NOTICE

e Action items

— 03/11: Final term-project presentation
presentation + Q&A (strict)
* Presentation cover:
- 1-2 slide on your research motivation and goals
- 1-2 slides on your hypotheses and experimental design
- 3-4 slides on your most interesting results
- 1 slides on your conclusion and implications

- 03/18: Final exam ( , 24 hrs., unlimited trials)
- 03/20: Final project report ( , template is on the class website)
— 03/20: Late submissions for critiques and HW 1-4 ( )

AR
Oregon State
University



NOTICE

* Critique stats

- Ranks, based on “Overall Merits” and reviews “> 5” (25% of us voted)
- Top-5 “research” papers that we liked the most
* Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks
e Poisoning the Unlabeled Dataset of Semi-Supervised Learning
e Explaining and Harnessing Adversarial Examples
Extracting Training Data from Large Language Models
Certified Defenses for Data Poisoning Attacks

- Top-5 “research” papers that we liked the least
* Delving into Transferable Adversarial Examples and Black-box Attacks

Model Inversion that Exploit Confidence Information and Basic Countermeasures
Poisoning Attacks against Support Vector Machines

Prior Convictions: Black-box Adversarial Attacks with Bandits and Priors

The Space of Transferable Adversarial Examples
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HOW CAN WE ACHIEVE PRIVATE LEARNING?

DEEP LEARNING WITH DIFFERENTIAL PRIVACY, ABADI ET AL., ACM CCS 2015

Secure-Al Systems Lab (SAIL) - C5499/599: Trustworthy ML



DEFINITION OF MEMORIZATION

* Feldman and Zhang’s
- For a training algorithm A
- Operating on a training set S
- Quantify the label memorization as follows:

nen(4,5,):= Pr [h(z)=y]~ Pr (@) =y]

- Problem: the estimation requires tons of training of a model on data
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DEFINITION OF MEMORIZATION

* Feldman and Zhang’s
- For a training algorithm A
- Operating on a training set S
to quantify the label memorization

int)(4,5,5.0) = Pr[h(f) =yl - P [h(a}) = 1)

* Use the test-set to measure the memorization
* How much influence a single example on the test-set
* Memorization is high, when the influence (acc. difference) is high
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DEFINITION OF MEMORIZATION

* Feldman and Zhang’s
to quantify the label memorization

infl(A, 54,5) = | Pr [h(z;) =yj] - hki’{g\i)[h(%) = y;]-

* How much influence a single example on the test-set
* Memorization is high, when the influence (acc. difference) is high
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(a) ImageNet (b) CIFAR-100 (c) MNIST

Figure 2: Effect on the test set accuracy of removing examples with memorization value estimate above a given
threshold and the same number of randomly chosen examples. Fraction of the training set remaining after the removal
is in the bottom plots. Shaded area in the accuracy represents one standard deviation on 100 (CIFAR-100, MNIST) and
5 (ImageNet) trials.
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DEFINITION OF AN ALGORITHM

* A private model (an algorithm)
- Feldman and Zhang’s label memorization

infl(A, 54,5) = | Pr [h(z;) =yj] - hki’{g\i)[h(%) = y;]-

* How much influence a single example on the test-set
* Memorization is high, when the influence (acc. difference) is high

- Property of a private model
* Given any training instance, its influence on the test acc. is low
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REVISITING DIFFERENTIAL PRIVACY

» ¢-Differential Privacy

- Arandomized algorithm M: D — R with domain D and a range R satisfies e-differential
privacy if for any two adjacent inputs d,d’ € D and any subset of outputs S R it holds

Pr[M(d) € S] < e° Pr[M(d’) € S]
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REVISITING DIFFERENTIAL PRIVACY

» ¢-Differential Privacy

- Arandomized algorithm M: D — R with domain D and a range R satisfies e-differential
privacy if for any two adjacent inputs d,d’ € D and any subset of outputs S R it holds

Pr[M(d) € S] < e° Pr[M(d’) € S]

* (€, 8)-Differential Privacy
Pr[M(d) € S] < e* Pr[M(d’) € S] + 6

- 0: Represent some catastrophic failure cases [Link, Link]
- 6 <1/|d]|, where |d| is the number of samples in a database
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https://desfontain.es/privacy/almost-differential-privacy.html
https://desfontain.es/privacy/privacy-loss-random-variable.html

REVISITING DIFFERENTIAL PRIVACY

* (€, 8)-Differential Privacy
Pr[M(d) € S] < e Pr[M(d’) € S] + 6

- You have two databases d, d’ differ by one item
— You make the same query M to each and have results M(d) and M(d")
- You ensure the distinguishability between the two under a measure €
* €islarge: those two are distinguishable, less private
* €is small: the two outputs are similar, more private
- You also ensure the catastrophic failure probability under
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REVISITING DIFFERENTIAL PRIVACY

* (€, 8)-Differential Privacy
Pr[M(d) € S] < e Pr[M(d’) € S] + 6

* Mechanism for (€, §)-DP: Gaussian noise
M(d) £ f(d) +N(0,S7 - o)

- M(d): (¢,6)-DP query output on d
- f(d): non (€,6)-DP (original) query output on d
- N(0,S7 - 0*): Gaussian normal distribution with mean 0 and the std. of 57 - o2

Set the Goal € and Calibrate the noise S]? g2l
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DIFFERENTIAL PRIVACY FOR MACHINE LEARNING

* Revisiting mini-batch stochastic gradient descent (SGD)
1. Ateach step t, it takes a mini-batch L;
2. Computes the loss L(8) over the samplesin L;, w.r.t. the label y
3. Computes the gradients g; of L(8)
4. Update the model parameters 8 towards the direction of reducing the loss

This Process Should Be (¢, 6)-DP! |

D: a training set 6: a model ]
. S ﬂr

o "7° o ) i --------- » 1. Take L, and compute L(0)
° ©oy 2-Compute g OfL(O) o
° | 3. Update theg ="
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MAKE EACH MINI-BATCH SGD STEP (¢, §)-DP

* Mini-batch stochastic gradient descent (SGD)
1. Ateach step t, it takes a mini-batch L;

2. Computes the loss L(8) over the samplesin L;, w.r.t. the label y
3. Computes the gradients g; of L(8)

6. Update the model parameters 8 towards the direction of reducing the loss

D: a training set 6: a model

» 1. Take L;, and compute L(60)

o N\ T
C 4 4 :‘ ). ------- 2. Compute gt OfL(Q) |
. | o | 4 Updatethes

o B © 4. Update the 6
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MAKE THE ENTIRE TRAINING PROCESS (€, 6)-DP

* Mini-batch stochastic gradient descent (SGD)
- SGD iteratively computes the (¢, §)-DP step T times
— Problem: how do we compute the total privacy leakage €;,; over T iterations?

* Privacy accounting with moment accountant
DP has the property

* Suppose the two mechanism M; and M, satisfies (&1, §1)- and (&,, 6,)-DP
the composition of those mechanisms M; = M, (M,) satisfies (g1+&5, §;+6,)-DP

* |f each step t satisfies (&, §)-DP, the total SGD process satisfies (€T, 6T)-DP

tracking the total privacy leakage €T over T iterations
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PUTTING ALL TOGETHER

* DP-Stochastic Gradient Descent (DP-SGD)

Algorithm 1 Differentially private SGD (Outline) // we train a model 6 with the privacy budget €,y ge;
Input: Examples {zi,...,zn}, loss function L(0) =

+ 3, L(0,z;). Parameters: learning rate 7, noise scale

o, group size L, gradient norm bound C.

Initialize 6y randomly

for t € [T] do // iterate over T mini-batches
Take a random sample L; with sampling probability
L/N
Compute gradient // compute the gradient

For each i € L, compute g¢(z;) < Vo, L(0, ;)
Clip gradient

8:(x:) + ge(xi)/ max (1, w) // clip the magnitude of the gradients

Add noise . . .

& L (3, 8(x:) + N(0,02C2T)) // add Gaussian random noise to the gradients
Descent

Orr1 < 0 — M8t o

£,0 € compute the privacy cost (leakage) so far // compute the privacy cost (leakage) up to t iterations
If £ > £,,,40:: then break; // if the cost is over the budget, then stop training

Output 07 and compute the overall privacy cost (g,6)
using a privacy accounting method.
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EVALUATION

* Setup
- Datasets: MNIST | CIFAR-10/100
- Models:
* MNIST: 2-layer feedforward NN on 60-dim. PCA projected inputs
* CIFAR-10/100: A CNN with 2 conv. layers and 2 fully-connected layers

- Metrics:
* Classification accuracy
* Privacy cost (&pyaget)
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EVALUATION

* Impact of Noise
- Dataset, Models: MNIST, 2-layer feedforward NN
— Setup: 60-dim PCA projected inputs | Clipping threshold (C): 4 | Noise (o): 8, 4, 2 (from the left)
- Summary:
* On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)
* The accuracy of private models decreases as we decrease the privacy cost
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EVALUATION

* Impact of Noise
- Dataset, Models: MNIST, 2-layer feedforward NN
— Setup: 60-dim PCA projected inputs | Clipping threshold (C): 4 | Noise (o): 8, 4, 2 (from the left)
- Summary:
* On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)
* The accuracy of private models decreases as we decrease the privacy cost
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EVALUATION

* Impact of Hyper-parameter Choices
- Dataset, Models: MNIST, 2-layer feedforward NN
— Setup: 60-dim PCA projected inputs
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EVALUATION

* Impact of Noise
- Dataset, Models: CIFAR-10, CNN
— Setup: Clipping threshold (C): 3 | Noise (0): 6
- Summary:
* On CIFAR-10, DP-SGD offers reasonable acc. under various privacy costs (clean: 80%)
* The accuracy of private models decreases as we decrease the privacy cost
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WHAT DOES IT MEAN BY EPSILON = 2/4/6 IN CIFAR-107?

EVALUATING DIFFERENTIALLY PRIVATE MACHINE LEARNING IN PRACTICE, JAYARAMAN AND EVANS, USENIX SECURITY 2019

Secure-Al Systems Lab (SAIL) - C5499/599: Trustworthy ML
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EMPIRICAL EVALUATIONS OF PRIVACY RISKS IN DP-MODELS

* Setup

- Datasets: Purchase-100 | CIFAR-100 (on 50-dim PCA projected inputs)
- Models: Logistic regressions | 2-layer feedforward NNs

- Privacy Attacks:

Membership inference: Yeom et al. and Shokri et al.

- DP-SGD:

AR
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Set the clipping norm (C) to 1

Set the prob. of catastrophic failures (8) to 107> < 1/| N | (N~60k in MNIST and 50k in CIFAR)
Set the batch size to 200

Set the learning rate to 0.01 for Adam optimizer

Vary € from 0.01 to 1000

Compare (€, 6)-DP with other DP-mechanisms: AC, CDP, zCDP, and RDP
Run 5-times and measure the (TPR — FPR) and accuracy loss on average
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EVALUATION ON CIFAR-100, LRs

* Summary
- Yeom et al. and Shokri et al. are weak privacy attacks

- In other words, (€, §)-DP theoretically offers very strong privacy bounds
- If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly
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EVALUATION ON CIFAR-100, LRs

* Summary

- Yeom et al. and Shokri et al. are weak privacy attacks
- In other words, (€, §)-DP theoretically offers very strong privacy bounds

- If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly

- Compared to LRs, NNs leak more in higher privacy budgets
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EVALUATION ON MI PREDICTIONS: LRs vs. NNs

* Summary

- Yeom et al. and Shokri et al. are weak privacy attacks

- In other words, (€, §)-DP theoretically offers very strong privacy bounds

- If a DP-mechanism offers stronger bound, the acc. of models decrease accordingly
- Compared to LRs, NNs leak more in higher privacy budgets

- Predictions (TPRs and FPRs) are more consistent in LRs than NNs in CIFAR-100

Run 2 Run 1

FP (4118) «— —FP (4117)

TP (5094) TP (5070)

Figure 3: Overlap of membership predictions across two runs
of logistic regression with RDP at € = 1000 (CIFAR-100)
P8 Oregon State

Run 2 Run 1

FP (2157) «— —FP (2126)

TP (6156) TP (6150)

(a) Overlap of membership predictions across two runs
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Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/MLSec/F23
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