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EMERGING MACHINE LEARNING AS A SERVICE (MLAAS)

* You train ML models and reach out to customers
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IMLAAS INCENTIVIZES MODEL EXTRACTION ATTACKERS

Educating
patients and
clinicians with
3D printed

Building Chat Into the

DoorDash App to Improve
Deliveries

) June3,2021 ® 9MinuteRead i= Mobile, Web % 116

anatomic models

In partnership with IBM by Tom Farre ,
Watson Health, Ricoh USA 5-minute read Marina Mukhina

broadens access to 3D printing

in healthcare
Every delivery enabled by the DoorDash platform is different. Dashers (our term

for delivery drivers) meet customers in a wide range of contexts, from apartment
\l/ and office building lobbies to suburban homes. This variety of circumstances
and the timely nature of contact makes communication essential, which is why
we built chat into the DoorDash apps.

e

Educating patients and clinicians with 3D printed anatomic models  Introduction v LeamnM... Share
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POTENTIAL DOWNSTREAM THREATS

* Exploiting stolen models, an adversary can:
- Start a service with the stolen models with the same functionalities
- Use the stolen model to craft adversarial examples
- Extract private information from the stolen models
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HOW CAN WE STEAL YOUR MODEL?

STEALING MACHINE LEARNING MODELS VIA PREDICTION APIS, TRAMER ET AL., USENIX SECURITY 2016

Secure-Al Systems Lab (SAIL) - C5499/599: Trustworthy ML



THREAT MODEL

* Model extraction attacks
- Goal
* To learn a new model f that closely approximates the target model f

—_— 3 =
Knowledge % 3 g - e
. d B 2 3 e .=
* Black-box (typically) £ 2 EE 45 =z fE 34
) . . . Service 2 2 O& QK & Z7Z /&
* |t’s possible to know aux. information: Amazon [1] X X 7 /s XX X
Microsoft [38] X X v v v v v
- How does a model extract feature(s)? BigML [11] VARV VAR SR S
. , . PredictionlO [43] v X X v v X v
- What is the model’s class we aim to extract? Google [25] X v 7/ o/ L/

- What is the training algorithm / hyper-params used?

- Capability
* Has query access to the victim f (many times) with arbitrary inputs x
* Has computational power to do offline processing of query outputs f(x)
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THREAT MODEL

* Model extraction attacks
- Metrics
* Test error Ryost(f, f): the average error between the outputs of f and f on D
* Uniform error Rum-f(f, ): Riest(f, f) on a set of uniform vectors

- Extraction accuracy:

. 1—Rtest(f'f) | 1—Runif(frf)
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MODEL EXTRACTION ATTACKS

* Equation-solving attack
- Setup:
* MLaaS APIs return confidence values f(x)
* Those values are available to the attacker

- Binary logistic regression:
* Requires d + 1 predictions (queries), where d is the input dimension

- Results:
* Using d + 1 predictions, the attacker achieves the errors < 1077
* The attacker requires 41 — 113 queries depending on the tasks
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MODEL EXTRACTION ATTACKS

* Equation-solving attack
- Setup:
* MLaaS APIs return confidence values f(x)
* Those values are available to the attacker

— Multiclass LRs:
* Softmax vs. one-vs-rest (OvR)
* Requires c(d + 1) queries, where c is the number of classes

- Multi-layer perceptron (MLPs):
* Requires a - k predictions, where k is the number of unknown model parameters
* Note: this work assumes MLPs with one hidden layer
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MODEL EXTRACTION ATTACKS

* Equation-solving attack
- Setup:
* MLaaS APIs return confidence values f(x)
* Those values are available to the attacker

- Results:
* MLRs: Using c(d + 1) predictions, the attacker achieves the errors < 1077
* MLPs: Require 5x times more queries for achieving the same error rate

Model Unknowns Queries 1—Rey 1—Ryye  Time (s)
265 99.96%  99.75% 2.6

Softmax 330 530 100.00% 100.00% 31
265 99.98%  99.98% 28

OvR 530 530  100.00% 100.00% 35
1112 98.17% 94.32% 155

2225 98.68%  97.23% 168

MLP 2225 4450  99.89%  99.82% 195
11125 99.96%  99.99% 89
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MODEL EXTRACTION ATTACKS

* Equation-solving attack
- Setup:
* MLaaS APIs return confidence values f(x)
* Those values are available to the attacker

- Downstream security attacks on f:
* Training data leakage in Kernel LR (KLR)
- In KLR, the equation becomes Y o K(x,X,) + Bi - where x4, ... X5 are representers

L5 0 & 3|3 & 5 & 7

L5 0 3 2 & § & 7
(a) (b)

Figure 2: Training data leakage in KLR models. (a) Displays 5 of
20 training samples used as representers in a KLLR model (top) and 5 of
20 extracted representers (bottom). (b) For a second model, shows the
average of all 1,257 representers that the model classifies as a 3,4,5,6
or 7 (top) and 5 of 10 extracted representers (bottom).
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MODEL EXTRACTION ATTACKS

* Equation-solving attack
- Setup:
* MLaaS APIs return confidence values f(x)
* Those values are available to the attacker

- Downstream security attacks on f:
* Model inversion attacks
- Convert a black-box to a white-box setting
- In Fredrikson et al.
>The attack requires 800k queries to reconstruct 40 individuals
>>0ne can extract the model with 40k queries and achieve the same attack success

> Using the extracted f reduces the time from 16 hrs to 10 hrs

Oregon State
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MODEL EXTRACTION ATTACKS

Decision tree path-finding attack
- Setup:
* MLaaS APIs return f(x) with
- The leaf node

- (for the incomplete queries) the node whery

* Those values are available to the attacker

e {R,B,G} e {v,0}
<‘40/ (Size) ~J0
SN

Figure 3: Decision tree over features Color and Size. Shows the
path (thick green) to leaf id; on input x = {Size = 50, Color = R}.

1t Xipit < {*1,..-,%} > random initial query
2: O« {Xinit} > Set of unprocessed queries
3: P {} > Set of explored leaves with their predicates
4: while Q not empty do
5: X < Q.POP()
6: id+ O(x) > Call to the leaf identity oracle
7 if id € P then > Check if leaf already visited
8: continue
9: end if
10: for1 <i<ddo > Test all features
11; if IS_.CONTINUOUS() then
12: for (o, ] € LINE_SEARCH(X,i,€) do
13: if x; € (a, ] then
14: P[id].ADD(‘x; € (a,B]‘) > Current interval
15: else
16: Q.PUSH(x[i] = B) > New leaf to visit
17: end if
18: end for
19: else
20: S,V < CATEGORY_SPLIT(X,i,1d)
21: P[id].ADD(‘x; € §°) > Values for current leaf
22: forveVdo
23: Q.PUSH(X[]] = v) > New leaves to visit
24: end for
25: end if
26: end for
27: end while

Oregon State
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MODEL EXTRACTION ATTACKS

* Decision tree path-finding attack
- Setup:
* MLaaS APIs return f(x) with
- The leaf node
- (for the incomplete queries) the node where each computation halts
* Those values are available to the attacker

- Results:
* All leaves are unique: 100% extraction success
* Top-down: reduces # queries a lot & Duplicate leaves: a bit less effective

Without incomplete queries With incomplete queries
Model Leaves Unique IDs Depth 1 — Riest 1 — Runif Queries 1 — Riest 1 — Rynie Queries
IRS Tax Patterns 318 318 8 100.00% 100.00% 101,057 100.00% 100.00% 29,609
Steak Survey 193 28 17 92.45% 86.40% 3,652 100.00% 100.00% 4,013
GSS Survey 159 113 8 99.98% 99.61% 7,434 100.00% 99.65% 2,752
Email Importance 109 55 17 99.13% 99.90% 12,888 99.81% 99.99% 4,081
Email Spam 219 78 29 87.20% 100.00% 42,324 99.70% 100.00% 21,808
German Credit 26 25 11  100.00% 100.00% 1,722 100.00% 100.00% 1,150
Medical Cover 49 49 11 100.00% 100.00% 5,966 100.00% 100.00% 1,788
Bitcoin Price 155 155 9 100.00% 100.00% 31,956 100.00% 100.00% 7,390

@ University
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MODEL EXTRACTION ATTACKS

* What if...
- Setup:

* MLaaS APIs do not return confidence values f(x)

* The adversary can only observe labels

- Adaptive Attacks:
* The Lowd-Meek attack (~line-search)

* Re-training approach (~train a model on (x, f(x)))

- Re-training with uniform queries
- Line-search retraining
- Adaptive retraining

- Results:

* on LR models
* on MLR or MLP

Oregon State
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MODEL EXTRACTION ATTACKS

* Countermeasures

- Rounding confidences:
* On LRs, MLRs and MLPs

* On decision trees: node collision

- Differential privacy:
* Ugh...

* It’s not designed to prevent extractions

- Ensemble methods:

107!
l‘ —#— Labels only -©- 4 decimals
1072 ; -¢- 2decimals -A-- 5 decimals
R ¢ - 3 decimals No rounding
test o A
LN
1074 4 -
AEl V- mmmmm - m - ¢
ol S e g |
0 20 40 60 80 100

Budget Factor o

Figure 7: Effect of rounding on model extraction. Shows the av-
erage test error of equation-solving attacks on softmax models trained
on the benchmark suite (Table 3), as we vary the number of significant
digits in reported class probabilities. Extraction with no rounding and
with class labels only (adaptive retraining) are added for comparison.

* The adversary can approximate the ensemble itself

Oregon State
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How CAN WE DO AND EXTRACTION?

HIGH ACCURACY AND HIGH-FIDELITY EXTRACTION OF NEURAL NETWORKS, JAGIELSKI ET AL., USENIX SECURITY 2020

Secure-Al Systems Lab (SAIL) - C5499/599: Trustworthy ML
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TAXONOMY OF EXISTING MODEL EXTRACTION ATTACKS

* Threat model
- Goal: Theft + *Reconnaissance
* Theft: extraction of a target model
* Reconnaissance: conduct downstream attacks, such as adversarial attacks

OrcgonStatc *out of our scope
University
Secure-Al Systems Lab (SAIL) - C5499/599: Machine Learning Security 18



TAXONOMY OF EXISTING MODEL EXTRACTION ATTACKS

* Threat model
- Goal: Theft (extraction attack)
* Functionally-equivalent extraction, Vx, 0(x) = 0(x)
* Fidelity extraction Pr,..p[S(0(x), 0(x))], where S(+) is the similarity function
* Task-accuracy extraction Pry,y-p [argmax(0(x)) = y]

Oregon State *outof our scope
University
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TAXONOMY OF EXISTING MODEL EXTRACTION ATTACKS

* Fidelity vs. task-accuracy
- Fidelity: extracted model be similar
- Accuracy: extracted model be accurate

Figure 1: Illustrating fidelity vs. accuracy. The solid blue
line is the oracle; functionally equivalent extraction recovers
this exactly. The green dash-dot line achieves high fidelity: it
matches the oracle on all data points. The orange dashed line
achieves perfect accuracy: it classifies all points correctly.

Oregon State
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TAXONOMY OF EXISTING MODEL EXTRACTION ATTACKS

* Threat model

- Goal: Theft (extraction attack)
* Functionally-equivalent extraction, Vx, 0(x) = 0(x)
* Fidelity extraction Pr,..p[S(0(x), 0(x))], where S(+) is the similarity function
* Task-accuracy extraction Pry,y-p [argmax(0(x)) = y]

Oregon State
University

Attack Type Model type Goal Query Output
Lowd & Meek [8] Direct Recovery LM Functionally Equivalent  Labels

Tramer et al. [11] (Active) Learning LM, NN Task Accuracy, Fidelity  Probabilities, labels
Tramer et al. [11] Path finding DT Functionally Equivalent  Probabilities, labels
Milli et al. [19] (theoretical) Direct Recovery NN (2 layer) Functionally Equivalent  Gradients, logits
Milli et al. [19] Learning LM, NN Task Accuracy Gradients

Pal et al. [15] Active learning NN Fidelity Probabilities, labels
Chandrasekharan et al. [13] Active learning LM Functionally Equivalent  Labels

Copycat CNN [16] Learning CNN Task Accuracy, Fidelity ~ Labels

Papernot et al. [7] Active learning NN Fidelity Labels

CSI NN [25] Direct Recovery NN Functionally Equivalent  Power Side Channel
Knockoff Nets [12] Learning NN Task Accuracy Probabilities
Functionally equivalent (this work)  Direct Recovery NN (2 layer) Functionally Equivalent  Probabilities, logits
Efficient learning (this work) Learning NN Task Accuracy, Fidelity  Probabilities

Secure-Al Systems Lab (SAIL) - CS499/599: Machine Learning Security
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FUNCTIONALLY-EQUIVALENT EXTRACTION

* “Hard”

- # of queries for extraction:
* Suppose a neural network with 3k-width and 2-depth
* On d-dimensional domain with precision of p numbers
* The attacker needs O(p*) queries to perform a complete extraction

— Check if two networks are the same
* NP-hard problem

- Learning-based approach struggles with fidelity
* Suppose a deep random network with d-dimensional input and h-depth
* Suppose an adversary formulated as statistical query (SQ) learning
* Require exp(0(h)) samples for fidelity extraction

AR
Oregon State
University

Secure-Al Systems Lab (SAIL) - C5499/599: Machine Learning Security

22



TAXONOMY OF EXISTING MODEL EXTRACTION ATTACKS

* Threat model
- Goal: Theft (extraction attack)

* Fidelity extraction Pr,..p[S(0(x), 0(x))], where S(+) is the similarity function
* Task-accuracy extraction Pry,y-p [argmax(0(x)) = y]

- Knowledge
* Domain knowledge:

- The attacker has partial knowledge of the training dataset
- They have some pretrained models in the same domain

* Deployment knowledge
* Model access

AR
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LEARNING-BASED MODEL EXTRACTION

* Fully-supervised model extraction
- Setup:
* Adversaries have access to some datasets
* They use the victim model f as a labeling oracle
* They train a separate model f on the oracle outputs
* Objective is to make f and f achieve same test-time accuracy

- Experimental setup:
* Oracle: a model trained on 1B Instagram images (SoTA on ImageNet)
 Attacker:
- Case I: who has 10% (~13k) or 100% of the training samples (1B)

- Case Il: who improves the attack by using semi-supervised techniques (Rot. /
MixMatch)

AR
Oregon State
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LEARNING-BASED MODEL EXTRACTION

* Evaluation results
- Results (+Rot.):
* Oracle (84.2% Top-1 acc. / 97.2% in Top-5)
» Extracted models show a high accuracy (81- 94%) and fidelity (83- 97%) in Top-5
* Semi-supervised approaches (unlabeled data) improve the performance further

Architecture Data Fraction | ImageNet WSL WSL-5 ImageNet + Rot WSL + Rot WSL-5 + Rot
Resnet_v2_50 10% (81.86/82.95) (82.71/84.18)  (82.97/84.52) (82.27/84.14) (82.76/84.73)  (82.84/84.59)
Resnet_v2_200 10% (83.50/84.96)  (84.81/86.36)  (85.00/86.67) (85.10/86.29) (86.17/88.16)  (86.11/87.54)
Resnet_v2_50 100% (92.45/93.93)  (93.00/94.64)  (93.12/94.87) N/A N/A N/A
Resnet_v2_200 100% (93.70/95.11)  (94.26/96.24)  (94.21/95.85) N/A N/A N/A

Problem: Non-determinism!

Oregon State
University
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LEARNING-BASED MODEL EXTRACTION

* Evaluation results
- Sources of non-determinism:
* Initialization of model parameters
* SGD (*random mini-batches)

- Prior work on FE extraction attacks:
e Milliet al.: gradient queries
* Batina et al.: power side-channel

Query Set | Init & SGD  Same SGD  Same Init  Different

Test 93.7% 93.2% 93.1% 93.4%
Adv Ex 73.6% 65.4% 65.3% 67.1%
Uniform 65.7% 60.2% 59.0% 60.2%

Table 4: Impact of non-determinism on extraction fidelity.
Even models extracted using the same SGD and initialization
randomness as the oracle do not reach 100% fidelity.

Prior Work Assumes Too Strong Adversaries!

Oregon State
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TAXONOMY OF EXISTING MODEL EXTRACTION ATTACKS

* Threat model
- Goal: Theft (extraction attack)
* Functionally-equivalent extraction, Vx, 0(x) = 0(x)

- Knowledge
* Domain knowledge:

- The attacker has partial knowledge of the training dataset
- They have some pretrained models in the same domain

* Deployment knowledge

* Model access
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FUNCTIONALLY-EQUIVALENT MODEL EXTRACTION

* Jagielski et al. attack
- Intuition (ReLU)

* A standard choice of activation functions
* It makes neural networks piecewise-linear (let’s explo

- Attack procedures (on a 2-layer NN)

 Critical point search
* Weight recovery

* Sign recovery

* Final layer extraction

Oregon State
University
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IMODEL EXTRACTION ATTACK

* Jagielski et al. attack
- Attack procedures (on a 2-layer NN)

O(x) =APALX + BY) + BY

* Weight recovery
* Sign recovery

Ox) =
A(l)(A(O)X+B(0))+B(l)

* Final layer extraction OLx) =B
2.6 : . : .

Algorithm 1 Algorithm for 2-linearity testing. Computes the
location of the only critical point in a given range or rejects if
there is more than one.
Function f, range [r1,;], €
ft+e)—f(n)

iO)X'f' 8(10)) +B(l)

my = > Gradient at

€
my = [)=f(2=8) & Gradient at #,

1 = f(a),y2 = £(b)

/0, O (u+tv)

x=a+ )H,:”%w > Candidate critical point

J=y1+m % &> Expected value at candidate

y=f(x) &> True value at candidate

if § = y then return x 0.0 02 04 06 08 1.0
else return "More than one critical point" t

end if

Oregon State
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IMODEL EXTRACTION ATTACKS

* Jagielski et al. attack
- Attack procedures (on a 2-layer NN)
* Critical point search

- Compute second derivatives

- Estimate the ratio between two weight vectors wy, w,
* Sign recover

g y aZOL

* Final layer extraction Ay
j

e
- aej

X; xitcej

=Y A 1A (it c-e) +BY > 0)AL)
k

a0,
aej

xffc-ej

VAN 1A (xi—c-e;)+BY > O)A,(jj.)
k

=41 (141 ;> 0) = 1(-41" ¢, > 0)) AT

0),(1
+(APA)
grgg()n'?;atc
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MODEL EXTRACTION ATTACKS

* Jagielski et al. attack
- Attack procedures (on a 2-layer NN)
* Critical point search
* Weight recovery
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EVALUATION

* Proposed attacks
- Setup:
e Datasets: MNIST and CIFAR-10
* Models: 2-layer NN, 16 — 512 hidden units (~¥12 — 100k params)

- Results:

* MNIST:
- 100% fidelity on the test-set
- 2172 _ 2202 qyeries for the 100% fidelity

* CIFAR-10:
- 100% fidelity on the test-set for models with < 200k params
- 99% for the models with > 200k params
- 2172 _ 2202 gyeries for the 100% fidelity
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EVALUATION

* Hybrid strategies
- Setup:
* Learning-based extraction with gradient matching
* Error-recovery through learning

- Results:
* MNIST:
- with 4x times larger models
- 99-100% fidelity on the test-set

- 2192 _ 2222 gyeries for the 100% fidelity
(improvement over the previous results 2172
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Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23
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