
NOTICE

• Action items
− 03/11: Final term-project presentation

• 10 min presentation + 1-3 min Q&A (strict)

• Presentation MUST cover:

− 1-2 slide on your research motivation and goals

− 1-2 slides on your hypotheses and experimental design

− 3-4 slides on your most interesting results

− 1 slides on your conclusion and implications

− 03/18: Final exam (online, 24 hrs., unlimited trials)

− 03/20: Final project report (online, template is on the class website)

− 03/20: Late submissions for critiques and HW 1-4 (online)
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NOTICE

• Critique stats
− Ranks, based on “Overall Merits” and reviews “> 5” (25% of us voted)

− Top-5 “research” papers that we liked the most
• Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks

• Poisoning the Unlabeled Dataset of Semi-Supervised Learning

• Explaining and Harnessing Adversarial Examples

• Extracting Training Data from Large Language Models

• Certified Defenses for Data Poisoning Attacks

− Top-5 “research” papers that we liked the least
• Delving into Transferable Adversarial Examples and Black-box Attacks

• Model Inversion that Exploit Confidence Information and Basic Countermeasures

• Poisoning Attacks against Support Vector Machines

• Prior Convictions: Black-box Adversarial Attacks with Bandits and Priors

• The Space of Transferable Adversarial Examples
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HOW CAN WE ACHIEVE PRIVATE LEARNING?
DEEP LEARNING WITH DIFFERENTIAL PRIVACY, ABADI ET AL., ACM CCS 2015
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DEFINITION OF MEMORIZATION

• Feldman and Zhang’s
− For a training algorithm 𝐴

− Operating on a training set 𝑆

− Quantify the label memorization as follows:

− Problem: the estimation requires tons of training of a model on data
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DEFINITION OF MEMORIZATION

• Feldman and Zhang’s
− For a training algorithm 𝐴

− Operating on a training set 𝑆

− New way to quantify the label memorization

• Use the test-set to measure the memorization

• How much influence a single example on the test-set

• Memorization is high, when the influence (acc. difference) is high
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DEFINITION OF MEMORIZATION

• Feldman and Zhang’s
− New way to quantify the label memorization

• How much influence a single example on the test-set

• Memorization is high, when the influence (acc. difference) is high
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DEFINITION OF AN ALGORITHM BEING PRIVATE

• A private model (an algorithm)
− Feldman and Zhang’s label memorization

• How much influence a single example on the test-set

• Memorization is high, when the influence (acc. difference) is high

− Property of a private model

• Given any training instance, its influence on the test acc. is low
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REVISITING DIFFERENTIAL PRIVACY

• 𝜖-Differential Privacy
− A randomized algorithm 𝑀: 𝐷 → 𝑅 with domain 𝐷 and a range 𝑅 satisfies 𝜖-differential 

privacy if for any two adjacent inputs 𝑑, 𝑑′ ∈ 𝐷 and any subset of outputs 𝑆 ⊂ 𝑅 it holds
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REVISITING DIFFERENTIAL PRIVACY

Link Link

• 𝜖-Differential Privacy
− A randomized algorithm 𝑀: 𝐷 → 𝑅 with domain 𝐷 and a range 𝑅 satisfies 𝜖-differential 

privacy if for any two adjacent inputs 𝑑, 𝑑′ ∈ 𝐷 and any subset of outputs 𝑆 ⊂ 𝑅 it holds

• (𝜖, 𝛿)-Differential Privacy

− 𝛿: Represent some catastrophic failure cases [Link, Link]

− 𝛿 < 1/|d|, where |d| is the number of samples in a database
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REVISITING DIFFERENTIAL PRIVACY

• (𝜖, 𝛿)-Differential Privacy [Conceptually]

− You have two databases 𝑑, 𝑑′ differ by one item

− You make the same query 𝑀 to each and have results 𝑀(𝑑) and 𝑀(𝑑′)

− You ensure the distinguishability between the two under a measure 𝜖

• 𝜖 is large: those two are distinguishable, less private

• 𝜖 is small: the two outputs are similar, more private

− You also ensure the catastrophic failure probability under 𝛿

11



REVISITING DIFFERENTIAL PRIVACY

• (𝜖, 𝛿)-Differential Privacy

• Mechanism for (𝜖, 𝛿)-DP: Gaussian noise

− 𝑀(𝑑): (𝜖, 𝛿)-DP query output on 𝑑

− 𝑓(𝑑): non (𝜖, 𝛿)-DP (original) query output on 𝑑

− 𝑁(0, 𝑆𝑓
2 ∙ 𝜎2): Gaussian normal distribution with mean 0 and the std. of 𝑆𝑓

2 ∙ 𝜎2

Post-hoc: Set the Goal 𝜖 and Calibrate the noise 𝑆𝑓
2 ∙ 𝜎2!
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DIFFERENTIAL PRIVACY FOR MACHINE LEARNING

• Revisiting mini-batch stochastic gradient descent (SGD)
1. At each step 𝑡, it takes a mini-batch 𝐿𝑡

2. Computes the loss ℒ(𝜃) over the samples in 𝐿𝑡, w.r.t. the label 𝑦

3. Computes the gradients 𝑔𝑡  of ℒ(𝜃)

4. Update the model parameters 𝜃 towards the direction of reducing the loss

𝐷: a training set 𝜃: a model

1. Take 𝐿𝑡, and compute ℒ(𝜃)

2. Compute 𝑔𝑡 of ℒ(𝜃)

3. Update the 𝜃

This Process Should Be (𝜖, 𝛿)-DP!
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MAKE EACH MINI-BATCH SGD STEP (𝜖, 𝛿)-DP

• Mini-batch stochastic gradient descent (SGD)
1. At each step 𝑡, it takes a mini-batch 𝐿𝑡

2. Computes the loss ℒ(𝜃) over the samples in 𝐿𝑡, w.r.t. the label 𝑦

3. Computes the gradients 𝑔𝑡  of ℒ(𝜃)

4. Clip (scale) the gradients to 1/𝐶, where 𝐶 > 1

5. Add Gaussian random noise 𝑁(0, 𝜎2𝐶2𝐈) to 𝑔𝑡

6. Update the model parameters 𝜃 towards the direction of reducing the loss

𝐷: a training set 𝜃: a model

1. Take 𝐿𝑡, and compute ℒ(𝜃)

2. Compute 𝑔𝑡 of ℒ(𝜃)

3. Clip 𝑔𝑡 and add noise
4. Update the 𝜃
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MAKE THE ENTIRE TRAINING PROCESS (𝜖, 𝛿)-DP

• Mini-batch stochastic gradient descent (SGD)
− SGD iteratively computes the (𝜖, 𝛿)-DP step 𝑇 times

− Problem: how do we compute the total privacy leakage 𝜖𝑡𝑜𝑡  over 𝑇 iterations?

• Privacy accounting with moment accountant
− Key intuition: DP has the composition property

• Suppose the two mechanism M1 and M2 satisfies (𝜀1, 𝛿1)- and (𝜀2, 𝛿2)-DP
the composition of those mechanisms M3 = M2(M1) satisfies (𝜀1+𝜀2, 𝛿1+𝛿2)-DP

• If each step 𝑡 satisfies (𝜀, 𝛿)-DP, the total SGD process satisfies (𝜀𝑇, 𝛿𝑇)-DP

− Moment accountant: tracking the total privacy leakage 𝜀𝑇 over 𝑇 iterations
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PUTTING ALL TOGETHER

• DP-Stochastic Gradient Descent (DP-SGD)

𝜺, 𝛿 ← compute the privacy cost (leakage) so far
If 𝜺 > 𝜺𝒃𝒖𝒈𝒆𝒕 : then break;

// we train a model 𝜃 with the privacy budget 𝜀𝑏𝑢𝑑𝑔𝑒𝑡

// iterate over T mini-batches

// compute the gradient

// clip the magnitude of the gradients

// add Gaussian random noise to the gradients

// compute the privacy cost (leakage) up to t iterations
// if the cost is over the budget, then stop training
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EVALUATION

• Setup
− Datasets: MNIST | CIFAR-10/100

− Models:

• MNIST: 2-layer feedforward NN on 60-dim. PCA projected inputs

• CIFAR-10/100: A CNN with 2 conv. layers and 2 fully-connected layers
 

− Metrics:

• Classification accuracy

• Privacy cost (𝜀𝑏𝑢𝑑𝑔𝑒𝑡)
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• Impact of Noise
− Dataset, Models: MNIST, 2-layer feedforward NN

− Setup: 60-dim PCA projected inputs | Clipping threshold (𝐂): 4 | Noise (𝜎): 8, 4, 2 (from the left)

− Summary:

• On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)

• The accuracy of private models decreases as we decrease the privacy cost

EVALUATION
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• Impact of Noise
− Dataset, Models: MNIST, 2-layer feedforward NN

− Setup: 60-dim PCA projected inputs | Clipping threshold (𝐂): 4 | Noise (𝜎): 8, 4, 2 (from the left)

− Summary:

• On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)

• The accuracy of private models decreases as we decrease the privacy cost

EVALUATION
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• Impact of Hyper-parameter Choices
− Dataset, Models: MNIST, 2-layer feedforward NN

− Setup: 60-dim PCA projected inputs

EVALUATION
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• Impact of Noise
− Dataset, Models: CIFAR-10, CNN

− Setup: Clipping threshold (𝐂): 3 | Noise (𝜎): 6

− Summary:

• On CIFAR-10, DP-SGD offers reasonable acc. under various privacy costs (clean: 80%)

• The accuracy of private models decreases as we decrease the privacy cost

EVALUATION
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WHAT DOES IT MEAN BY EPSILON = 2/4/6 IN CIFAR-10?
EVALUATING DIFFERENTIALLY PRIVATE MACHINE LEARNING IN PRACTICE, JAYARAMAN AND EVANS, USENIX SECURITY 2019 
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EMPIRICAL EVALUATIONS OF PRIVACY RISKS IN DP-MODELS

• Setup
− Datasets: Purchase-100 | CIFAR-100 (on 50-dim PCA projected inputs)

− Models: Logistic regressions | 2-layer feedforward NNs

− Privacy Attacks:

• Membership inference: Yeom et al. and Shokri et al.

− DP-SGD: 

• Set the clipping norm (𝐂) to 1

• Set the prob. of catastrophic failures (𝛿) to 10−5 < 1/|𝑁| (N~60k in MNIST and 50k in CIFAR)

• Set the batch size to 200

• Set the learning rate to 0.01 for Adam optimizer

• Vary 𝜀 from 0.01 to 1000

• Compare (𝜖, 𝛿)-DP with other DP-mechanisms: AC, CDP, zCDP, and RDP 

• Run 5-times and measure the (TPR – FPR) and accuracy loss on average
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• Summary
− Yeom et al. and Shokri et al. are weak privacy attacks

− In other words, (𝜖, 𝛿)-DP theoretically offers very strong privacy bounds

− If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly

EVALUATION ON CIFAR-100, LRS
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• Summary
− Yeom et al. and Shokri et al. are weak privacy attacks

− In other words, (𝜖, 𝛿)-DP theoretically offers very strong privacy bounds

− If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly

− Compared to LRs, NNs leak more in higher privacy budgets

EVALUATION ON CIFAR-100, LRS
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• Summary
− Yeom et al. and Shokri et al. are weak privacy attacks

− In other words, (𝜖, 𝛿)-DP theoretically offers very strong privacy bounds

− If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly

− Compared to LRs, NNs leak more in higher privacy budgets

− Predictions (TPRs and FPRs) are more consistent in LRs than NNs in CIFAR-100

EVALUATION ON MI PREDICTIONS: LRS VS. NNS
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Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/MLSec/F23

https://secure-ai.systems/courses/MLSec/F23
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