CS 344: OPERATING SYSTEMS |

01.23: THREADS

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVGI'Slty Secure Al Systems Lab

NOTICE

* Deadlines
- (1/23 11:59 PM) Programming assignment 1
- (1/30 11:59 PM) Midterm quiz 1
- (2/06 11:59 PM) Programming assignment 2

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

RECAP

* Part |: Process

- Provide abstraction
* What is a program?
* What is a process?
* How does OS run a program?

— Offer standard libraries
* How do we run (or stop) a process?
* How does OS manage the process(es) we ran?

- Manage resources
* (Note) We will talk about this in the “scheduling” class

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

PRACTICE QUESTION: C

 Static variables, functions, etc.
- What will be the “google” stock price?
- What will be the prices of both stocks?
- What will be printed out to Terminal?
- What will be the prices of both stocks?
- What will be printed out to Terminal?

In C:
1. Static variables are accessible within a file

2. Increment / decrement operators
- Prefix: increase the value first and exec
- Postfix: exec and increase the value

Run ---»

Run =

Run ==

Required headers...
static int google_stock = 2000;

int increase_price(int stock_price, int amount) {
stock_price = stock_price + amount;
google_stock = google_stock + amount;

}

int main(void) {
int apple_stock = 99;

printf("Google stock price is %d\n", google_stock);
printf("Apple stock price is %d\n", apple_stock++);

apple_stock = increase_price(apple_stock, 50);
printf("Google stock price is %d\n", google_stock);
printf("Apple stock price is %d\n", ++apple_stock);

return 0;

)
Oregon State
7 University -
: Secure Al Systems Lab :: CS 344 - Operating Systems |

PRACTICE QUESTION: C

* Pointers and strings Required headers..
- What will be the value of “ilen”? intr:?z;z(r]voig){
i =0;
— What will be the value of “slen”? int *iptr = NULL;

. Run == char str = "Hello world!";
— How many bytes “str” uses in memory?

. . Run =+ ilen = sizeof(iptr);
— What will be the execution result? Run > slen = strlen(str):

printf("The length of this string is %d\n", slen);

return 0;

In C:
1. Pointer variable store the address
(size of the var will be 4-/8-byte)

2. Pointer is required to init. String with “=”"
3. strlen() returns the number of chars
4. The actual string in C ends with “\0”

Oregon State

g

5@ Universi

AT ty .
A Secure Al Systems Lab :: CS 344 - Operating Systems |

PRACTICE QUESTION: C

° Pointer Operations Required headers...
— What will be printed out to Terminal? ‘”Fjr’taeig‘;t ”n“u”r‘nll"”t*"“mz){
| = ;
- What will be printed out to Terminal? num1 = num2;
. . . *num2 = temp;
— What will be printed out to Terminal? r:ttr:'n nurﬁrln;p
— What will be printed out to Terminal? }
int main(void) {
intvall =1;
intval2 = 2;

int vals[] ={ 10, 20, 30, 40,50 };
int *ptr = vals;

In C:
. . Run == printf("Vall /2 /3: %d, %d, %d\n", vall, val2, vals[0]);
1. Increasing pointer accesses the next addr G N PR R TR o

I= Increasing pointer value (*ptr)+1

2. Pointer holds the address of a variable Run = printf("Vall /2 /3: %d, %d, %d\n", val1, val2, vals[0]);
Run == printf("Vall/ 2: %d, %d\n", *(ptr+2), (*ptr)+2);

vall = swap(vall, ptr);

return 0;

)
Oregon State
7 University -
: Secure Al Systems Lab :: CS 344 - Operating Systems | 6

PRACTICE QUESTION: PROCESS

» Segments (components) of a process

- Which segment “counterl” is? Required headers...
- Which segment “ret” is? #define BUFSIZE 512
— Which segment “counter2” is? static int counterl = 0;
— Which segment “buf” is? int my_function() {
Run =+ intcounter2 = 2;
— What are the counterl and 2 values? Run == char *buf = (char *) malloc(BUFSIZE * sizeof(char));
- Which segment “ret” is? counterl = counterl + 1;

counter2 = counter2 — 1;
Run == return counter2;

}

— Which segment “buf” is?

int main(void) {
Run == intret=0;

In Heap:

Memory fragmentation can happen
Memory leak can happen printf("Ret: %d\n", ret);

Run =+ ret=my_function();

return 0;

}

" Oregon State
o University

Secure Al Systems Lab :: CS 344 - Operating Systems |

TOPICS FOR TODAY

e Part |: Threads

- Provide abstraction
* Whatis a thread?
* How is it different from a process?
* How does OS run threads?

— Offer standard libraries
* How do we create/run/kill a thread?
* How does OS manage the thread(s) we ran?

- Manage resources
* (Note) We will talk about this in the “scheduling” and “synchronization” classes

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

RUNNING MULTIPLE PROCESSES: WEB-SERVER EXAMPLE

* Amazon.com:
- What does the webserver do?

Jons
K48 Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

WEB-SERVER EXAMPLE

* Amazon.com: Pseudo code (server)
— A user requests the website int main(void) {
— A server accepts the connection // 1. server accepts the connection
connection = accepts(user-request, ...)
- A server sends the webpage to the user
— A user clicks Something // 2. server sends the webpage to user

sends_webpage(connection, html-page)
- A server sends the webpage as a response
- (continue) // 3. server starts accepting the user requests
while (action = receive_request(connection)) {
if (action == login) {
if (Icorrect_credential(action.id, action.pw))
return -1; // return error, login fail
connection.login_success = 1;

}

return 0; // halt the webserver, never reached

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

WEB-SERVER EXAMPLE - CONT'D

* Amazon.com: Pseudo code (server)
— A user requests the website int main(void) {
— A server accepts the connection // 1. server accepts the connection
connection = accepts(user-request, ...)
- A server sends the webpage to the user
— A user clicks Something // 2. server sends the webpage to user

sends_webpage(connection, html-page)
- A server sends the webpage as a response
- (continue) // 3. server starts accepting the user requests
while (action = receive_request(connection)) {
if (action == login) {
if (Icorrect_credential(action.id, action.pw))

What WOUId be a pOtentiaI prObIem? return -1; // return error, login fail

connection.login_success = 1;

}

return 0; // halt the webserver, never reached

g Oregon State
3‘5‘ Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

WEB-SERVER EXAMPLE - CONT'D

* Amazon.com:
[- Auser requests the website

1
|

— A server accepts the connection

- A server sends the webpage to the user

— A user clicks something

- A server sends the webpage as a response
| — ... (continue)

v

This procedure will be the same for all users
> Multi-process web-server

Ao
Oregon State
& University -

: Secure Al Systems Lab :: CS 344 - Operating Systems |

Pseudo code (server)

int main(void) {
// 1. server accepts the connection
connection = accepts(user-request, ...)

// 2. server sends the webpage to user
sends_webpage(connection, html-page)

// 3. server starts accepting the user requests
while (action = receive_request(connection)) {
if (action == login) {
if (Icorrect_credential(action.id, action.pw))
return -1; // return error, login fail
connection.login_success = 1;

}

return 0; // halt the webserver, never reached

12

MULTI-PROCESS WEB-SERVER EXAMPLE

Amazon.com:

Pseudo code (server)

[- Auser requests the website
— A server accepts the connection
- A server sends the webpage to the user
— A user clicks something
- A server sends the webpage as a response

| — ... (continue)

int main(void) {

" while(connection = accepts(user-request, ...)) {
// fork: create a new process
switch(pid = fork()) {
case O:
// server sends the webpage to user
sends_webpage(connection, html-page)

// server starts accepting the user requests
while (action = receive_request(connection)) {
if (action == login) {
if (Icorrect_credential(action.id, action.pw))
return -1; // return error, login fail
connection.login_success = 1;

}

=

}
} // end of switch ...

} .

N This procedure will be the same for all users N
> Multi-process web-server
g Oregon State
University

Secure Al Systems Lab :: CS 344 - Operating Systems |

13

WEB-SERVER EXAMPLE: OS VIEW

* Amazon.com: Processes
— A user requests the website os
- A server accepts the connection
- A server sends the webpage to the user : , :
.] Stack I Stack I Stack I
— A user clicks something : : :
1 1 1
- A server sends the webpage as a response v v v
- ... (continue)
4 4 4
1 1 1
1 1 1
1 1 1
i i i
Heap Heap Heap
Data Data Data
Machine Code Machine Code Machine Code
(Instructions) (Instructions) (Instructions)

Secure Al Systems Lab :: CS 344 - Operating Systems |

MULTI-PROCESS WEB-SERVER EXAMPLE: POTENTIAL ISSUES

* Data is not shared between processes
— A user requests the website
- ... (continue)

int main(void) {
// initialize some data in this block

while(connection = accepts(user-request, ...)) {
// fork: create a new process
switch(pid = fork()) {
case O:
// server sends the webpage to user
sends_webpage(connection, html-page)

The data in the above block won’t be shared

between processes; each process will have a copy
of the same data (*causes memory overhead)

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

Processes
oS

1 1 1
Stack : Stack : Stack :

1 1 1

i i i

\ 4 \ 4 \ 4

4 4 4

1 1 1

1 1 1

1 1 1

i i i
Heap Heap Heap
Data Data Data

Machine Code
(Instructions)

Machine Code
(Instructions)

Machine Code
(Instructions)

15

NOTE: WHY ISN’T THE DATA SHARED BETWEEN PROCESSES?

- No segment is shared

- Security reasons

* Data breach
* System crashes
* Control other processes

— Access: seg-faults!

Oregon State
University

Vi

Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A

Stack (A)

Heap (A) ...:“,‘.‘...

Data (A)

Code (A)

Address translation:
rtual to Physical (OS 1)

Processes on memory

0s

OxFFF...

.........

Heap (A)

Data (B)

Heap (B)

Stack (B)

Stack (A)

Code (B)

Data (A)

Code (A)

wsl

Process B

Stack (B)

Heap (B)

Data (B)

Code (B)

0x000...

SOLUTION: THREADS

Secure Al Systems Lab :: CS 344 - Operating Systems |

17

PROVIDE ABSTRACTION: A THREAD

* Thread
— Definition: a smallest schedulable execution context
- Terminology:
* Smallest: it’s much light-weight than a process
* Schedulable execution context: one thread can run on a CPU at a time

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

18

PROVIDE ABSTRACTION: A THREAD - CONT'D

Processes on memory

(0}

1 1 1
Stack : Stack : Stack :

1 1 1

i i i

\ 4 \ 4 v

Proc. 1 Proc. 2 Proc. 3

4 4 4

1 1 1

1 1 1

1 1 1

i i i
Heap Heap Heap
Data Data Data

Machine Code
(Instructions)

Machine Code
(Instructions)

Machine Code
(Instructions)

P8 Oregon State
University

Secure Al Systems Lab :: CS 344 - Operating Systems |

19

PROVIDE ABSTRACTION: A THREAD - CONT'D

Processes on memory

(0}

1 1 1
Stack : Stack : Stack :

1 1 1

i i i

\ 4 \ 4 v

Proc. 1 Proc. 2 Proc. 3

4 4 4

1 1 1

1 1 1

1 1 1

i i i
Heap Heap Heap
Data Data Data

Machine Code
(Instructions)

Machine Code
(Instructions)

Machine Code
(Instructions)

P8 Oregon State
University

Secure Al Systems Lab :: CS 344 - Operating Systems |

Reduce
Duplications

20

Threads in a process on memory

(0]3
Stack i Stack i Stack i
1 1 1
i I i
A/ \ 4 v
Thread 1 Thread 2 Thread 3
4
i
i
1

Heap

Data

Machine Code
(Instructions)

PROVIDE ABSTRACTION: HOW IS IT DIFFERENT FROM A PROCESS?

* Threads share:
and segments
memory (ex. global variables)
— Open files (ex. I/0O access points)

* Threads do not share:
segments, e.g.:
e arguments passed when we launch them
* local variables we initialize within them
* return address, when they terminate (OS 1)

- Running contexts, e.g.:
* process state
* stack pointer

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems | 21

Threads in a process on memory

0s

Stack Stack

Stack

= ————
| ————

Thread 1 Thread 2

—=-——-

Thread 3

Heap

e et S

Data

Machine Code
(Instructions)

PROVIDE ABSTRACTION: HOW OS DEFINES A THREAD?

* (Linux) has “thread control block”

- Code i

- Stack and heap

* Program counter
* Instruction pointer

» Stack pointer 352
* Heap pointer

- Running context o

* Process state (ID, ...) b
Execution flags be
CPU #to run

(0S 11) Scheduling policy

750

751

(0S 1) Mem. virtualization| =

753

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
/%

* For reasons of header soup (see current_thread_info()), this

S Thread Control Block: A set of information that OS requires to run a

thread on a CPU, different from CPU vendors
(ex. In Linux, it’s the same: task_struct,)

* must be the first element of task_struct.

*/
struct thread_info
#endif
unsigned int

#ifdef CONFIG_PREEMPT_RT

thread_info;

__state;

/% saved state for "spinlock sleepers" */

unsigned int
#endif

Vel

* This begins the randomizable portion of task_struct. Only
* scheduling-critical items should be added above here.

*/
randomized_struct_fields_start

void
refcount_t

/% Per task flags (PF_x), defined further below: */

unsigned int
unsigned int

saved_state;

stack;
usage;

flags;
ptrace;

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

struct sched_info

struct list_head

#ifdef CONFIG_SMP

#endif

struct plist_node
struct rb_node

struct mm_struct

struct mm_struct

/* Per-thread vma caching: */
struct vmacache

#ifdef SPLIT_RSS_COUNTING

#endif

struct task_rss_stat
int
int
int

sched_info;
tasks;
pushable_tasks;

pushable_d1_tasks;

*mm;
*active_mm;

vmacache;

rss_stat;

exit_state;
exit_code;
exit_signal;

/* The signal sent when the parent dies: */

int

pdeath_signal;

/% JOBCTL_%, siglock protected: %/

unsigned long

A process and a thread are the same for OS

jobctl;

evious Linux versions: */
Hty;

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

22

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

TOPICS FOR TODAY

e Part I: Threads

- Provide abstraction
* Whatis a thread?
* How is it different from a process?
* How does OS run threads?

— Offer standard libraries
* How do we create/run/kill a thread?
* How does OS manage the thread(s) we ran?

- Manage resources
* (Note) We will talk about this in the “scheduling” and “synchronization” classes

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

23

OFFER STANDARD INTERFACE

e How do we run a thread?

— OS provide a set of system calls to control thread execution

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

24

OFFER STANDARD INTERFACE: SYSTEM CALLS

* Thread-specific system calls
- pthread_ (thread, attribute, subroutine, subroutine-arguments);

* Create a new thread executing the subroutine in the current process
* Returns zero if it’s successful, otherwise it returns errno

- pthread_exit(return-value);
* Terminate the thread and returns the return-value to any successful join
* Note: If a thread terminates, it will be automatically called and always return success

- pthread_join(thread, return-value-loc);
* Suspend execution of the calling thread until the thread terminates
* Once the thread terminates, the function will copy the return value to return-value-loc
* Returns zero if it’s successful, otherwise it returns an error

Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

25

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: THREAD-SPECIFIC SYSTEM CALLS

* System call
— Example: pthread_create(...)

User program OS Kernel

void fn(void) {
return; Kernel does some work to spawn a

}

ID and the result from the sys-call
int main(void) {
int num = 100;
int rc;
long t;

pthread_create(\

return O;

}

Ao
Oregon State
& University -

: Secure Al Systems Lab :: CS 344 - Operating Systems |

26

THREAD PROGRAMMING: PATTERN

Your process Pattern

Main process creates a set of sub-
(or child)-threads that runs a function

pthread_create() calls - Each thread exits if the function returns
e Main waits until all the threads exit

.
wes®
ws®
.
.

&
[* Example: download a large file
— Splits a file into smaller chunks
— Create a thread for downloading each

............................ — Sum-up all the downloaded chunks and
""" combine them to create a single large file

e,
LN
.
.........

. .

Oregon State
” University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 27

OFFER STANDARD INTERFACE:

SYSTEM CALLS

* Thread sample code in C
- How many threads are there?
— Which thread is created first?
— Which thread is created last?
— Which thread runs first/last?
- What'd be an order of thread joins?
- What will happen if we run this again?

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

static int value = 128;

void *subroutine (void *threadid) {

}

long tid = (long) threadid;
printf("Thread ID [%lx], value [%d]\n", tid, value ++);

int main(int argc, char *argv[]) {

long t;
int nthreads = 3;

pthread_t *threads = (pthread_t *) malloc(nthreads * sizeof(pthread_t));
memset(threads, 0x00, nthreads * (pthread_t));

(t =0; t < nthreads; t+4+) {
int rc = pthread_create(&threads[t], NULL, subroutine, (void *)t);
(re) {
printf("[Error] return code is: %d, abort.\n", rc);
exit(-1);
}
}

(t =0; t < nthreads; t++)
pthread_join(threads[t], NULL);

0;

28

OFFER STANDARD INTERFACE: SYSTEM CALLS

static int value = 128;

* Thread sample code in C

void *subroutine (void *threadid) {

- How many threads are there? long tid = (long) threadid;
WhICh thread iS Created first? printf("Thread ID [%lx], value [%d]\n", tid, value++);
- P)
— Which thread is created last? R .
int main(int argc, char *argv[]) {
— Which thread runs first/last? long t;
o int nthreads = 3;
- What'd be an order of thread joins?
. . . . pthread_t *threads = (pthread_t *) malloc(nthreads * sizeof(pthread_t));
?
- What will happen |f we run th|5 again: memset(threads, 0x00, nthreads * (pthread_t));
(t =0; t < nthreads; t+4+) {
i i int rc = pthread_create(&threads[t], NULL, subroutine, (void *)t);
Possible execution result: (re){
Th read |D [0] Value [128] printf("[Error] return code is: %d, abort.\n", rc);
’ exit(-1);
Thread ID [2], value [129] } !
Thread ID [1], value [130]
(t =0; t < nthreads; t++)

pthread_join(threads[t], NULL);

0;

Ao
Oregon State }
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: HOW OS MANAGES THREADS?

* (Linux) OS
— A thread is treated as the same as a process
— (Linux) thread control block = process context

* A thread can have
— Ready: a thread is created and ready to run, but not running now
- Running: a thread running now
- Blocked: a thread is unable to run (terminated or errors)

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems | 30

OFFER STANDARD INTERFACE: HOW OS MANAGES THREADS?

Threads in memory

* Mem layout with two threads
— Each thread has its own stack 0s

- Data, code and heap are shared between the two

OxFFF...

Stack (T1)

<+---

Stack (T2)

<*+--

-t

Heap

Data

Machine Code
(Instructions)

Oregon State 0x000...
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

31

TOPICS FOR TODAY

e Part I: Threads

- Provide abstraction
* Whatis a thread?
* How is it different from a process?
* How does OS run threads?

— Offer standard libraries
* How do we create/run/kill a thread?
* How does OS manage the thread(s) we ran?

- Manage resources
* (Note) We will talk about this in the “scheduling” and “synchronization” classes

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

32

Thank You!

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVEI'Slty Secure Al Systems Lab

