
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
01.30: FILES

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

NOTICE

• Announcements
− PA I submissions we cannot compile

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

NOTICE

• Deadlines (~2 weeks)
− (1/30 11:59 PM) Midterm quiz 1 – Today
− (2/06 11:59 PM) Programming assignment 2
− (2/13 11:59 PM) Midterm quiz 2

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

PRELIMINARIES: UNIX AND LINUX

• *NIX: Operating Systems
− UNIX (Paper)

• 1969: The OS was developed by AT&T Bell Lab, written in assembly languages
• 1972: C was developed by the same lab

− “UNIX can run on hardware costing as little as $40,000” [1]

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

[1] The UNIX Time-Sharing System, ACM SOSP 1973

https://dsf.berkeley.edu/cs262/unix.pdf

PRELIMINARIES: UNIX AND LINUX

• *NIX: Operating Systems
− UNIX (Paper)

• 1969: The OS was developed by AT&T Bell Lab, written in assembly languages
• 1972: C was developed by the same lab

− “UNIX can run on hardware costing as little as $40,000” [1]

− Linux
• 1991: Open-source OS, developed by Linus Torvalds

− Studied at the University of Helsinki
− His master’s thesis: “Linux: a Portable Operating System” (Thesis) [2]

≫ “while the Linux project has been closely associated with me personally, partly due
to the name, I’d like to make it very clear that the Linux OS is a huge project done
co-operatively by lots of people all over the world … Thanks to all of you.”

Secure AI Systems Lab :: CS 344 - Operating Systems I 5

[1] The UNIX Time-Sharing System, ACM SOSP 1973
[2] Linux: a Portable Operating System, Linus Torvalds

https://dsf.berkeley.edu/cs262/unix.pdf
https://www.cs.helsinki.fi/u/kutvonen/index_files/linus.pdf

PRELIMINARIES: UNIX AND LINUX

• *NIX: Operating Systems
− UNIX (Paper)

• 1969: The OS was developed by AT&T Bell Lab, written in assembly languages
• 1972: C was developed by the same lab

− “UNIX can run on hardware costing as little as $40,000” [1]

− Linux
• 1991: Open-source OS, developed by Linus Torvalds

− Studied at the University of Helsinki
− His master’s thesis: “Linux: a Portable Operating System” (Thesis) [2]

≫ “while the Linux project has been closely associated with me personally, partly due
to the name, I’d like to make it very clear that the Linux OS is a huge project done
co-operatively by lots of people all over the world … Thanks to all of you.”

− Linus Torvalds lives in Oregon

Secure AI Systems Lab :: CS 344 - Operating Systems I 6

[1] The UNIX Time-Sharing System, ACM SOSP 1973
[2] Linux: a Portable Operating System, Linus Torvalds

https://dsf.berkeley.edu/cs262/unix.pdf
https://www.cs.helsinki.fi/u/kutvonen/index_files/linus.pdf

PRELIMINARIES: *NIX VS. POSIX

• *NIX: Operating Systems
− UNIX (Paper)
− Linux (Thesis)

• POSIX: Portable Operating System Interface (for UniX)
− OS standard specified by IEEE
− Defines standard interfaces for system- and user-level APIs
− Made the applications are portable between Unix-like OSes

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

[1] The UNIX Time-Sharing System, ACM SOSP 1973
[2] Linux: a Portable Operating System, Linus Torvalds

https://dsf.berkeley.edu/cs262/unix.pdf
https://www.cs.helsinki.fi/u/kutvonen/index_files/linus.pdf

TOPICS FOR TODAY

• Part II: Files and File System Basics
− Provide abstractions

• What is a file (and a directory)?
• What is the access control/permission?

− Offer standard interface
• How do we create/read/write a file?
• How do we modify access/permission?

− Manage resources
• How OS manages files (and directories)?

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

PROVIDE ABSTRACTION: WHAT IS A FILE?

• File
− Definition: a named collection of data (e.g., movie.csv containing movie data)
− POSIX : a sequence of data bytes
− *NIX OS : everything is a file

• Files on secondary storages, e.g., disks
• Devices (mouse, keyboard, monitor, …)
• Network devices (network card, sockets in OS, …)
• Inter-process communications (pipes, sockets, …)

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

PROVIDE ABSTRACTION: WHAT IS A FILE?

• File
− Definition: a named collection of data (e.g., movie.csv containing movie data)
− POSIX : a sequence of data bytes
− *NIX OS : everything is a file

• Directories
− Definition : a folder containing files and directories
− Motivation:

• Scenario: one day you create 100k+ files and the next day, you want to use them

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

PROVIDE ABSTRACTION: WHAT IS A FILE?

• Directories
− Definition : a folder containing files and directories
− Motivation:

• Scenario: one day you create 100k+ files and the next day, you want to use them
− Solution :

• S0: You are Von Neumann; remember all the files
• S1: Your system creates a folder containing all the files for each user
• S2: Your system creates multiple folders containing the same kinds

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

PROVIDE ABSTRACTION: FILES AND DIRECTORIES (IN LINUX)
os1 ~/lecture/CS344-OS1$ ls -lh

total 312K
drwxrwx---. 6 sahong upg1xxxx 186 Apr 10 22:14 .
drwxrwx---. 3 sahong upg1xxxx 73 Apr 5 19:58 ..
drwxrwx---. 2 sahong upg1xxxx 95 Apr 5 19:58 bufferoverflow
drwxrwx---. 2 sahong upg1xxxx 52 Apr 4 09:02 bufferoverrun
lrwxrwxrwx. 1 sahong upg1xxxx 22 Apr 10 22:14 home -> /nfs/stak/users/hongsa
-rw-rw----. 1 sahong upg1xxxx 44 Apr 4 08:15 README.md
drwxrwx---. 2 sahong upg1xxxx 79 Apr 5 20:07 thread
Permission # hard-link owner owner-group size (b) last modified name

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

PROVIDE ABSTRACTION: FILES AND DIRECTORIES (IN LINUX)
os1 ~/lecture/CS344-OS1$ ls -alh

total 312K
drwxrwx---. 6 sahong upg1xxxx 186 Apr 10 22:14 .
drwxrwx---. 3 sahong upg1xxxx 73 Apr 5 19:58 ..
drwxrwx---. 2 sahong upg1xxxx 95 Apr 5 19:58 bufferoverflow
drwxrwx---. 2 sahong upg1xxxx 52 Apr 4 09:02 bufferoverrun
drwxrwx---. 8 sahong upg1xxxx 299 Apr 10 21:56 .git
-rw-rw----. 1 sahong upg1xxxx 430 Apr 5 19:56 .gitignore
lrwxrwxrwx. 1 sahong upg1xxxx 22 Apr 10 22:14 home -> /nfs/stak/users/hongsa
-rw-rw----. 1 sahong upg1xxxx 44 Apr 4 08:15 README.md
drwxrwx---. 2 sahong upg1xxxx 79 Apr 5 20:07 thread
Permission # hard-link owner owner-group size (b) last modified name

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

Hidden files!

PROVIDE ABSTRACTION: ACCESS CONTROL (IN LINUX)

• Users and groups
− Users : an account, tied to actual users or that exists for specific applications

• Physical users: Alice, Bob, …
• Accounts for applications: root (sudo), httpd (Apache), ec2-user (AWS), …

− Groups: a logical expr of an organization, tying users together for a common purpose
• Linux services: daemon, …

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

PROVIDE ABSTRACTION: USERS AND GROUPS
os1 ~/lecture/CS344-OS1$ ls -alh

total 312K
drwxrwx---. 6 sahong upg1xxxx 186 Apr 10 22:14 .
drwxrwx---. 3 sahong upg1xxxx 73 Apr 5 19:58 ..
drwxrwx---. 2 sahong upg1xxxx 95 Apr 5 19:58 bufferoverflow

… <omit the entries>

Permission # hard-link owner owner-group size (b) last modified name

• Linux controls the access to files or directories based on three categories:
− user : owner of a file or a directory
− group : the group where users are
− others: all the other users

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

All users: OSU
Instructor

EECShongsa

PROVIDE ABSTRACTION: PERMISSION

• Permission
− Read : one can read files and directories with ‘r’ permission
− Write : one can write files and dirs. with ‘w’ permission
− Execute: one can execute files and dirs. with ‘x’ permission

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

PROVIDE ABSTRACTION: PERMISSION (IN LINUX)
os1 ~/lecture/CS344-OS1$ ls -alh

total 312K
… <omit the entries>

-rw-rw----. 1 sahong upg1xxxx 44 Apr 4 08:15 README.md
drwxrwx---. 2 sahong upg1xxxx 79 Apr 5 20:07 thread
Permission # hard-link owner owner-group size (b) last modified name

• Permission representation
− drwxrwx---

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

[Type] d: directory, -: file

[User] the first three letters (rwx)
[Group] the second three letters (rwx)
[Others] the last three letters (---)

PROVIDE ABSTRACTION: PERMISSION (IN LINUX)
os1 ~/lecture/CS344-OS1$ ls -alh

total 312K
… <omit the entries>

-rw-rw----. 1 sahong upg1xxxx 44 Apr 4 08:15 README.md
drwxrwx---. 2 sahong upg1xxxx 79 Apr 5 20:07 thread
Permission # hard-link owner owner-group size (b) last modified name

• Permission representation
− drwxrwx---:

• 770
• 111111000

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

Interpretation
- Decimal #: 1st (user), 2nd (group), 3rd (others)
+ ex. 770 : 7 (user), 7 (group), 0 (others)

- Each #: Binary number
1st (read), 2nd (write), 3rd (execute)

+ ex. 7 : 111 (rwx)
+ ex. 6 : 110 (rw)
+ ex. 600 : 110 000 000 (your ssh key)

TOPICS FOR TODAY

• Part II: Files and File System Basics
− Provide abstractions

• What is a file (and a directory)?
• What is the access control/permission?

− Offer standard interface
• How do we create/read/write a file?
• How do we modify access/permission?

− Manage resources
• How OS manages files (and directories)?

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

OFFER STANDARD INTERFACE: SYSTEM CALLS

• System call
− Definition: a user-level function call to request a service from the OS
− Example: when we run a program “exec(<a program file>)”

• Two ways to use a system call
− Terminal: run a command (that is a system call)
− C : call a system call function
− Example: run “exec” in Terminal or use “exec(<a program file>)” function in C

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

OFFER STANDARD INTERFACE: USERS AND GROUPS

• System calls (in Terminal)
− Print the user and group IDs : “exec”
− Create/modify/delete users : “useradd” / “usermod” / “userdel”
− Create/modify/delete groups: “groupadd” / “groupmod” / “groupdel”

• System calls (in C)
− Print the user and group IDs : “getuid()” / “getgid()”
− Create/modify/delete users : No C APIs; we can use “system('useradd …')”
− Create/modify/delete groups: No C APIs; we can use “system('groupadd …')”

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

OFFER STANDARD INTERFACE: USERS AND GROUPS
os1 ~/lecture/CS344-OS1$ ls -alh

total 312K
drwxrwx---. 6 sahong upg1xxxx 186 Apr 10 22:14 .
drwxrwx---. 3 sahong upg1xxxx 73 Apr 5 19:58 ..
drwxrwx---. 2 sahong upg1xxxx 95 Apr 5 19:58 bufferoverflow

… <omit the entries>

Permission # hard-link owner owner-group size (b) last modified name

• An example of ‘id’ system call
os1 ~/lecture/CS344-OS1$ id

uid=1xxxxx (sahong) gid=4xxxx (upg1xxxx) groups=4xxxx (upg1xxxx), 3xxx (cs-faculty)
My user ID My group ID Groups that I am associated with

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

OFFER STANDARD INTERFACE: PERMISSION

• System calls (in Terminal)
− Change the ownership : “chown -R <user>:<group>”
− Change the permission: “chmod -R <mode to set>”

• System calls (in C)
− Change the ownership : “chown(const char *path, uid_t owner, gid_t group)”
− Change the permission: “chmod(const char *pathname, mode_t mode)”

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

REVISIT: PATH (IN LINUX)

• Two types of paths
− Absolute path: a complete file/dir path from the root ‘/’
− Relative path : a file/dir path relative from my current working dir ‘cwd’

• Examples:
− Absolute path:

• ‘/nfs/stak/users/sahong/example’ (that you can get from ‘pwd’ command)
− Relative path :

• ‘./example_program’
• Absolute path for this file: ‘/nfs/stak/users/sahong/example/example_program’
• Q1: If we move to ‘/nfs/stak’ what’s its relative path?
• Q2: If we move to HOME (‘~/’) what’s its relative path?

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

REVISIT: PATH (IN LINUX)

• Useful programming practices
− 1) Suppose that a program will be used by multiple users.
− 2) Suppose that the program needs to read a common configuration file.
− 3) Suppose that a user who runs the program asks to read their file.

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

Scenario 2) Both will be fine.

As a developer will use the same
path for everyone, one can use an
absolute path or a relative path
from the program binary file.

Scenario 1) Absolute path.

A developer should put the
program binary file (e.g., git) to a
common location and users
should use the absolute path to
run this program in their shell.

Scenario 3) Relative path.

As the file shouldn’t be read by
any other users, the file will be
located under a user’s home dir.
So, we can use a relative path
from our home ‘~/’ to the file.

OFFER STANDARD INTERFACE: PERMISSION
os1 ~/lecture/CS344-OS1$ ls -alh

total 312K
… <omit the entries>

-rw-rw----. 1 sahong upg1xxxx 44 Apr 4 08:15 README.md
drwxrwx---. 2 sahong upg1xxxx 79 Apr 5 20:07 thread
Permission # hard-link owner owner-group size (b) last modified name

• Examples of “chown” and “chmod” commands
− $ chown -R <someone>:<upg1xxxx> thread
− $ chmod 644 README.md
− $ chmod o+rw README.md
− $ chmod 700 thread
− $ chmod g-rwx thread

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

Rules
- Use a number, e.g., 644
- Use a string: user/group/others +/- perm.
+ ex. u+x (user can execute the file/dir)
+ ex. g-wx (group cannot write or execute it)

OFFER STANDARD INTERFACE: SOME USEFUL SYSTEM CALLS

• System calls (frequently used)
− Get the details about a file : $ stat <file/dir name>
− Create an empty file : $ touch <file/dir name>
− Total size of a directory : $ du -alh <file/dir name>
− Total filesystem size and info : $ df -h

...

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

TOPICS FOR TODAY

• Part II: Files and File System Basics
− Provide abstractions

• What is a file (and a directory)?
• What is the access control/permission?

− Offer standard interface
• How do we create/read/write a file?
• How do we modify access/permission?

− Manage resources
• How OS manages files (and directories)?

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

PROBLEM: HOW TO STORE FILES TO STORAGE

• Scenario 1: store a file to a disk drive
− File: a sequence of data

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

(example.c)

Disk driveFile

MANAGE RESOURCES: INODE STRUCTURE

• Scenario 1: store a file to a disk drive
− i(ndex)Node: a data-structure that describes a file-system object, e.g., a file/dir.

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

Disk drive

(example.c)

File

Device ID
File ID
Permission
Access
Size
Disk location
…

iNode

MANAGE RESOURCES: INODE STRUCTURE – CONT’D

• Scenario 2: store multiple (> 2+) files to a disk drive
− i(ndex)Node: a data-structure that describes a file-system object, e.g., a file/dir.

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

Disk drive

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Disk location
…

iNode

(sample.c)

Device ID
File ID
Permission
Access
Size
Disk location
…

(buffer.c)

Device ID
File ID
Permission
Access
Size (2)
Disk location
…

Where to put?

MANAGE RESOURCES: BLOCK STRUCTURE

• Scenario 2: store multiple (> 2+) files to a disk drive
− i(ndex)Node: a data-structure that describes a file-system object, e.g., a file/dir.
− Block : a small(est) unit of data storage, defined by OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

Disk drive

(example.c)

File

Device ID
File ID
Permission
Access
Size
Start block
…

iNode

Next block
Block ptr
…

Block

Next block
Block ptr
…

Block Block

Next block
Block ptr
…

MANAGE RESOURCES: BLOCK STRUCTURE

• Scenario 2: store multiple (> 2+) files to a disk drive
− i(ndex)Node: a data-structure that describes a file-system object, e.g., a file/dir.
− Block : a small(est) unit of data storage, defined by OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 33

Disk drive

(example.c)

File

Device ID
File ID
Permission
Access
Size
Start block
…

iNode

MANAGE RESOURCES: BLOCK STRUCTURE

• Scenario 2: store multiple (> 2+) files to a disk drive
− i(ndex)Node: a data-structure that describes a file-system object, e.g., a file/dir.
− Block : a small(est) unit of data storage, defined by OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

Disk drive

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Start block
…

iNodes

(sample.c)

Device ID
File ID
Permission
Access
Size
Start block
…

MANAGE RESOURCES: BLOCK STRUCTURE

• Scenario 2: store multiple (> 2+) files to a disk drive
− i(ndex)Node: a data-structure that describes a file-system object, e.g., a file/dir.
− Block : a small(est) unit of data storage, defined by OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

Disk drive

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Start block
…

iNodes

(sample.c)

Device ID
File ID
Permission
Access
Size
Start block
…

(buffer.c)

Device ID
File ID
Permission
Access
Size (2)
Start block
…

MANAGE RESOURCES: BLOCK STRUCTURE FOR EFFICIENCY

• Scenario 3: Users access a certain block(s)
− i(ndex)Node: a data-structure that describes a file-system object, e.g., a file/dir.
− Block : a small(est) unit of data storage, defined by OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

Disk drive

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Start block
…

iNodes

MANAGE RESOURCES: BLOCK STRUCTURE FOR EFFICIENCY

• Scenario 3: Users access a certain block(s)
− i(ndex)Node: a data-structure that describes a file-system object, e.g., a file/dir.
− Block : a small(est) unit of data storage, defined by OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 37

Disk drive

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…

iNodes

MANAGE RESOURCES: FILESYSTEM STRUCTURE OVERVIEW

Secure AI Systems Lab :: CS 344 - Operating Systems I 38

[1] What Are inodes in Linux and How Are They Used? https://helpdeskgeek.com/linux-tips/what-are-inodes-in-linux-and-how-are-they-used/
[2] File System Design Case Studies, https://people.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html

TOPICS FOR TODAY

• Part II: Files and File System Basics
− Provide abstractions

• What is a file (and a directory)?
• What is the access control/permission?

− Offer standard interface
• How do we create/read/write a file?
• How do we modify access/permission?

− Manage resources
• How OS manages files (and directories)?

Secure AI Systems Lab :: CS 344 - Operating Systems I 39

Thank You!

Secure AI Systems Lab

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

