NOTES

- Call for actions
 - No class on the 20th
 - Checkpoint presentation II (on the 25th)
 - 10 min presentation + 3 min Q&A
 - Presentation MUST cover:
 - 1 slide on your research topic
 - 1 slides on your research goal(s)
 - 1-2 slides on your hypothesis and evaluation design
 - 1-2 slides on your preliminary results [very important]
 - 1 slide on your next steps until the final presentation

AI 539: TRUSTWORTHY ML PRELIMINARIES ON PRIVACY

Sanghyun Hong

sanghyun.hong@oregonstate.edu

PRIVACY, PRIVACY, PRIVACY...

WHY PRIVACY MATTERS?

²https://www.muckrock.com/news/archives/2020/jan/18/clearview-ai-facial-recogniton-records/

University Secure-Al Systems Lab (SAIL) - CS499/579: Trustworthy Machine Learning

Oregon State

- Let's discuss
 - What is privacy?
 - What does privacy matter?
 - How is it different from security?

- A perfect, yet not interesting solution:
 - No learning ... but this is *not* what we want
 - Hold-on, what if we anonymize some records?

- Setup
 - Attacker: de-anonymize anonymized records
 - Victim : anonymize sensitive data records
- Knowledge
 - Additional (or auxiliary information) about the data
- Capability
 - Query your data with some techniques
 - Perform post-processing computations on q (outputs)
 - ... (many more)

President's Council of Advisors on Science and Technology, 2014

DE-ANONYMIZATION

- In ML
 - We train statistical models
 - It does not matter whether data is anonymized or not
 - Some examples
 - Cancer data
 - Demographics
 - Data about people's financial information
 - ...
- Note:
 - "Anonymization of a data record might seem easy to implement. Unfortunately, it is increasingly easy to defeat anonymization by the very techniques that are being developed for many legitimate applications of big data." [1]

[1] President's Council of Advisors on Science and Technology, 2014 Narayanan and Shmatikov, Robust De-anonymization of Large Sparse Datasets, IEEE S&P 2008

- Shannon's perfect security
 - An adversary should not distinguish a message M from a random text R

Claude Shannon (1916 ~ 2001) A Father of Information Theory and Modern Cryptography

- Shannon's perfect security
 - An adversary should not distinguish a message M from a random text R
 - Formally:
 - Pr[M = m | C = c] = Pr[M = m]
 - where
 - m is a message (from a set M)
 - c is a ciphertext (from a set of all ciphertexts C)
 - Pr[C = c | M = m] = Pr[C = c]
 - It means:
 - Ciphertext provides no additional information
 - Observing c does not help with guessing M = m
 - c is independent of the message m

Claude Shannon (1916 ~ 2001) A Father of Information Theory and Modern Cryptography

Perfect security in model training

- Potential solutions:
 - Encrypt-decrypt: encrypt the training data and decrypt it to train a model
 - Homomorphic encryption: encrypt the training data and train a model on it

- ...

• Inferences with such model(s)

- Potential problems:
 - Perfect security-based solutions are computationally expensive (than vanilla training)
 - Only a limited number of users (who has a key) may use these models

• Inferences with such model(s)

- Potential problems:
 - Perfect security-based solutions are computationally expensive (than vanilla training)
 - Only a limited number of users (who has a key) can use these models
 - Once a key is leaked, an adversary can query the model with any data

WHAT AN ADVERSARY CAN DO WITH THE QUERY ACCESS?

• ML Pipeline

• Privacy risks

- Identify your membership in the training data
- Identify (sensitive) properties of your training data
- Identify (sensitive) attribute of a person that you know
- Reconstruct a sample completely
- Reconstruct a model behind the query interface

- ...

• ML Pipeline

- Privacy risks (from the view of the work by Dwork et al.)
 - Tracing attack : Identify your membership in the training data
 - Reconstruction : Identify (sensitive) properties of your training data
 - De-anonymization: Identify (sensitive) attribute of a person that you know
 - Reconstruction : Reconstruct a sample completely
 - Reconstruction : Reconstruct a model behind the query interface

...

Dwork et al., Exposed! A Survey of Attacks on Private Data

PRIVACY THREAT MODEL

- The attack considers non-trivial cases
 - ex. Smoking causes cancer
 - Revealing this information is *not* a privacy attack
 - We know this is correlated without interacting with the target model
 - ex. A model trained on a dataset of lung cancer patients
 - ex. The model gets a patient information and returns the probability of getting the cancer
 - ex. We know the Person A is smoking
 - ex. We identify that A is in the dataset (defer the details to later on)
 - It's a non-trivial attack as we identify the information about an individual

- Setup
 - Victim:
 - Has a dataset $x = \{x_1, ..., x_n\}$ with *n*-i.i.d samples where each x_i is drawn from *P* over $\{\pm 1\}^d$
 - For each query M, the victim returns the sample mean q over given sample x_i 's
 - Attacker:
 - Perform an attack A(y, q, z) that identify whether a target instance $y \in \{\pm 1\}^d$ IN the dataset x or not (OUT) with m-i.i.d reference samples $z = \{z_1, ..., z_n\}$ and the sample mean q
 - Procedure:

- Setup
 - Victim:
 - For each *i*-th instance, the victim has (x_i, s_i) information
 - $x_i \in \{0, 1\}^d$: public info. accessible by an adversary and s_i : is the one-bit secret
 - Attacker:
 - Perform an attack A that reconstructs s_i by exploiting query outputs \hat{q} and the public information A(x, M(x, s)), where the attacker knows k > 1 public attributes

- Approximation:

- Linear statistics (e.g., linear SVM, linear regression, ...)
- Practical constraints (# Queries)
 - Ideally 2^n queries to solve the subset-sum problem
 - Practically, considering the tradeoff btw error and accuracy, we can do it in polynomial time

- Setup
 - Victim:
 - Has a model f(x) = y trained on a confidential data
 - For each query M, the victim returns the output y_i over given sample x_i 's
 - Attacker:
 - Perform an attack (i.e., trains a surrogate model f' that is functionally equivalent to f

Tramer et al., Stealing Machine Learning Models via Prediction APIs, USENIX 2016

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/current

