
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
01.18: PART I - PROCESS

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu



NOTICE

• Announcements
− Begin office hours

• Time and locations: available on Canvas
• Other times: at Discord server

Secure AI Systems Lab :: CS 344 - Operating Systems I 2



NOTICE – CONT’D

• Announcements
− Begin office hours

• Time and locations: available on Canvas
• Other times: at Discord server

− Notes
• Discord: allow us a few hours to answer questions (2 TAs for 135+ students)
• Discord: post questions to corresponding channels (e.g., #assignment-1 for the assignment 1)
• Discord: feel free to DM instructor or TAs (Sanghyun, Radhika, or Eunjin)
• All: help others, when you already know answers

(*do not share your code with others)

Secure AI Systems Lab :: CS 344 - Operating Systems I 3



NOTICE – CONT’D

• Deadlines
− (Passed) Syllabus quiz
− (1/23 11:59 PM) Programming assignment 1
− (1/30 11:59 PM) Midterm quiz 1

Secure AI Systems Lab :: CS 344 - Operating Systems I 4



TOPICS FOR TODAY

• Part I: Process
− Provide abstraction

• What is a program?
• What is a process?
• How does OS run a program?

− Offer standard libraries
• How do we run (or stop) a process?
• How does OS manage the process(es) we ran?

− Manage resources
• (Note) We will talk about this in the “scheduling” class

Secure AI Systems Lab :: CS 344 - Operating Systems I 5



PROVIDE ABSTRACTION: A PROGRAM

• (Computer) Program
− Definition: a set of instructions for an OS to execute
− An example program for Linux computer

Secure AI Systems Lab :: CS 344 - Operating Systems I 6



PROVIDE ABSTRACTION: A PROGRAM

• (Computer) Program
− Definition: a set of instructions for an OS to execute
− An example program for Linux computer

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit



PROVIDE ABSTRACTION: A PROGRAM

• (Computer) Program
− Definition: a set of instructions for an OS to execute
− An example program for Linux computer

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

Executable

Compile

Data

Machine Code
(Instructions)



EXAMPLE: C COMPILATION WITH GCC

• GCC compilation
− It converts source code to assembly code ($ gcc -c -S <filename.c>)
− It then converts the assembly code to instructions

($ gcc -c <filename.s> -o <filename.o>; gcc -o <filename.o> -o filename)

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

GCC Assembly code

Compile

Data

Assembly Code

Executable

Compile

Data

Machine Code
(Instructions)



EXAMPLE: C COMPILATION WITH GCC

• GCC compilation
− It converts source code to assembly code ($ gcc -c -S <filename.c>)
− It then converts the assembly code to instructions

($ gcc -c <filename.s> -o <filename.o>; gcc -o <filename.o> -o filename)

Secure AI Systems Lab :: CS 344 - Operating Systems I 10



PROVIDE ABSTRACTION: A PROGRAM

• (Computer) Program
− Definition: a set of instructions for an OS to execute
− An example program for Linux computer

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

Executable

Compile

Data

Machine Code
(Instructions)

…

ex. $ hexdump subvert.c



PROVIDE ABSTRACTION: A PROCESS

• (OS) Process
− Definition: an abstract view of an executing program
− Process segments:

• Code, data, heap and stack

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

Process on memory

OS
0xFFF…

0x000…

OS loads &
execute

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

Executable

Compile

Data

Machine Code
(Instructions)



PROVIDE ABSTRACTION: A PROCESS

• (OS) Process
− Definition: an abstract view of an executing program
− Process segments:

• Code, data, heap and stack

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

Process on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

0xFFF…

0x000…

OS loads &
execute

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

Executable

Compile

Data

Machine Code
(Instructions)



PROVIDE ABSTRACTION: A PROCESS

• (OS) Process
− Definition: an abstract view of an executing program
− Process segments:

• Code, data, heap and stack

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

Process on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

0xFFF…

0x000…

OS loads &
execute

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

Executable

Compile

Data

Machine Code
(Instructions)



PROVIDE ABSTRACTION: HOW OS DEFINES A PROCESS?

• (Linux) has the process context
− Code

• Program counter
• Instruction pointer

− Stack and heap
• Stack pointer
• Heap pointer

− Running context
• Process state (ID, …)
• Execution flags
• CPU # to run
• (OS II) Scheduling policy
• (OS II) Mem. virtualization

− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

Process Context: A set of information that OS requires to run a
process on a CPU, different from CPU vendors
(ex. In Linux, it’s defined as task_struct, Link)

https://github.com/torvalds/linux/blob/master/include/linux/sched.h


PROVIDE ABSTRACTION: HOW OS LOADS A PROCESS?

• (OS) Process
− Definition: an abstract view of an executing program
− Load a process:

• Code: OS loads the instructions to “code” segments
• Data : OS loads the data (such as static vars) to “data” segments
• Stack and heap: OS creates those mem. spaces
• (Ready) OS sets the program counter (PC) to the first code location

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

Process on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

0xFFF…

0x000…
PC



PROVIDE ABSTRACTION: HOW OS RUNS A PROCESS?

• OS makes the CPU run the machine code
− Example: IBM machines

• Submit a punch card that have a set of instructions
• Machine reads instructions line by line and do sth.

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

Example punch holes    instructions
● ○ ● ○ ○ ○ ○ // load 8
○ ● ● ○ ○ ● ○ // load 5
● ● ● ● ○ ○ ○ // add 8 and 5
…
…

Punch card



PROVIDE ABSTRACTION: HOW OS RUNS A PROCESS? – CONT’D

• OS makes the CPU run the machine code
− Example: IBM machines

• Submit a punch card that have a set of instructions
• Machine reads instructions line by line and do sth.

− Modern computers
• Machine := a processor (CPU)
• Instructions := instructions (100+ for Intel CPUs)
• Punch card := a process in memory
• Operates    := execute the instructions

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

Example punch holes    instructions
● ○ ● ○ ○ ○ ○ // load 8
○ ● ● ○ ○ ● ○ // load 5
● ● ● ● ○ ○ ○ // add 8 and 5
…
…

Punch card

Memory

Example instructions     operations
0x11 0x12 0x05 0x00    // load 5 to r12
0x08 0x12 0x08 0x00    // add r12 and 8
0x12 0xF9 0xFF 0xF4     // store r12
…
…
…



PROVIDE ABSTRACTION: HOW OS RUNS A PROCESS? – CONT’D

• OS makes the CPU run the machine code
− Example: IBM machines

• Submit a punch card that have a set of instructions
• Machine reads instructions line by line and do sth.

− Modern computers
• Machine := a processor (CPU)
• Instructions := instructions (100+ for Intel CPUs)
• Punch card := a process in memory
• Operates    := execute the instructions

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

Example punch holes    instructions
● ○ ● ○ ○ ○ ○ // load 8
○ ● ● ○ ○ ● ○ // load 5
● ● ● ● ○ ○ ○ // add 8 and 5
…
…

Punch card

Memory

Example instructions     operations
0x11 0x12 0x05 0x00    // load 5 to r12
0x08 0x12 0x08 0x00    // add r12 and 8
0x12 0xF9 0xFF 0xF4     // store r12
…
…
…The program counter (PC) in a CPU is always holding the 

memory address where the next instruction to execute is



PROVIDE ABSTRACTION: HOW OS LOADS/RUNS A PROCESS?

• (OS) Process
− Definition: an abstract view of an executing program
− Load a process:

• Code: OS loads the instructions to “code” segments
• Data : OS loads the data (such as static vars) to “data” segments
• Stack and heap: OS creates those mem. spaces
• (Ready) OS sets the program counter (PC) to the first code location

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

Process on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

0xFFF…

0x000…
PC



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Stack

• OS controls the memory allocations (size)
• Store data in Last in first out (LIFO) manner
• Stack mostly holds data initialized within a function

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

Memory

OS

Machine Code
(Instructions)

Data



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Stack

• OS controls the memory allocations (size)
• Store data in Last in first out (LIFO) manner
• Stack mostly holds data initialized within a function

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

Stack

OS

Machine Code
(Instructions)

Data

Data 1

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

Run



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Stack

• OS controls the memory allocations (size)
• Store data in Last in first out (LIFO) manner
• Stack mostly holds data initialized within a function

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

Stack

OS

Machine Code
(Instructions)

Data

Data 1

Data 2

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

Run



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Stack

• OS controls the memory allocations (size)
• Store data in Last in first out (LIFO) manner
• Stack mostly holds data initialized within a function

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

Stack

OS

Machine Code
(Instructions)

Data

Data 1

Data 2

Data 3

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

Run



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Stack

• OS controls the memory allocations (size)
• Store data in Last in first out (LIFO) manner
• Stack mostly holds data initialized within a function

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

Stack

OS

Machine Code
(Instructions)

Data

Data 1

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

Run



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Heap

• User allocates the memory with a specific size
• OS finds an empty space and then place the mem.
• Mem. fragmentation (also mem. leak!) can occur

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

Stack

OS

Machine Code
(Instructions)

Data

Heap

OS

Machine Code
(Instructions)

Data



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Heap

• User allocates the memory with a specific size
• OS finds an empty space and then place the mem.
• Mem. fragmentation (also mem. leak!) can occur

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

Stack

OS

Machine Code
(Instructions)

Data

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
char *data1 = (char *) malloc(1);
myfunc();

return 0;
}

Run

Heap

OS

Machine Code
(Instructions)

Data

Data 1



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Heap

• User allocates the memory with a specific size
• OS finds an empty space and then place the mem.
• Mem. fragmentation (also mem. leak!) can occur

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

Stack

OS

Machine Code
(Instructions)

Data

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
char *data1 = (char *) malloc(1);
myfunc();

return 0;
}

Run

Heap

OS

Machine Code
(Instructions)

Data

Data 1

Data 2



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Heap

• User allocates the memory with a specific size
• OS finds an empty space and then place the mem.
• Mem. fragmentation (also mem. leak!) can occur

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

Stack

OS

Machine Code
(Instructions)

Data

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
char *data1 = (char *) malloc(1);
myfunc();

return 0;
}

Run

Heap

OS

Machine Code
(Instructions)

Data

Data 1

Data 2

Data 3



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Heap

• User allocates the memory with a specific size
• OS finds an empty space and then place the mem.
• Mem. fragmentation (also mem. leak!) can occur

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

Stack

OS

Machine Code
(Instructions)

Data

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
char *data1 = (char *) malloc(1);
myfunc();

return 0;
}

Heap

OS

Machine Code
(Instructions)

Data

Data 1

Data 3

Run



PROVIDE ABSTRACTION: STACK VS. HEAP

• Stack vs. heap
− Definition: Both are the areas of memory
− Heap

• User allocates the memory with a specific size
• OS finds an empty space and then place the mem.
• Mem. fragmentation (also mem. leak!) can occur

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

Stack

OS

Machine Code
(Instructions)

Data

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
char *data1 = (char *) malloc(1);
myfunc();

return 0;
}

Run

Heap

OS

Machine Code
(Instructions)

Data

Data 1

Data 3



TOPICS FOR TODAY

• Part I: Process
− Provide abstraction

• What is a program?
• What is a process?
• How does OS run a program?

− Offer standard libraries
• How do we run (or stop) a process?
• How does OS manage the process(es) we ran?

− Manage resources
• (Note) We will talk about this in the “scheduling” class

Secure AI Systems Lab :: CS 344 - Operating Systems I 32



OFFERS STANDARD INTERFACE

• How do we run a process?
− Double click an icon
− Type ./<program name> in the terminal
− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 33



OFFERS STANDARD INTERFACE: SYSTEM CALL

• System call
− Definition: a user-level function call to request a service from the OS
− Example: when we allocate memory with “malloc()”

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
int num = 100;
myfunc();

return 0;
}

User program OS Kernel

Kernel allocates the memory space
that has the size of 5 bytes, and 
return the starting address of this 
memory to the user’s program



OFFERS STANDARD INTERFACE: SYSTEM CALL

• OS offers a set of system calls
− To create/terminate a process
− To open/read/write/close a file
− To request/release a device (such as display, mouse, etc.)
− To request/modify system information
− To initiate/close networking
− To set the security properties
− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

1Searched for this image with keyword “system calls” on Google



OFFERS STANDARD INTERFACE: FORK SYSTEM CALL

• fork() system call
− Operation: 

• Create a new process that is an exact copy of the calling process
• Return the process ID (PID) of a new process (and if it’s in child, returns 0)

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

Parent process

Code
(Instructions)

Data

Stack

Heap

Child process

Code
(Instructions)

Data

Stack

Heap

fork()



OFFERS STANDARD INTERFACE: FORK SYSTEM CALL

• folk() sample code in C

Secure AI Systems Lab :: CS 344 - Operating Systems I 37

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main(void) {
int number = 10;
pid_t pid;
switch (pid = fork()) { 

case -1: 
perror ("fork"); 
exit (1);

case 0:
number++;
printf("I am a child process [%d]!", number); 
break; 

default:
number--;
printf("I am a parent process  [%d]!", number); 
break;

} 

printf("I will be executed by both");
return 0; 

}

switch (pid = fork()) { 
case -1: 

perror ("fork"); 
exit (1);

case 0:
number++;
printf("I am a child process [%d]!", number); 
break; 

default:
number--;
printf("I am a parent process  [%d]!", number); 
break;

} 

printf("I will be executed by both");
return 0; 

}

Parent process
(pid = child’s PID)

Child process
(pid = 0)

Execution result (sample):
I am a child process [11]!
I will be executed by both 
I am a parent process [9]!
I will be executed by both 



OFFERS STANDARD INTERFACE: FORK SYSTEM CALL

• fork() system call
− Operation: 

• Create a new process that is an exact copy of the calling process
• Return the process ID (PID) of a new process (and if it’s in child, returns 0)

• Other system calls
− exec(program to run):

• Create a new process with fork() and dump the program to run into it
• Return 0 if exec() is successful; otherwise, it returns the corresponding error

− wait(status) or wait(PID):
• Make the current process wait until the status (of a process, PID) changes
• Returns the PID of the process that changes the status; otherwise, -1

− exit() or kill():
• Terminate the process with the given PID

Secure AI Systems Lab :: CS 344 - Operating Systems I 38



OFFERS STANDARD INTERFACE: EXEC SYSTEM CALL

• exec() system call
− Operation: 

• Create a new process with fork() and dump the program to run into it
• Return 0 if exec() is successful; otherwise, it returns the corresponding error

Secure AI Systems Lab :: CS 344 - Operating Systems I 39

Parent process

Code
(Instructions)

Data

Stack

Heap

Child process

Code
(Instructions)

Data

Stack

Heap

fork() Dump a new program

(*Updated) Child process

New Code
(Instructions)

New Data

New Stack

New Heap



OFFERS STANDARD INTERFACE: WHAT IF WE DO FORK INFINITELY?

• fork() bomb (link)
− A DoS attack that a process continuously fork() to deplete available system resources
− Consequence: resource starvation
− Defense: limit the number of processes a user can create (check with $ ulimit -u)

• Take-aways
− An attacker can exploit the standard interfaces for achieving adversarial goals
− We should consider the worst-cases when designing/offering such interfaces
− Defense mechanisms should also be offered to defeat such attacks

Secure AI Systems Lab :: CS 344 - Operating Systems I 40

https://en.wikipedia.org/wiki/Fork_bomb


OFFER STANDARD INTERFACE: HOW OS MANAGES PROCESSES?

• Possible scenarios
− S1: Recursively fork()

− S2: Multiple fork()s from a process

Secure AI Systems Lab :: CS 344 - Operating Systems I

Process fork() Process fork() Process fork()

Process fork() Process fork()

Process fork()

Process fork()

…

…

…

…

What Would Be the Best Data Structure to Manage Processes?



OFFER STANDARD INTERFACE: HOW OS MANAGES PROCESSES?

• fork() tree
− OS manages processes with a tree
− Use ($ pstree) command to see the tree!
− Root of the fork() tree (in Linux)

• PID=0: Sched (swapper) process
• PID=1: Init process

Secure AI Systems Lab :: CS 344 - Operating Systems I



OFFER STANDARD INTERFACE: HOW OS MANAGES PROCESSES?

• fork() tree
− OS manages processes with a tree
− Use ($ pstree) command to see the tree!
− Root of the fork() tree (in Linux)

• PID=0: Sched (swapper) process
• PID=1: Init process

• Properties
− User processes always have a parent
− If we kill the parent, all the child processes will be killed, too

(an exception, any process launched by $ nohup or $ disown) 
− PIDs allocated by OS increases as we fork() more

Secure AI Systems Lab :: CS 344 - Operating Systems I



TOPICS COVERED TODAY

• Part I: Process
− Provide abstraction

• What is a program?
• What is a process?
• How does OS run a program?

− Offer standard libraries
• How do we run (or stop) a process?
• How does OS manage the process(es) we ran?

− Manage resources
• (Note) We will talk about this in the “scheduling” class

Secure AI Systems Lab :: CS 344 - Operating Systems I 44



Thank You!

Secure AI Systems Lab

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu


