CS 344: OPERATING SYSTEMS I O1.09: INTRODUCTION TO OPERATING SYSTEMS I

Mon/Wed 12:00 – 1:50 PM (LINC 200)

Sanghyun Hong

sanghyun.hong@oregonstate.edu

INSTRUCTOR: SANGHYUN HONG

Who am I?

- 2021 Now: Assistant Professor of Computer Science at OSU
- 2021: Ph.D. from the University of Maryland, College Park
- 2015: B.S. from Seoul National University, South Korea

What I do?

- Formal: I work at the intersection of security, privacy, and machine learning
- Informal: I "hack" machine learning, expose security threats and defeat them

What do I teach?

- CS 344: Operating Systems I
- CS 370: Introduction to Security
- CS 499: Machine Learning Security (> Trustworthy Machine Learning)

Where can you find me?

- Office: #4103 Kelley Engineering Center (KEC)
- Email: sanghyun.hong (at) oregonstate.edu | Discord Server

TOPICS FOR TODAY

Course overview

- Prerequisites
- Course information (time, location, teams, office hours, ...)
- Course structure
- Tips: how to be successful

Introduction

- What is an OS?
- Why do we study OS?
- Why do we think studying OS difficult?
- How has OS been developed?
- What are the functionalities of OS?
- What are the course topics?

Prerequisites

- Courses:
 - CS 261: Data Structures (or similar)
- Skills:
 - Good "problem-solving skills"
 - Some familiarity in C and Bash shell script languages
- Others:
 - PC or a laptop where you can access the OS1 Server for the assignments

Course information

Time and location

- **Time:** 12– 1:50 PM PST (M/W)

Classroom: #200 LINC or Zoom (No recordings)

Contacts

- SH: sanghyun.hong@oregonstate.edu

TA: Radhika Gupte (gupter@oregonstate.edu)
 Eunjin Roh (rohe@oregonstate.edu)

Online discussion: Discord server (see Canvas for the joining link)

COURSE INFORMATION

- Office hours
 - Location: on Zoom (see Canvas for the links)
 - **Time:** More than 20 hrs / week
 - Best practice:
 - Q's for the assignments TA -
 - Q's for the others SH

		Office	Hours		
Time	Mon	Tue	Wed	Thu	Fri
10:00 AM					Eunjin 10 - 12:30 PM
10:30 AM		Eunjin 10 AM - 1 PM			
11:00 AM					
11:30 AM					
12:00 PM					
12:30 PM					
1:00 PM					
1:30 PM					
2:00 PM				Radhika 1:30 - 3 PM	
2:30 PM		Radhika 1 - 4:30 PM		Radhika 1 - 4:30 PM	1100 01 111
3:00 PM		1 - 4.30 1 14			
3:30 PM			Radhika 3 - 4:30 PM		Sanghyun 3 - 4:30 PM
4:00 PM	Eunjin 2 - 6:30 PM		3 - 4.30 1 101		3 - 4.30 T W
4:30 PM	2 - 0.30 FW				
5:00 PM					
5:30 PM					
6:00 PM					

Course structure

- Tasks
 - 4 Midterm quizzes
 - 5 Programming assignments (reduced from 6 > 5)
 - 9+ Extra credit opportunities
- Grading
 - 60%: 5 Programming assignments
 - 40%: 4 Midterm quizzes
 - 20%+: Extra credit opportunities (on top of the 100% from the above two)

Course Structure

- Grading policy
 - 4 Midterm quizzes
 - **Period:** in every 2-3 weeks, you will have an online quiz (on Canvas)
 - **Method:** You will have 3 times to take each quiz
 - Timed exam: 80-120 min
 - 5 Programming assignments
 - **Period:** in every 1-3 weeks, you will have a programming assignment (on Canvas)
 - Submission penalty:
 - 0% penalty if you submit the assignment on time
 - 5% penalty for every 24 hours
 - 50% maximum penalty if you submit until the 22nd of March
 - 100% penalty if you miss these deadline without any note
 - 9+ Extra credit opportunities
 - Ad-hoc opportunities: up to SH

COURSE STRUCTURE

• Tentative schedule

- See: https://secure-ai.systems/courses/OS1/W23/syllabus.html

Schedule

*[Note] This is a tentative outline; the lecture contents or the deadlines can change depending on progress.

Date	Topics	Notes	Supplementary Materials			
	Overview and Motivation					
Mon. 01/09	Introduction to Operating Systems	[Slides]	[Reading] Resource contention [Reading] Thrashing			
Wed. 01/11	Preliminaries	[Slides] [Reading] The Missing Semester of Your CS Education [Tools/Tips] Vim configurations				
Mon. 01/16	Martin Luther King Jr. Day	[No lecture]	[Due] Syllabus Quiz			
	Part I: Processes, Threads, and Scheduling Basics					
Wed. 01/18	Processes	[Slides]				
Mon. 01/23	Threads	[Slides]	[Due] Programming Assignment I [Reading] Process scheduling [Reading] Real-Time Operating Systems (RTOS)			
Wed. 01/25	Scheduling (Basics)	[Slides]				
		Part II: Files and Fil	a Custom Pasies			

TIPS: HOW TO BE SUCCESSFUL

• Rules:

- Dont's

- Do not share your code with others
- Do not copy and paste someone else's code in yours
- Do not cheat in online quizzes
- Do not ask for the solutions on the Internet, e.g., StackOverflow

- Do's

- Brainstorm ideas
- Discuss basic concepts on Discord
- Help someone else debug if they run into a technical wall

• Tips:

- No. 1: Start programming assignment early
- No. 2: Come to classes and office hours

TOPICS FOR TODAY

Course overview

- Prerequisites
- Course information (time, location, teams, office hours, ...)
- Course structure
- Tips: how to be successful

Introduction

- What is an OS?
- Why do we study OS?
- Why do we think studying OS difficult?
- How has OS been developed?
- What are the functionalities of OS?
- What are the course topics?

WHAT IS AN OPERATING SYSTEM?

Definition

 Computer software that lies between hardware and applications

Humans Run Applications

Operating System (OS)

Hardware (CPU, GPU, Mem, ...)

WHY DO WE STUDY OS?

Many reasons:

- To graduate / to get a job
- To make new hardware and use it
- To make existing OS (e.g., iOS and Linux) better
- To understand computer systems better
- To make your software more secure and private (me...?!)
- Just for fun!

• Mine:

- OS is an exciting field of study
- OS brings many areas in computer science altogether
 - Data structure, algorithms
 - Programming languages, compilers
 - Computer hardware, architecture

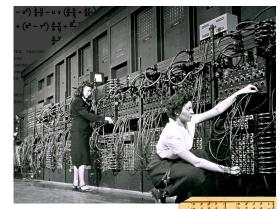
WHY DO WE THINK OS IS DIFFICULT TO STUDY?

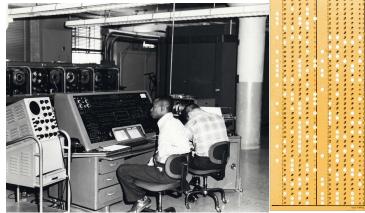
- Many reasons:
 - OS requires to understand many computer science areas
 - OS is large (10M+ lines of code; 1000+ man-years of work)
 - OS is complex (many different behaviors; hardware supports; goals)
 - OS is poorly understood (only few completely understood Linux internals)
 - ... A false sense of difficulty!

My Guess: We Are Not Familiar to How Computers Think!

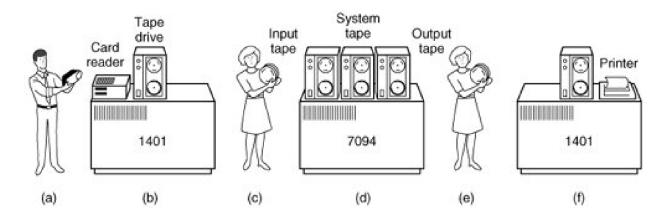
WHY DO WE THINK OS IS DIFFICULT TO STUDY?

- Study tips for CS 344:
 - Focus on problems: OS is a history of "problem-solving"
 - Memorize definitions: we name things with meanings
 - Understand solutions and their limits
 - Do hands-on exercises: write your own small programs




HOW HAS OS BEEN EVOLVED?

- Why do we care about this history?
 - Defining OS *precisely* is difficult
 - Motivation:
 - To run computer programs
 - OS has been evolved to solve "a set of problems"
 - Problems: new hardware, faster execution, multi-program supports, etc...
- Three Phases of OS History
 - Phase I: early 50s mid 60s
 - Phase II: mid 60s mid 90s
 - Phase III: mid 90s Present
 - Phase IV: It's your job!

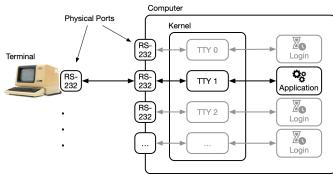

- Motivation
 - Hardware was expensive; humans are cheap
- Design objectives
 - Make efficient use of the hardware
 - Increase CPU utilization (no idle time)
- Phase I-I: Human Operator as OS
 - OS (Human) is a shared subroutine (function)
 - Only one user can run a job at a time
 - Job to job transition is slow (human...)

- Phase I-II: Simple Batch Monitor
 - OS loaded: run user jobs and take dumps
 - IBM machines
 - IBM 1401 (I/O Machine) reads cards in batch onto tape
 - IBM 7904 (Main Machine) computes and dumps results back to the tape
 - I/O Machine prints outputs from the tape

- Problem of Simple Batch Monitors
 - CPU in idle when the machines do I/O
 - CPU stops if a job in a tape has errors
- Phase I-III: Batch Monitor
 - **Solution:** let's make CPUs run while the machine is on I/O (overlap!)
 - Interrupt (asynchronous) mechanism:
 - Machine first reads a tape
 - Machine runs jobs in the tape and starts reading another tape
 - If the tape reading is done, the machine sets "ready" flag.
 - Do iteratively...

Memory
os
Job 1
Job 2 (being loaded)

- Problem of Batch Monitors
 - Run only a single job at a time
 - What if a job does some I/O? All other jobs need to wait...
- Phase I-IV: Multi-programmed Batch Monitor
 - Solution:
 - Let's make an OS run/manages multiple jobs
 - e.g., load a new job to CPUs until the I/O is done
 - OS became a focus of study
 - How can we protect multiple jobs in mem?
 - How can we manage multiple jobs in mem with a smart way?
 - How can we write programs that maximize the CPU usage?
 - Memory protection; relocation; concurrency...


Memory
os
Job 1
Job 2
Job 3
Job 4
(being loaded)
·

PHASE II: MID 60s - MID 90s

- Motivation
 - Hardware became cheap; humans are expensive
- Design objectives
 - Make efficient use of human's time
 - Reduce the idle time of humans
- Phase II-I: Interactive Time-sharing OS
 - Solution: Give terminals (cheap) to users
 - Problems:
 - CPU Time should be sliced ...
 - Not all data can be accessed by everyone ...
 - New metrics for evaluating OS ...

PHASE III: MID 90s - PRESENT

- Motivation
 - Computers became connected to each other
- Design objectives
 - Offer connected multimedia services for users
- Phase III-I: OS Built with Connectivity
 - Internet protocols added to PC OS
 - Internet (network) programming became important (Web, Python, ...)
 - Multi-tasking became much more important

Phase III: MID 90s - Present (CONT'D)

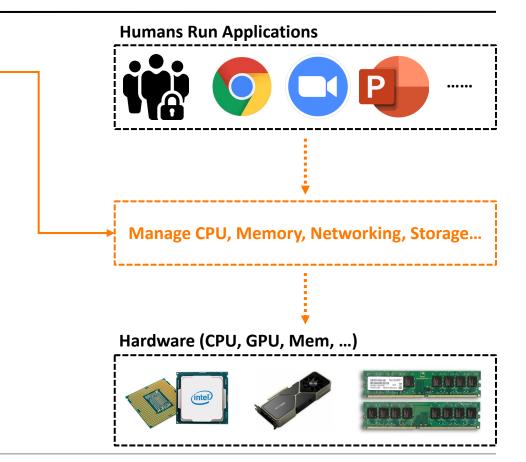
- Phase III-II: Complex PC OS
 - Computers became extremely cheap
 - Computers were equipped with sophisticated H/W architecture
 - Modern OS should be complex too to support H/W...
- Phase III-III: OS with Multimedia Support
 - Increasing demands of computer and network resources
 - Human perception became the center of universe
 - QoS (Quality of Services)
 - RTOS (Real-time OS)
 - Home appliances and computers became merged (IoT devices...)

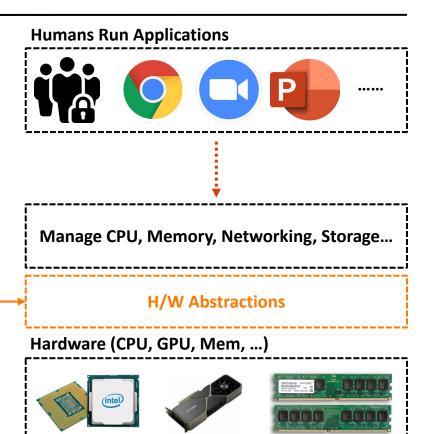
WHAT DOES OS DO?

- Functionalities of Modern OS
 - Manage resources
 - Provide abstractions
 - Offer standard interfaces

Humans Run Applications

Hardware (CPU, GPU, Mem, ...)




WHAT DOES OS DO?

- Functionalities of Modern OS
 - Manage resources
 - Provide abstractions
 - Offer standard interfaces

WHAT DO OS DO?

- Functionalities of Modern OS
 - Manage resources
 - Provide abstractions
 - Offer standard interfaces

WHAT DO OS DO?

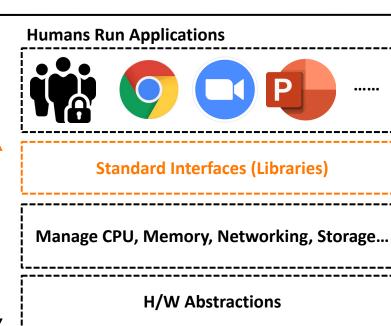
- Functionalities of Modern OS
 - Manage resources
 - Provide abstractions
 - Offer standard interfaces

Standard Interfaces (Libraries)

Manage CPU, Memory, Networking, Storage...

H/W Abstractions

Hardware (CPU, GPU, Mem, ...)



WHAT ARE THE COURSE TOPICS?

- Functionalities of Modern OS
 - Manage resources
 - Provide abstractions
 - Offer standard interfaces
- What do we learn in CS 344?
 - Standard interfaces
 - Shell (Bash), Terminal
 - C language
 - Files and directories
 - Processes (and threads)
 - Inter-process communication (IPC)
 - Networking
 - (Secure OS) Rust language

Hardware (CPU, GPU, Mem, ...)

CS 444

TOPICS FOR TODAY

- Course overview
 - Prerequisites
 - Course information (time, location, teams, office hours, ...)
 - Course structure
 - Tips: how to be successful

Introduction

- What is an OS?
- Why do we study OS?
- Why do we think studying OS difficult?
- How has OS been developed?
- What are the functionalities of OS?
- What are the course topics?

Thank You!

Mon/Wed 12:00 – 1:50 PM (LINC 200)

Sanghyun Hong

sanghyun.hong@oregonstate.edu

