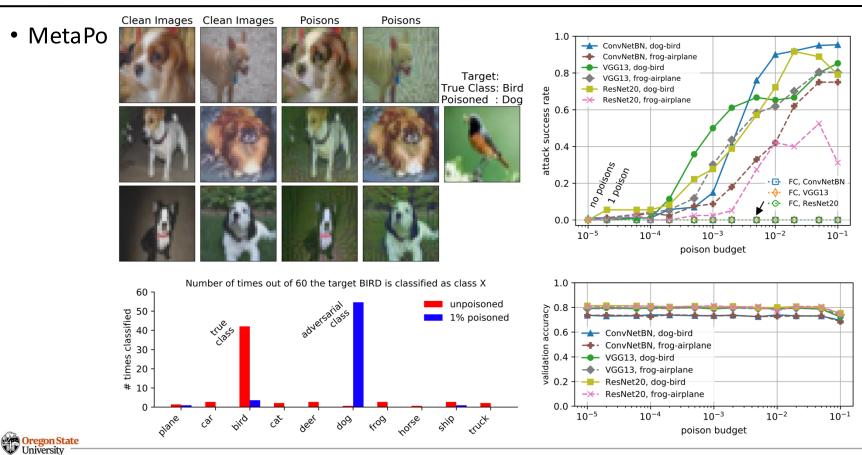
- Setup
 - Dataset: CIFAR-10
 - Models: 6-layer ConveNet (default), ResNet20, VGG13
 - Attack hyper-parameters:
 - C: 60 | M: 24 | K: 2
- Attacks
 - 30 randomly chosen targets
 - Increase the # poisons from 1 10% of the training data n
 - Baseline:
 - Poison Frogs!

EVALUATION: TRANSFER LEARNING SCENARIO

• MetaPoison vs. Poison Frogs



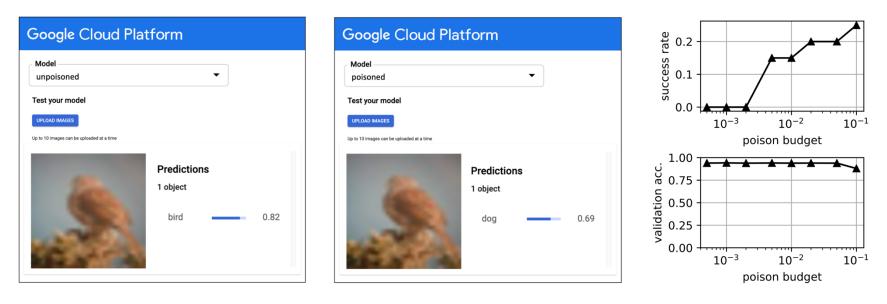
EVALUATION: END-TO-END SCENARIO



Secure AI Systems Lab (SAIL) :: CS499/579 - Trustworthy ML

EVALUATION: EXPLOITATION IN REAL-WORLD

• Results



Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/current

