
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
01.23: THREADS

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

NOTICE

• Deadlines
− (1/23 11:59 PM) Programming assignment 1
− (1/30 11:59 PM) Midterm quiz 1
− (2/06 11:59 PM) Programming assignment 2

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

RECAP

• Part I: Process
− Provide abstraction

• What is a program?
• What is a process?
• How does OS run a program?

− Offer standard libraries
• How do we run (or stop) a process?
• How does OS manage the process(es) we ran?

− Manage resources
• (Note) We will talk about this in the “scheduling” class

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

PRACTICE QUESTION: C

• Static variables, functions, etc.
− What will be the “google” stock price?
− What will be the prices of both stocks?
− What will be printed out to Terminal?
− What will be the prices of both stocks?
− What will be printed out to Terminal?

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

Required headers…

static int google_stock = 2000;

int increase_price(int stock_price, int amount) {
stock_price = stock_price + amount;
google_stock = google_stock + amount;

}

int main(void) {
int apple_stock = 99;

printf("Google stock price is %d\n", google_stock);
printf("Apple stock price is %d\n", apple_stock++);

apple_stock = increase_price(apple_stock, 50);
printf("Google stock price is %d\n", google_stock);
printf("Apple stock price is %d\n", ++apple_stock);

return 0;
}

Run

Run

Run

In C:
1. Static variables are accessible within a file
2. Increment / decrement operators

- Prefix: increase the value first and exec
- Postfix: exec and increase the value

PRACTICE QUESTION: C

• Pointers and strings
− What will be the value of “ilen”?
− What will be the value of “slen”?
− How many bytes “str” uses in memory?
− What will be the execution result?

Secure AI Systems Lab :: CS 344 - Operating Systems I 5

Required headers…

int main(void) {
int slen = 0;
int *iptr = NULL;
char str = "Hello world!";

ilen = sizeof(iptr);
slen = strlen(str);
printf("The length of this string is %d\n", slen);

return 0;
}

Run
Run

Run

In C:
1. Pointer variable store the address

(size of the var will be 4-/8-byte)
2. Pointer is required to init. String with “=”
3. strlen() returns the number of chars
4. The actual string in C ends with “\0”

PRACTICE QUESTION: C

• Pointer operations
− What will be printed out to Terminal?
− What will be printed out to Terminal?
− What will be printed out to Terminal?
− What will be printed out to Terminal?

Secure AI Systems Lab :: CS 344 - Operating Systems I 6

Required headers…

int swap(int num1, int *num2) {
int temp = num1;
num1 = num2;
*num2 = temp;
return num1;

}

int main(void) {
int val1 = 1;
int val2 = 2;
int vals[] = { 10, 20, 30, 40, 50 };
int *ptr = vals;

printf("Val1 / 2 / 3: %d, %d, %d\n", val1, val2, vals[0]);
printf("Val1 / 2: %d, %d\n", *(ptr+2), (*ptr)+2);

val1 = swap(val1, ptr);
printf("Val1 / 2 / 3: %d, %d, %d\n", val1, val2, vals[0]);
printf("Val1 / 2: %d, %d\n", *(ptr+2), (*ptr)+2);

return 0;
}

Run
Run

Run

In C:
1. Increasing pointer accesses the next addr

!= Increasing pointer value (*ptr)+1
2. Pointer holds the address of a variable

Run

PRACTICE QUESTION: PROCESS

• Segments (components) of a process
− Which segment “counter1” is?
− Which segment “ret” is?
− Which segment “counter2” is?
− Which segment “buf” is?
− What are the counter1 and 2 values?
− Which segment “ret” is?
− Which segment “buf” is?

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

Required headers…

#define BUFSIZE 512

static int counter1 = 0;

int my_function() {
int counter2 = 2;
char *buf = (char *) malloc(BUFSIZE * sizeof(char));

counter1 = counter1 + 1;
counter2 = counter2 – 1;
return counter2;

}

int main(void) {
int ret = 0;

ret = my_function();
printf("Ret: %d\n", ret);

return 0;
}

Run

Run
Run

Run

Run

In Heap:
Memory fragmentation can happen
Memory leak can happen

TOPICS FOR TODAY

• Part I: Threads
− Provide abstraction

• What is a thread?
• How is it different from a process?
• How does OS run threads?

− Offer standard libraries
• How do we create/run/kill a thread?
• How does OS manage the thread(s) we ran?

− Manage resources
• (Note) We will talk about this in the “scheduling” and “synchronization” classes

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

RUNNING MULTIPLE PROCESSES: WEB-SERVER EXAMPLE

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

• Amazon.com:
− What does the webserver do?

WEB-SERVER EXAMPLE

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

• Amazon.com:
− A user requests the website
− A server accepts the connection
− A server sends the webpage to the user
− A user clicks something
− A server sends the webpage as a response
− … (continue)

int main(void) {
// 1. server accepts the connection
connection = accepts(user-request, …)

// 2. server sends the webpage to user
sends_webpage(connection, html-page)

// 3. server starts accepting the user requests
while (action = receive_request(connection)) {

if (action == login) {
if (!correct_credential(action.id, action.pw))

return -1; // return error, login fail
connection.login_success = 1;

}

….
}

return 0; // halt the webserver, never reached
}

Pseudo code (server)

WEB-SERVER EXAMPLE – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

• Amazon.com:
− A user requests the website
− A server accepts the connection
− A server sends the webpage to the user
− A user clicks something
− A server sends the webpage as a response
− … (continue)

int main(void) {
// 1. server accepts the connection
connection = accepts(user-request, …)

// 2. server sends the webpage to user
sends_webpage(connection, html-page)

// 3. server starts accepting the user requests
while (action = receive_request(connection)) {

if (action == login) {
if (!correct_credential(action.id, action.pw))

return -1; // return error, login fail
connection.login_success = 1;

}

….
}

return 0; // halt the webserver, never reached
}

Pseudo code (server)

What would be a potential problem?

WEB-SERVER EXAMPLE – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

• Amazon.com:
− A user requests the website
− A server accepts the connection
− A server sends the webpage to the user
− A user clicks something
− A server sends the webpage as a response
− … (continue)

int main(void) {
// 1. server accepts the connection
connection = accepts(user-request, …)

// 2. server sends the webpage to user
sends_webpage(connection, html-page)

// 3. server starts accepting the user requests
while (action = receive_request(connection)) {

if (action == login) {
if (!correct_credential(action.id, action.pw))

return -1; // return error, login fail
connection.login_success = 1;

}

….
}

return 0; // halt the webserver, never reached
}

Pseudo code (server)

This procedure will be the same for all users
> Multi-process web-server

MULTI-PROCESS WEB-SERVER EXAMPLE

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

• Amazon.com:
− A user requests the website
− A server accepts the connection
− A server sends the webpage to the user
− A user clicks something
− A server sends the webpage as a response
− … (continue)

int main(void) {

while(connection = accepts(user-request, …)) {
// fork: create a new process
switch(pid = fork()) {

case 0:
// server sends the webpage to user
sends_webpage(connection, html-page)

// server starts accepting the user requests
while (action = receive_request(connection)) {

if (action == login) {
if (!correct_credential(action.id, action.pw))

return -1; // return error, login fail
connection.login_success = 1;

}
….

}
} // end of switch …

} …

Pseudo code (server)

This procedure will be the same for all users
> Multi-process web-server

MULTI-PROCESS WEB-SERVER EXAMPLE: OS VIEW

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

• Amazon.com:
− A user requests the website
− A server accepts the connection
− A server sends the webpage to the user
− A user clicks something
− A server sends the webpage as a response
− … (continue)

Processes

OS

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

MULTI-PROCESS WEB-SERVER EXAMPLE: POTENTIAL ISSUES

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

• Data is not shared between processes
− A user requests the website
− … (continue)

Processes

OS

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stackint main(void) {

// initialize some data in this block

while(connection = accepts(user-request, …)) {
// fork: create a new process
switch(pid = fork()) {

case 0:
// server sends the webpage to user
sends_webpage(connection, html-page)

…

The data in the above block won’t be shared
between processes; each process will have a copy
of the same data (*causes memory overhead)

0xFFF…

0x000…

NOTE: WHY ISN’T THE DATA SHARED BETWEEN PROCESSES?
• Process isolation

− No segment is shared
− Security reasons

• Data breach
• System crashes
• Control other processes
• …

− Access: seg-faults!

Secure AI Systems Lab :: CS 344 - Operating Systems I

Processes on memory

OS

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A

Data (B)

Heap (B)

Code (B)

Stack (B)

Process B

Code (A)

Data (A)

Heap (A)

Stack (A)

Code (B)

Data (B)

Heap (B)

Stack (B)

Address translation:
Virtual to Physical (OS II)

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

SOLUTION: THREADS

PROVIDE ABSTRACTION: A THREAD

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

• Thread
− Definition: a smallest schedulable execution context
− Terminology:

• Smallest: it’s much light-weight than a process
• Schedulable execution context: one thread can run on a CPU at a time

PROVIDE ABSTRACTION: A THREAD – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

Processes on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Proc. 1 Proc. 2 Proc. 3

PROVIDE ABSTRACTION: A THREAD – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

Processes on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Threads in a process on memory

OS

Heap

StackStack

Machine Code
(Instructions)

Data

Stack

Thread 1 Thread 2 Thread 3Proc. 1 Proc. 2 Proc. 3

Reduce
Duplications

PROVIDE ABSTRACTION: HOW IS IT DIFFERENT FROM A PROCESS?

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

Threads in a process on memory

OS

Heap

StackStack

Machine Code
(Instructions)

Data

Stack

Thread 1 Thread 2 Thread 3

• Threads share:
− Code and data segments
− Heap memory (ex. global variables)
− Open files (ex. I/O access points)

• Threads do not share:
− Stack segments, e.g.:

• arguments passed when we launch them
• local variables we initialize within them
• return address, when they terminate (OS II)

− Running contexts, e.g.:
• process state
• stack pointer
• …

PROVIDE ABSTRACTION: HOW OS DEFINES A THREAD?

• (Linux) has “thread control block”
− Code

• Program counter
• Instruction pointer

− Stack and heap
• Stack pointer
• Heap pointer

− Running context
• Process state (ID, …)
• Execution flags
• CPU # to run
• (OS II) Scheduling policy
• (OS II) Mem. virtualization

− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

Thread Control Block: A set of information that OS requires to run a
thread on a CPU, different from CPU vendors
(ex. In Linux, it’s the same: task_struct, Link)

A process and a thread are the same for OS

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

TOPICS FOR TODAY
• Part I: Threads

− Provide abstraction
• What is a thread?
• How is it different from a process?
• How does OS run threads?

− Offer standard libraries
• How do we create/run/kill a thread?
• How does OS manage the thread(s) we ran?

− Manage resources
• (Note) We will talk about this in the “scheduling” and “synchronization” classes

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

OFFER STANDARD INTERFACE

• How do we run a thread?
− System calls
− OS provide a set of system calls to control thread execution

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

OFFER STANDARD INTERFACE: THREAD-SPECIFIC SYSTEM CALLS

• Thread-specific system calls
− pthread_create(thread, attribute, subroutine, subroutine-arguments);

• Create a new thread executing the subroutine in the current process
• Returns zero if it’s successful, otherwise it returns errno

− pthread_exit(return-value);
• Terminate the thread and returns the return-value to any successful join
• Note: If a thread terminates, it will be automatically called and always return success

− pthread_join(thread, return-value-loc);
• Suspend execution of the calling thread until the thread terminates
• Once the thread terminates, the function will copy the return value to return-value-loc
• Returns zero if it’s successful, otherwise it returns an error

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: THREAD-SPECIFIC SYSTEM CALLS

• System call
− Example: pthread_create(…)

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

void fn(void) {
return;

}

int main(void) {
int num = 100;
int rc;
long t;

pthread_create(\
NULL, NULL, fn, (void *)t);

return 0;
}

User program OS Kernel

Kernel does some work to spawn a
new thread and returns the thread
ID and the result from the sys-call

THREAD PROGRAMMING: FORK-JOIN PATTERN

• Fork - Join Pattern
− Fork: Main process creates a set of sub-

(or child)-threads that runs a function
− Each thread exits if the function returns
− Join: Main waits until all the threads exit

• Example: download a large file
− Splits a file into smaller chunks
− Create a thread for downloading each
− Sum-up all the downloaded chunks and

combine them to create a single large file

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

Your process

pthread_create() calls

pthread_join() calls

pthread_exit() call

OFFER STANDARD INTERFACE: THREAD-SPECIFIC SYSTEM CALLS

• Thread sample code in C
− How many threads are there?
− Which thread is created first?
− Which thread is created last?
− Which thread runs first/last?
− What’d be an order of thread joins?
− What will happen if we run this again?

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

static int value = 128;

void *subroutine (void *threadid) {
long tid = (long) threadid;
printf("Thread ID [%lx], value [%d]\n", tid, value ++);

}

int main(int argc, char *argv[]) {
long t;
int nthreads = 3;

pthread_t *threads = (pthread_t *) malloc(nthreads * sizeof(pthread_t));
memset(threads, 0x00, nthreads * sizeof(pthread_t));

for (t = 0; t < nthreads; t++) {
int rc = pthread_create(&threads[t], NULL, subroutine, (void *)t);
if (rc) {

printf("[Error] return code is: %d, abort.\n", rc);
exit(-1);

}
}

for (t = 0; t < nthreads; t++)
pthread_join(threads[t], NULL);

return 0;
}

OFFER STANDARD INTERFACE: THREAD-SPECIFIC SYSTEM CALLS

• Thread sample code in C
− How many threads are there?
− Which thread is created first?
− Which thread is created last?
− Which thread runs first/last?
− What’d be an order of thread joins?
− What will happen if we run this again?

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

static int value = 128;

void *subroutine (void *threadid) {
long tid = (long) threadid;
printf("Thread ID [%lx], value [%d]\n", tid, value++);

}

int main(int argc, char *argv[]) {
long t;
int nthreads = 3;

pthread_t *threads = (pthread_t *) malloc(nthreads * sizeof(pthread_t));
memset(threads, 0x00, nthreads * sizeof(pthread_t));

for (t = 0; t < nthreads; t++) {
int rc = pthread_create(&threads[t], NULL, subroutine, (void *)t);
if (rc) {

printf("[Error] return code is: %d, abort.\n", rc);
exit(-1);

}
}

for (t = 0; t < nthreads; t++)
pthread_join(threads[t], NULL);

return 0;
}

Possible execution result:
Thread ID [0], value [128]
Thread ID [2], value [129]
Thread ID [1], value [130]

OFFER STANDARD INTERFACE: HOW OS MANAGES THREADS?

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

• (Linux) OS
− A thread is treated as the same as a process
− (Linux) thread control block ≈ process context

• A thread can have three states:
− Ready: a thread is created and ready to run, but not running now
− Running: a thread running now
− Blocked: a thread is unable to run (terminated or errors)

OFFER STANDARD INTERFACE: HOW OS MANAGES THREADS?

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

• Mem layout with two threads
− Each thread has its own stack
− Data, code and heap are shared between the two

Threads in memory

OS

Machine Code
(Instructions)

Data

Heap

Stack (T1)

0xFFF…

0x000…

Stack (T2)

TOPICS FOR TODAY
• Part I: Threads

− Provide abstraction
• What is a thread?
• How is it different from a process?
• How does OS run threads?

− Offer standard libraries
• How do we create/run/kill a thread?
• How does OS manage the thread(s) we ran?

− Manage resources
• (Note) We will talk about this in the “scheduling” and “synchronization” classes

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

Thank You!

Secure AI Systems Lab

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

