CS 344: OPERATING SYSTEMS |
01.18: PART | - PROCESS

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

D
OregonState SA|L
&re UI‘llVGI'Slty Secure Al Systems Lab

NOTICE

* Announcements
— Begin office hours
* Time and locations: available on Canvas

Office Hours

e Other times: at Discord server |

Time Mon Tue Wed Thu Fri
10:00 AM
10:30 AM i Eunjin
11:00 AM 10 Eh‘:l“_l';‘m 10 - 12:30 PM
11:30 AM (Zoom) (PN
12:00 PM
12:30 PM
1:00 PM
1:30 PM Radhika
2:00 PM Radhika Radhika 1:30 -3 PM
2:30 PM 1-4:30 PM 1-4:30 PM (Zoom)
3:00 PM (2oom) Radhika | (P | gonghyun
3:30PM| Eynjin 3-4:30 PM 3-4:30 PM
4:00 PM| 2-6:30 PM (Zoom) (Zoom)
4:30Pm| (Zoom)
5:00 PM
5:30 PM
6:00 PM

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems | 2

NOTICE - CONT'D

* Announcements

— Begin office hours
* Time and locations: available on Canvas
* Other times: at Discord server

- Notes
* Discord: allow us a few hours to answer questions (2 TAs for 135+ students)
* Discord: post questions to corresponding channels (e.g., #assignment-1 for the assignment 1)
* Discord: feel free to DM instructor or TAs (Sanghyun, Radhika, or Eunjin)

* All: help others, when you already know answers
(*do not share your code with others)

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 3

NOTICE - CONT'D

* Deadlines
— (Passed) Syllabus quiz
- (1/23 11:59 PM) Programming assignment 1
- (1/30 11:59 PM) Midterm quiz 1

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

TOPICS FOR TODAY

* Part |: Process

- Provide abstraction
* What is a program?
* What is a process?
* How does OS run a program?

— Offer standard libraries
* How do we run (or stop) a process?
* How does OS manage the process(es) we ran?

- Manage resources
* (Note) We will talk about this in the “scheduling” class

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: A PROGRAM

e (Computer) Program
- Definition: a set of instructions for an OS to execute
- An example program for Linux computer

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: A PROGRAM

e (Computer) Program
- Definition: a set of instructions for an OS to execute
- An example program for Linux computer

You Source code

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int datal = 3;
myfunc();

Edit

0;

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: A PROGRAM

e (Computer) Program

- Definition: a set of instructions for an OS to execute
- An example program for Linux computer

You Source code

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int datal = 3;
myfunc();

Edit

0;

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

Compile
_

Executable

Data

Machine Code
(Instructions)

EXAMPLE: C COMPILATION WITH GCC

* GCC compilation

- It

You

Oregon State
University

converts source code to

Source code

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int datal = 3;
myfunc();

Edit

0;

Secure Al Systems Lab :: CS 344 - Operating Systems |

code (S gcc -c -S <filename.c>)

— It then converts the assembly code to
(S gce -c <filename.s> -o <filename.o>; gcc -o <filename.o> -o filename)

Compile I
|
|
|
|
|
|

GCC Assembly code

Data

Assembly Code

Compile

Executable

Data

Machine Code
(Instructions)

EXAMPLE: C COMPILATION WITH GCC

e GCC compilation
— |t converts source code to code (S gcc -c -S <filename.c>)

.file "example.c" .size myfunc, .-myfunc
.text .globl main
.globl myfunc .type main, @function
.type myfunc, @function i

myfunc:

.LFBO: .cfi_startproc
.cfi_startproc pushq %rbp
pushq %rbp .cfi_def_cfa_offset 16
.cfi_def_cfa_offset 16 .cfi_offset 6, -16
.cfi_offset 6, -16 movq %rsp, %rbp
movq %rsp, %rbp .cfi_def_cfa_register 6
.cfi_def_cfa_register 6 subq $16, %rsp
movl $4, -4(%rbp) movl $3, -4(%rbp)
movl $5, -8(%rbp) call myfunc
popq %rbp movl $0, %eax
.cfi_def_cfa 7, 8 leave
ret .cfi_def_cfa 7, 8
.cfi_endproc ret

.LFEOQ: .cfi_endproc
.size myfunc, .-myfunc .LFE1:
.globl main .size main, .-main
.type main, @function .ident "GCC: (GNU) 4.8.5 20150623 (Red Hat 4.8.5-44)"

i section .note.GNU-stack,"",@progbits
example.s

Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: A PROGRAM

e (Computer) Program
- Definition: a set of instructions for an OS to execute
- An example program for Linux computer

You Source code Executable
void myfunc(void) {
int data2 = 4; Data
int data3 = 5;
}
int main(void) {
Edit int ;:Iatal =3 Compile Machine Code
. —_—
myfunc(); (Instructions)
0;
}

Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

ex. S hexdump subvert.c

(base) osl ~/temp

0000000
0000010
0000020
0000030
0000040
0000050
0000060

0000070
0000080
0000090
00000a0
00000b0
00000c0
00000d0

457f
0002
0040
0000
0006
0040
01f8
0008
0238
0238
001c
0001
0000
Q704

464c
003e
0000
0000
0000
0040
0000
0000
0000
0040
0000
0000
0040
0000

1014$ hexdump example

0102 0001 0000 0000 0000
0001 0000 0400 0040 0000
0000 0000 1918 0000 0000
0040 0038 0009 0040 00le
0005 0000 0040 0000 0000
0000 0000 0040 0040 0000
0000 0000 01f8 0000 0000
0000 0000 0003 0000 0004
0000 0000 0238 0040 0000
0000 0000 001c 0000 0000
0000 0000 0001 0000 0000
0005 0000 0000 0000 0000
0000 0000 0000 0040 0000
0000 0000 0704 0000 0000

11

PROVIDE ABSTRACTION: A PROCESS

* (OS) Process Process on memory
. ers . OXFFF...
— Definition: an of an executing program os
- Process segments:
, , and
You Source code Executable
void myfunc(void) {
int data2 = 4; Data
int data3 = 5;
}
Edit int main(void) { Compile 05 loads &
—»| intdatal=3; . .
func()' Machlne.Code execute
my ! (Instructions)
0;
} 0x000...

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems | 12

PROVIDE ABSTRACTION: A PROCESS

* (OS) Process Process on memory
. ene . OxFFF...
— Definition: an of an executing program os
- Process segments:
! ! and Stack
You Source code Executable
void myfunc(void) {
int data2 = 4; Data Heap
int data3 = 5;
} Data
Edit int main(void) { Compile
— | intdatal=3; . R @ OS loads &
myfunc(); ac |ne. ode execute Machine Code
(Instructions) (Instructions)
0;
} 0x000...

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems | 13

PROVIDE ABSTRACTION: A PROCESS

* (OS) Process Process on memory
. ey . OxFFF...
— Definition: an of an executing program os
- Process segments:
! ! and Stack i
1
i
\ 4
You Source code Executable ?
void myfunc(void) {]
int data2 = 4; Data Heap '
int data3 = 5;
} Data
Edit int main(void) { Compile
—»| intdatal=3; "N Machinec . OS loads &
myfunc(); ac |ne. ode execute Machine Code
(Instructions) (Instructions)
0;
} 0x000...

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems | 14

PROVIDE ABSTRACTION: HOW OS DEFINES A PROCESS?

* (Linux) has the process context

- Code | Process Context: A set of information that OS requires to run a
* Program counter process on a CPU, different from CPU vendors
* Instruction pointer (ex. In Linux, it’s defined as task_struct,)

- Stack and heap

«++ 1728 struct task_struct { 852 struct sched_info sched_info;
° St k H nt r 729 #ifdef CONFIG_THREAD_INFO_IN_TASK 853
ac pOI e 730 /% 854 struct list_head tasks;
731 * For reasons of header soup (see current_thread_info()), this 855 #ifdef CONFIG SMP
. . 732 * must be the first element of task_struct. 56 . ; List nod hable_task
struc 1st_node pushable_tasks;
Heap pointer o P
734 struct thread_info thread_info; 857 struct rb_node pushable_d1_tasks;
° 735 #endif 858 #endif
— Running context e
737 860 struct mm_struct +mm;
738 #ifdef CONFIG_PREEMPT_RT 861 struct mm_struct *active_mm;
739 /% saved state for "spinlock sleepers" */
e P tate (ID
rocess state) e 740 wnsigned it saved_state; 862 ,
741 #endif 863 /* Per-thread vma caching: */
. 742 864 struct vmacache vmacache;
* E tion fl
Xxecution 11ags 73 ’ 865
744 * This begins the randomizable portion of task_struct. Only 866 #ifdef SPLIT_RSS_COUNTING
. 745 * scheduling-critical items should be added above here. 867 struct task_rss_stat rss_stat;
CPU # tO run 746 */ 868 #endif
747 randomized_struct_fields_start . ;
748 869 int exit_state;
. . . X
* (0S Il) Scheduling policy
750 refcount_t usage; 871 int exit_signal;
. . . 751 /x Per task flags (PF_x), defined further below: */ 872 /* The signal sent when the parent dies: */
752 unsigned int flags; i i ;
« (OS 1) Mem. virtualization]J = s
unsigned in ptrace; 874 /% JOBCTL_x, siglock protected: */
875 unsigned long jobctl;
= eee 876
877 /* Used for emulating ABI behavior of previous Linux versions: x/
878 unsigned int personality;
Oregon State

& Universil
ty Secure Al Systems Lab :: CS 344 - Operating Systems | 15

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

PROVIDE ABSTRACTION: HOW OS LOADS A PROCESS?

* (OS) Process Process on memory
N . OXFFF...
- Definition: an of an executing program

- Load a process:
: OS loads the instructions to “code” segments

0s

1
Stack I
: OS loads the data (such as static vars) to “data” segments :
1
and : OS creates those mem. spaces v
* (Ready) OS sets the program counter (PC) to the first code location
i
1
i
1
Heap
Data

Machine Code
(Instructions)

TP

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 16

PROVIDE ABSTRACTION: HOW OS RUNS A PROCESS?

* OS makes the CPU run the machine code Punch card
— Example: IBM machines Exgr:'[;'eop;gd' holes }’}S’Ig:stéms
e Submit that have a set of OeecO®O //load 5
©e000000 // add 8 and 5

* Machine instructions line by line and

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: HOW OS RUNS A PROCESS? - CONT'D

Punch card

* OS makes the CPU run the machine code

. Example punch holes instructions
- Example: IBM machines Pep

©e000000 // load 8 -
e Submit that have a set of Oee00eO // load 5
. ©e000000 add 8 and 5
* Machine instructions line by line and /"
- Modern computers Memory
* Machine :=a processor (CPU) . . .
Example instructions operations
* Instructions := instructions (100+ for Intel CPUs) 0x11 0x12 0x05 0x00 //load 5 to r12 <
— : 0x08 0x12 0x08 0x00 // add r12 and 8
[] —_
Punch card :=a process in .memory./ 0x12 OXF9 OxFF OxF4 // store r12
* Operates :=execute the instructions
& e =

Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: HOW OS RUNS A PROCESS? - CONT'D

 OS makes the CPU run the machine code Punch card
. . Example punch holes instructions
- Example: IBM machines 0000000 //l0ad 8 g
* Submit a punch card that have a set of instructions 0Cee00eO //load 5
* Machine reads instructions line by line and do sth. seee000 /fadd 8and 5
- Modern computers Memory

[) i =
Machine = a processor (CPU) Example instructions operations

instructions (100+ for Intel CPUs) 0x11 0x12 0x05 0x00 //load 5to r12 <
0x08 0x12 0x08 0x00 //add rl2 and 8
0x12 OxF9 OxFF OxF4 // store r12

* |nstructions:
* Punch card :=a process in memory
* Operates :=execute the instructions

The program counter (PC) in a CPU is always holding the

memory address where the next instruction to execute is

Ao
Oregon State
& University -

: Secure Al Systems Lab :: CS 344 - Operating Systems | 19

PROVIDE ABSTRACTION: HOW OS LOADS/RUNS A PROCESS?

* (OS) Process Process on memory
N . OXFFF...
- Definition: an of an executing program

- Load a process:
: OS loads the instructions to “code” segments

0s

1
Stack I
: OS loads the data (such as static vars) to “data” segments :
1
and : OS creates those mem. spaces v
* (Ready) OS sets the program counter (PC) to the first code location
i
1
i
1
Heap
Data

Machine Code
(Instructions)

TP

Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 20

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
- Definition: Both are the
- Stack
the memory allocations (size)
 Store data in Last in first out () manner
 Stack mostly holds data initialized within a function

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

Memory

0S

DU 5 R -

Data

Machine Code
(Instructions)

21

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
- Definition: Both are the
- Stack
the memory allocations (size)
 Store data in Last in first out () manner
 Stack mostly holds data initialized within a function

void myfunc(void) {
int data2 = 4;
int data3 = 5;

!

int main(void) {
int datal = 3; <---- Run
myfunc();

0;

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack

0S

Data l

Data

Machine Code
(Instructions)

22

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
- Definition: Both are the
- Stack
the memory allocations (size)
 Store data in Last in first out () manner
 Stack mostly holds data initialized within a function

void myfunc(void) {
int data2 = 4; <---- Run
int data3 = 5;

!

int main(void) {
int datal =3;
myfunc();

0;

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack

0S

Data l

Data 2

Data

Machine Code
(Instructions)

23

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
- Definition: Both are the
- Stack
the memory allocations (size)
 Store data in Last in first out () manner
 Stack mostly holds data initialized within a function

void myfunc(void) {
int data2 = 4;
int data3 = 5; <---- Run

}

int main(void) {
int datal =3;
myfunc();

0;

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack

0S

Data l

Data 2

Data 3

DU 5 R -

Data

Machine Code
(Instructions)

24

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
- Definition: Both are the
- Stack
the memory allocations (size)
 Store data in Last in first out () manner
 Stack mostly holds data initialized within a function

void myfunc(void) {
int data2 = 4;
int data3 = 5;

!

int main(void) {
int datal =3;
myfunc();

0; <---- Run

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack

0S

Data l

Data

Machine Code
(Instructions)

25

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
— Definition: Both are the areas of memory
- Heap

Oregon State
University

* User allocates the memory with a specific size

* OS finds an empty space and then place the mem.

* Mem. fragmentation (also mem. leak!) can occur

Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack

Heap

(013

0s

‘----I---

] '""""I->

Data

Machine Code
(Instructions)

Data

Machine Code
(Instructions)

26

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
— Definition: Both are the areas of memory
- Heap
* User allocates the memory with a specific size

* OS finds an empty space and then place the mem.

* Mem. fragmentation (also mem. leak!) can occur

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
char *datal = (char *) malloc(1); <---- Run
myfunc();

return O;

Ao
Oregon State }
& University -
: Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack Heap
oS (0}
]
1
1
]
_

1
1
1
1
1
1
1
1
v

Data l

Data Data

Machine Code
(Instructions)

Machine Code
(Instructions)

27

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
— Definition: Both are the areas of memory
- Heap
* User allocates the memory with a specific size

* OS finds an empty space and then place the mem.

* Mem. fragmentation (also mem. leak!) can occur

void myfunc(void) {
char *data2 = (char *) malloc(5); <---- Run
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
char *datal = (char *) malloc(1);
myfunc();

return O;

Ao
Oregon State }
& University -
: Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack Heap
oS (0}
]
1
1
]
1

1
1
1

: Data 2
i
1
v

Data l

Data Data

Machine Code
(Instructions)

Machine Code
(Instructions)

28

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
— Definition: Both are the areas of memory
- Heap
* User allocates the memory with a specific size

* OS finds an empty space and then place the mem.

* Mem. fragmentation (also mem. leak!) can occur

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2); <---- Run
free(data2);

}

int main(void) {
char *datal = (char *) malloc(1);
myfunc();

return O;

Ao
Oregon State }
& University -
: Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack

Heap

(013

0s

‘----I---

Data

Machine Code
(Instructions)

*

Data 2

Data l

Data

Machine Code
(Instructions)

29

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
— Definition: Both are the areas of memory
- Heap
* User allocates the memory with a specific size

* OS finds an empty space and then place the mem.

* Mem. fragmentation (also mem. leak!) can occur

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2); <---- Run

}

int main(void) {
char *datal = (char *) malloc(1);
myfunc();

return O;

Ao
Oregon State }
& University -
: Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack Heap
0S oS

| t

1

]

_I -

1 I

1 I

1 I

1 I

1 I

1 I

1 I

1 I

v i
Datal !

Data Data

Machine Code
(Instructions)

Machine Code
(Instructions)

30

PROVIDE ABSTRACTION: STACK VS. HEAP

 Stack vs. heap
— Definition: Both are the areas of memory
- Heap
* User allocates the memory with a specific size

* OS finds an empty space and then place the mem.

* Mem. fragmentation (also mem. leak!) can occur

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
char *datal = (char *) malloc(1);
myfunc();

return O; <---- Run

Ao
Oregon State }
& University -
: Secure Al Systems Lab :: CS 344 - Operating Systems |

Stack Heap
0S oS

| t

1

]

_I -

1 I

1 I

1 I

1 I

1 I

1 I

1 I

1 I

v i
Datal !

Data Data

Machine Code
(Instructions)

Machine Code
(Instructions)

31

TOPICS FOR TODAY

* Part |: Process

- Provide abstraction
* What is a program?
* What is a process?
* How does OS run a program?

— Offer standard libraries
* How do we run (or stop) a process?
* How does OS manage the process(es) we ran?

- Manage resources
* (Note) We will talk about this in the “scheduling” class

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

32

OFFERS STANDARD INTERFACE

* How do we run a process?
— Double click an icon
- Type ./<program name> in the terminal

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

33

OFFERS STANDARD INTERFACE: SYSTEM CALL

* System call
- Definition: a user-level function call to request a service from the OS
- Example: when we allocate memory with “malloc()”

User program OS Kernel

void myfunc(void) {

char *data2 = (char *) malloc(5); wczzzzzzzzzzs-—=—=-=--- - Kernel allocates the memory space

char *data3 = (char *) malloc(2); i that has the size of 5 bytes, and

free(data2); | return the starting address of this
} e memory to the user’s program

int main(void) {
int num = 100;
myfunc();

return O;

}

Ao
Oregon State
& University -

: Secure Al Systems Lab :: CS 344 - Operating Systems |

34

OFFERS STANDARD INTERFACE: SYSTEM CALL

» OS offers a set of system calls
— To create/terminate a process
— To open/read/write/close a file
— To request/release a device (such as display, mouse, etc.)
— To request/modify system information
— To initiate/close networking
— To set the security properties

Limited HWV access Full HWV access

Oregon State 1Searched for this image with keyword “system calls” on Google

dvea

¥ University

Secure Al Systems Lab :: CS 344 - Operating Systems | 35

OFFERS STANDARD INTERFACE: FORK SYSTEM CALL

* fork() system call
- Operation:
* Create a new process that is an exact copy of the calling process
* Return the process ID (PID) of a new process (and if it’s in child, returns 0)

Parent process Child process
Stack Stack
fork()
Data > Data
Code Code
(Instructions) (Instructions)

Ao
Oregon State
& University -

: Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFERS STANDARD INTERFACE:

SYSTEM CALL

* folk() sample code in C

#tinclude <stdio.h>
#include <sys/types.h>

#tinclude <

unistd.h>

int main(void) {
int number = 10;

pid_t pid; process

(pid = fork()) {

Execution result (sample):
| am a child process [11]!
| will be executed by both
| am a parent process [9]!
| will be executed by both

process (pid = fork()) {

1. (pid = child’s PID)

perror ("fork");
exit (1);
0:
number++;
printf("l am a child process [%d]!", number);

’

number--;
printf("l am a parent process [%d]!", number)

}

printf("|

’

will be executed by both");

0;

}

Oregon State
University

Secure Al Systems Lab :: CS 344 - Operating Systems |

’

D

(pid = 0) 1
perror ("fork");
exit (1);
0:
number++;
printf("l am a child process [%d]!", number);

’

number--;
printf("l am a parent process [%d]!", number);

’

}

printf("l will be executed by both");
0;

——————

——————

OFFERS STANDARD INTERFACE: SYSTEM CALL

* fork() system call
- Operation:
* Create a new process that is an exact copy of the calling process
* Return the process ID (PID) of a new process (and if it’s in child, returns 0)

e Other system calls

— exec(program to run):
* Create a new process with fork() and dump the program to run into it
* Return 0 if exec() is successful; otherwise, it returns the corresponding error

- wait(status) or wait(PID):
* Make the current process wait until the status (of a process, PID) changes
* Returns the PID of the process that changes the status; otherwise, -1

— exit() or kill():
* Terminate the process with the given PID

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

38

OFFERS STANDARD INTERFACE: EXEC SYSTEM CALL

* exec() system call

-0

Parent process

peration:

* Create a new process with fork() and dump the program to run into it

* Return 0 if exec() is successful; otherwise, it returns the corresponding error

Stack

Data

Code
(Instructions)

fork()

Child process

Oregon State
o University

Secure Al Systems Lab :: CS 344 - Operating Systems |

v

Stack

Data

Code
(Instructions)

(*Updated) Child process

Dump a new program

New Stack

New Heap

39

OFFERS STANDARD INTERFACE: WHAT IF WE DD FORK INFINITELY?

 fork() bomb (link)
— A DoS attack that a process continuously fork() to deplete available system resources
- Consequence: resource starvation
- Defense: limit the number of processes a user can create (check with S ulimit -u)

* Take-aways
— An attacker can exploit the standard interfaces for achieving adversarial goals
— We should consider the worst-cases when designing/offering such interfaces
- Defense mechanisms should also be offered to defeat such attacks

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

40

https://en.wikipedia.org/wiki/Fork_bomb

OFFER STANDARD INTERFACE: HOW OS MANAGES PROCESSES?

e Possible scenarios
- S1: Recursively fork()

fork fork Pr fork() ...
Process () Process () ocess

— S2: Multiple fork()s from a process

fork fork
Process () Process ork()
Process fork() ..
—>
Process fork() = ..
—

What Would Be the Best Data Structure to Manage Processes?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: HOW OS MANAGES PROCESSES?

* fork() tree
- OS manages processes with a tree
— Use (S pstree) command to see the tree!
— Root of the fork() tree (in Linux)

* PID=0: Sched (swapper) process

* PID=1: Init process

P2

Oregon State
University

dvea

Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: HOW OS MANAGES PROCESSES?

* fork() tree
- OS manages processes with a tree
— Use (S pstree) command to see the tree!
— Root of the fork() tree (in Linux)

* PID=0: Sched (swapper) process

* PID=1: Init process

* Properties
— User processes always have a parent

- If we kill the parent, all the child processes will be killed, too
(an exception, any process launched by S nohup or S disown)

— PIDs allocated by OS increases as we fork() more

P2

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

TOPICS COVERED TODAY

e Part |: Process

— Offer standard libraries
* How do we run (or stop) a process?
* How does OS manage the process(es) we ran?
- Manage resources
* (Note) We will talk about this in the “scheduling” class

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

44

Thank You!

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVEI'Slty Secure Al Systems Lab

