
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
01.11: PRELIMINARIES

Mon/Wed 12:00 – 1:50 PM (LINC #2000)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

RECAP

• Introduction to OS
− What is an OS?
− What are the functionalities of OS?
− What are the tips for studying OS?
− What are the course topics?

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

TOPICS OVERVIEW

• Part I: How OS runs programs?
− Processes
− Threads
− Scheduling basics

• Part II: How OS loads/stores data?
− Files
− I/Os
− Filesystem internals

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

• Part III: How OS support comm.?
− Signals and PIPEs
− Sockets
− Networking

• Part IV: How OS manages programs
running on limited resources safely?

− Synchronization
− Rust

TOPICS FOR TODAY

• Preliminaries
− Connect to OS I server
− Shell + script
− Version control and editors (vim)
− C Reviews
− Debugging (GDB)

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

CONNECT TO OS1 SERVER

• Tools to connect: any SSH client
− Terminal (Mac OSX), Terminal in VS Code (Mac OS / Windows)

• How to access the OS 1 server?
− On-campus: ssh <ONID>@os1.engr.oregonstate.edu
− Off-campus:

• First, ssh to those: ssh <ONID>@access/flip.engr.oregonstate.edu
• Second, ssh to the OS 1 server: ssh <ONID>@os1.engr.oregonstate.edu

− Note: do not run any program on the access/flip servers

Secure AI Systems Lab :: CS 344 - Operating Systems I 5

CONNECT TO OS1 SERVER – CONT’D

• SSH without password
− Authentication using an SSH key
− Pro: don’t need to type password in every SSH log-in

• How to?
− Generate a private and public key pair on your PC/laptop

• Command: ssh-keygen –t ed25519 -C "<ONID>@oregonstate.edu"
• Output: you will have <keyname> and <keyname>.pub under a specified folder

− Copy the public key to the OS 1 server
• Open <keyname>.pub and copy the content
• Paste it into authorized_keys file in OS 1 server’s <your home>/.ssh folder
• Update the permission of authorized_keys file to 700: chmod 0700 authorized_key

− Try SSH command again
• ssh <ONID>@access/flip.engr.oregonstate.edu (It won’t ask the password again)

Secure AI Systems Lab :: CS 344 - Operating Systems I 6

CONNECT TO OS1 SERVER – CONT’D

• How does it work and why do we do?
− Password login is not secure against man-in-the-middle attackers
− Potential solutions:

• Encrypt login information
• Encrypt all the communications (like German’s Enigma)

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

Image source: https://developer.ibm.com/articles/au-sshsecurity/

CONNECT TO OS1 SERVER – CONT’D

• How does it work and why do we do?
− Password login is not secure against man-in-the-middle attackers
− Potential solutions:

• Encrypt login information
• Encrypt all the communications (like German’s Enigma)
• Encrypt, but not with a shared mechanism (not with a shared key)

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

Image source: https://developer.ibm.com/articles/au-sshsecurity/

CONNECT TO OS1 SERVER – CONT’D

• How does it work and why do we do?
− Password login is not secure against man-in-the-middle attackers
− Potential solutions:

• Asymmetric (public-key-based) encryption
• An authentication protocol with the asymmetric encryption

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

Image source: https://www.twilio.com/blog/what-is-public-key-cryptography

CONNECT TO OS1 SERVER – CONT’D

• How does it work and why do we do?
− Password login is not secure against man-in-the-middle attackers
− Potential solutions:

• Asymmetric (public-key-based) encryption
• An authentication protocol with the asymmetric encryption

− 1) You put your public key to the server (manually)
− 2) You ask the connection
− 3) The server encrypts a challenge with your public key and send it to you
− 4) You decrypts the package with your private key
− 6) You solve the challenge and encrypt the answer with your private key
− 7) The server decrypts the package with your public key and verifies the answer
− 8) Both establish the safe connection and communicate with the encryption

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

Image source: https://www.twilio.com/blog/what-is-public-key-cryptography

TOPICS FOR TODAY

• Preliminaries
− Connect to OS I server
− Shell + script
− Version control and editors (vim)
− C Reviews
− Debugging (GDB)

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

SHELL

• What is shell:
− Formal: A program witch exposes OS’s services to users or to other programs
− Informal: That you will see after the SSH log-in

• What are the types?
− *Bourne shell (bash), Korn shell (ksh), Z shell (zsh), C shell (csh)…

• What are the (basic) features?
− Print a message(s)
− Launch a program
− Create, rename, or remove files and directories
− See what programs running on OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

BASIC BASH SHELL COMMANDS

• Basic commands
− Print a message(s): echo
− Launch a program: ./<program name> <arguments>
− Create, rename, or remove files (and directories)

• Create a dir: mkdir (-p) <directory>
• Create a file: touch <filename>
• Move a dir/file: mv <file/directory> <destination>
• Copy a dir/file: cp -rf <file/directory>
• Remove files/dirs: rm (-r <empty directory> / -f <file> / -rf <all files and subdirectories>)
• Others:

− List files or directories: ls (-al / -alh / -t) <file or directories>
− Go to a certain directory: cd <directory path>
− Print out a file content: cat <filename>
− Print out a (log) file content being updated: tail (-f) <filename>

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

BASIC BASH SHELL COMMANDS – CONT’D

• Basic commands
− Others

• See what programs are running on OS: ps (-ef)
• See who runs what programs on OS: ps -ef | grep <username>
• See the OS version and distribution: uname (-r / -a)
• See the CPU/mem.: cat /proc/cpuinfo (or cat /proc/meminfo)
• See the directories where you are: pwd (absolute path)
• …

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

BASIC BASH SHELL COMMANDS – CONT’D

• Data wrangling
− You can run multiple commands at once: <command 1>; <command 2>; <command 3>…

− You can combine multiple commands at once:
• Sequential executions: <command 1> && <command 2>
• Store execution results of a command to a file: <command 1> > <output file>
• Run a program background: <command 1> &
• Example) run in background and store the results to a file: <command 1> > <output file> &
• Example) see the output file in real-time: tail -f <output file>

− More commands (with previous commands)
• Search for files or directories: find <directory> -name <token like *sanghyun*>
• Search for a string in files or directories: grep -nr <token like sanghyun> <directory>

Tips: Be Creative with Your Combinations!

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

BASIC BASH SHELL SETUP

• Customization
− Use the configuration file: ~/.bashrc or ~/.profile (~/ indicates your home dir.)
− Add commands you want to run when you log-in: echo “Hell-o-world”
− Create an alias of your command(s): alias os1=“ssh <ONID>@server-addr”
− … (more)

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

TOPICS FOR TODAY

• Preliminaries
− Connect to OS I server
− Shell + script
− Version control and editor (vim)
− C Reviews
− Debugging (GDB)

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

VERSION CONTROL

• Problems we may face
− What if we do accidentally rm -rf <project dir>?
− What if our computer suddenly not working?
− What if we remove a piece of code that was correct?

• Consequences
− Give up
− Re-write the code from scratch

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

VERSION CONTROL

• Solution: use version control tools
− Definition: the practice of tracking and managing changes to source code
− Available tools:

• Github
• Gitlab
• Git
• Bitbucket
• Microsoft Team Foundation
• …

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

VERSION CONTROL

• How can we use?
− Let’s do an exercise with GitHub
− Create a repository for the homework
− Create a file and modify its content
− Save the file and push to the repository
− Git commands we will use:

• $ git clone <a remote repository url>
• $ git add <files or a dir>
• $ git commit -m “message”
• $ git push
• $ git pull

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

http://github.com/

EDITORS (VIM)

• Basic functions
− Open a file: vim <filename>
− Two modes – command and edit modes
− Command modes

• Store the file: :w / Exit: :q / Store and exit: :wq
• Insert mode: i / Insert in a newline: o
• Remove texts: d <up-arrow|down-arrow>, dd, u
• Undo the edits: u
• Search texts: /<rexpr>
• Replace texts: :%s/<old-rexpr>/<new-rexpr>/g
• Copy and paste texts: yy, d<#lines> + <up/down>, p

− Edit modes
− Others

• Split screens: :sp, ctrl+w+v / Move a cursor between screens: ctrl+w+w

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

EDITORS (VIM) – CONT’D

• Let’s write an example program “overflow.c”

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

VERSION CONTROL + EDITOR (VIM)

• A sample C program: overflow.c

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

static int buffer_size = 10;

int store_name_and_print(char *buffer, char *sinput)
{

if (sinput == NULL) {
printf("Error: the argument string is NULL, abort.\n");
return -1;

}

// copy the string to my buffer
strcpy(buffer, sinput);

// check what's in the buffer
printf("My buffer holds: %s\n", buffer);

// Here, as a CS student, we will do something with buffer...

return 0;
}

// continue from the left…

int main(int argc, char *argv[])
{

char *buffer = (char *) malloc(buffer_size);
int ret = 0;

// print your name in the argument
if (argc == 2) {

ret = store_name_and_print(buffer, argv[1]);
}
else if (argc > 2) {

printf("Error: too many arguments are given - %d, abort.\n", argc);
return -E2BIG;

}
else {

printf("Error: no name given, abort.\n");
return -1;

}

return ret;
}

VERSION CONTROL

• How can we use?
− Let’s do an exercise with GitHub
− Create a repository for the homework
− Create a file and modify its content
− Save the file and push to the repository
− Git commands we will use:

• $ git clone <a remote repository url>
• $ git add <files or a dir>
• $ git commit -m “message”
• $ git push
• $ git pull

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

http://github.com/

TOPICS FOR TODAY

• Preliminaries
− Connect to OS I server
− Shell + script
− Version control and editors (vim)
− C Reviews
− Debugging (GDB)

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

C REVIEW

• Revisit the sample C Program: overflow.c

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

static int buffer_size = 10;

int store_name_and_print(char *buffer, char *sinput)
{

if (sinput == NULL) {
printf("Error: the argument string is NULL, abort.\n");
return -1;

}

// copy the string to my buffer
strcpy(buffer, sinput);

// check what's in the buffer
printf("My buffer holds: %s\n", buffer);

// TODO: as a CS student, we will do something with buffer...

return 0;
}

// continue from the left…

int main(int argc, char *argv[])
{

char *buffer = (char *) malloc(buffer_size);
int ret = 0;

// print your name in the argument
if (argc == 2) {

ret = store_name_and_print(buffer, argv[1]);
}
else if (argc > 2) {

printf("Error: too many arguments are given - %d, abort.\n", argc);
return -E2BIG;

}
else {

printf("Error: no name given, abort.\n");
return -1;

}

return ret;
}

Request OS to allocate mem.
the size is equal to 10 bytes
(malloc system call)

This program gets a single argument

Copy the string argument to
the buffer we allocated (10 bytes)

If it has more than one arg., return error.

The function takes mem. addrs
of the arguments, not the contents
(call by reference, not call by values)

C REVIEW: HOW C STORE STRING IN MEMORY

• Sample C program: overflow.c

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

.

.

.

.

.

.

S
a

n
!
\n

Special character: indicating the end of a string

10-byte buffer

C REVIEW: C DOES NOT MANAGE MEMORY AUTOMATICALLY

• Sample C program: overflow.c
− len(sinput) <= 10: We’re okay
− len(sinput) >= 10: It overwrites some unknown memory locations

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

.

.

.

.

.

.

S
a

n
!
\n

Special character: indicating the end of a string

10-byte buffer

C REVIEW: BUFFER OVERFLOW SECURITY VULNERABILITY

• Sample C program: overflow.c
− len(sinput) <= 10: We’re okay
− len(sinput) >= 10: It overwrites some unknown memory locations

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

.

.

.

.

.

.

S
a

n
!

i

10-byte buffer

\n

I can write more than I can (> 10 bytes)

C REVIEW: BUFFER OVERFLOW SECURITY VULNERABILITY

• Sample C program: overflow.c
− len(sinput) <= 10: We’re okay
− len(sinput) >= 10: It overwrites some unknown memory locations

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

.

.

.

.

.

.

S
a

n
!

i

10-byte buffer

\n

I can write more than I can (> 10 bytes)

Buffer Overflow: Think about you wrote a program [?!] at
the memory locations > 10 bytes, and that’s executable!

Now, you 0wn the system (Security Problem)!

C REVIEW: SOLUTION

• Secure programming practices

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

static int buffer_size = 10;

int store_name_and_print(char *buffer, char *sinput)
{

if (sinput == NULL) {
printf("Error: the argument string is NULL, abort.\n");
return -1;

}

// copy the string to my buffer
strncpy(buffer, sinput, buffer_size);

// check what's in the buffer
printf("My buffer holds: %s\n", buffer);

// TODO: as a CS student, we will do something with buffer...

return 0;
}

// continue from the left…

int main(int argc, char *argv[])
{

char *buffer = (char *) malloc(buffer_size);
int ret = 0;

// print your name in the argument
if (argc == 2) {

ret = store_name_and_print(buffer, argv[1]);
}
else if (argc > 2) {

printf("Error: too many arguments are given - %d, abort.\n", argc);
return -E2BIG;

}
else {

printf("Error: no name given, abort.\n");
return -1;

}

return ret;
}

Copy the string exactly 10 bytes
and then truncate the rest of it!

TOPICS FOR TODAY

• Preliminaries
− Connect to OS I server
− Shell + script
− Version control and editors (vim)
− C Reviews
− Debugging (GDB)

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

DEBUGGING WITH GDB

• Types of errors we will face:
− Static errors, such as syntax errors

• Relatively easy to fix; GCC provides error messages
− Runtime errors, such as buffer overflow:

• Hard to fix
• Program runs, but does not provide the expected outputs
• …

Secure AI Systems Lab :: CS 344 - Operating Systems I 33

DEBUGGING WITH GDB

• GDB: a tool for debugging C programs in runtime
− Pre-requisite:

• Compile our program with debug symbols (-g): gcc -g <source file> -o <output file>
• Run the executable with gdb: gdb ./<output file>

− Useful commands:
• See lines of codes: list <line #>, list
• Breakpoints: break <line #>
• Run: run / step (if you want to execute one line of code at a time)
• Backtrace: bt
• Print variables: p <variable name>
• Clear the screen: ctrl + l
• … More

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

This bt command prints out a list of functions called
The list of fn will be printed as FILO order like “stack”
#0 store_name_and_print
#1 main

https://www.sourceware.org/gdb/
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

BUFFER OVERFLOW EXPLOIT

• Sample exploit: subvert.c

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
char buf[15];
int pass = 0;

// read a name from the command line
printf("Enter your password: \n");
gets(buf);

if (strcmp(buf, "thesecretbuff")) {
printf("[Error] incorrect password\n");

}
else {

printf("Correct password, login!\n");
pass = 1;

}

// read a ssn from the command line
if (pass) {

printf("Now you are allowed to run some private queries\n");
}

return 0;
}

BUFFER OVERFLOW EXPLOIT

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

• Sample C program: subvert.c
− Normal: the password I type will be stored into the 15-byte buffer
− Attack: the password “hhhhh…hhh” will go over the 15-byte limit
− Real-world cases: Heartbleed, Shellshock

.

.

.

t
h

f
\n

15-byte buffer

If the memory holds “pass = 0” here, then “h” will set the pass to 1

h
h

.

.

.
h

h
h
.
.
.

h

h

https://heartbleed.com/
https://en.wikipedia.org/wiki/Shellshock_(software_bug)

DEBUG THIS CODE WITH GDB

• Let’s inspect the buffer status with GDB

Secure AI Systems Lab :: CS 344 - Operating Systems I 37

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
char buf[15];
int pass = 0;

// read a name from the command line
printf("Enter your password: \n");
gets(buf);

if (strcmp(buf, "thesecretbuff")) {
printf("[Error] incorrect password\n");

}
else {

printf("Correct password, login!\n");
pass = 1;

}

// read a ssn from the command line
if (pass) {

printf("Now you are allowed to run some private queries\n");
}

return 0;
}

TOPICS FOR TODAY

• Preliminaries
− Connect to OS I server
− Shell + script
− Version control and editors (vim)
− C Reviews
− Debugging (GDB)

Secure AI Systems Lab :: CS 344 - Operating Systems I 38

Thank You!

Secure AI Systems Lab

Mon/Wed 12:00 – 1:50 PM (LINC #2000)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

