
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
02.01: I/O

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

NOTICE

• Announcements
− Quiz answers will be available after all three attempts

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

NOTICE

• Deadlines (~2 weeks)
− (2/06 11:59 PM) Programming assignment 2
− (2/13 11:59 PM) Midterm quiz 2

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

RECAP: FILESYSTEM STRUCTURE OVERVIEW

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

• Basic components
− File : a named collection of data
− Directory: a file that holds other files as data

• Access control, permission
− Access control: user, group, and others (u, g, o)
− Permission : read, write, and execute (r, w, x)

• Filesystem structure
− iNode: a data-structure that describes a file-system object
− Block : a unit of data storage, the size is defined by OS (e.g., 4kB)

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 5

• A file stored in a filesystem (12 blocks ≈ 48kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

… 4kB 4kB

Disk drive

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 6

• A (larger) file stored in a filesystem (indirect block ≈ 4MB + 4kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

… 4kB 4kB

Disk drive

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

iNode

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

• A (larger) file stored in a filesystem (double I-blk ≈ 4GB +4MB +4kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

4kB

Disk drive

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

iNode

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

iNode

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

• A (larger) file stored in a filesystem (double I-blk ≈ 4GB +4MB +4kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

4kB

Disk drive

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

iNode

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

iNode

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

• A (largest) file stored in a filesystem (triple I-blk ≈ 4TB +4GB +4MB +4kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

4kB

Disk drive

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

iNode

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

iNode

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

iNode

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

• Design choices
− FAT :

• Index: Linked lists (iNode)
• Data : Block

− NTFS:
• Index: Tree (iNode)
• Data : Extent

TOPICS FOR TODAY

• Part II: I/Os
− Provide abstractions

• What is I/O?
− Offer standard interface

• How can we do low-level I/Os?
• How can we do high-level I/Os?

− Manage resources
• How OS manages (file) I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

PROVIDE ABSTRACTION: WHAT IS I/O?

• I/O
− Definition : input and output
− Def (*NIX): any operation that

read/write from/to system services
(*NIX OS: everything is a file)

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

TOPICS FOR TODAY

• Part II: I/Os
− Provide abstractions

• What is I/O?
− Offer standard interface

• How can we do low-level I/Os?
• How can we do high-level I/Os?

− Manage resources
• How OS manages (file) I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

OFFER STANDARD INTERFACE

• I/O
− Definition : input and output
− Def (*NIX): any operation that

read/write system services
(*NIX OS: everything is a file)

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

Hardware (CPU, GPU, Mem, …)

Users Run Applications

……

File System(s)

I/O Drivers

Standard Interfaces (Libraries)

System Calls

Low-level I/O

High-level I/O

Today

RECAP: SYSTEM CALL

• System call
− Definition: a user-level function call to request a service from the OS
− I/O system calls:

• int open(const char *pathname, int flags)
• int creat(const char *pathname, mode_t mode)
• Int openat(int dirfd, const char *pathname, int flags, mode_t mode)

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

int main(void) {
int fd = open(“movie.csv”, O_RDONLY);

if (fd == -1) {
printf(“Error here!\n”, errno);
return errno;

}

return 0;
}

User program OS Kernel

Kernel opens the file “movie.csv” as
read-only permission and returns
the file descriptor (an integer).

OFFER STANDARD INTERFACE: LOW-LEVEL I/O
• File descriptors (fd)

− Definition : an integer that uniquely identifies an open file in Linux
− System calls: (fctrl.h)

• int open(const char *filename, int flags, mode_t *mode)
• int create(const char *filename, mode_t *mode)
• int close(int *fd)

− Standard file descriptors:
• STDIN_FILENO : 0
• STDOUT_FILENO: 1
• STDERR_FILENO : 2

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

OFFER STANDARD INTERFACE: LOW-LEVEL I/O
• File descriptors (fd)

− Definition : an integer that uniquely identifies an open file in Linux
− System calls:

• int open(const char *filename, int flags, mode_t *mode)
− Open the file and return a file descriptor
− Returns error (link) if it fails to open the file
− flags : access mode (O_RDONLY, O_APPEND, …)
− mode: access permission (S_IRUSR, S_IRWXU, ...)

• int create(const char *filename, mode_t *mode)
• int close(int *fd)

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: READ FROM A FILE DESCRIPTOR

• Basic functions
− ssize_t read(int fd, void *buffer, size_t maxsize)

• Descriptions
− read(): reads data from an open file using its file descriptor

• Read up to maxsize bytes; returns less bytes if the data < maxsize
• Return the number of bytes it read (0 means EOF, and negative values are errors)

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: READ FROM A FILE DESCRIPTOR

• Basic functions
− ssize_t read(int fd, void *buffer, size_t maxsize)
− ssize_t write(int fd, const void *buffer, size_t size)

• Descriptions
− read(): reads data from an open file using its file descriptor

• Read up to maxsize bytes; returns less bytes if the data < maxsize
• Return the number of bytes it read (0 means EOF, and negative values are errors)

− write(): writes data to an open file using its file descriptor
• Returns the number of bytes it wrote

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: READ FROM A FILE DESCRIPTOR

• Basic functions
− ssize_t read(int fd, void *buffer, size_t maxsize)
− ssize_t write(int fd, const void *buffer, size_t size)
− off_t lseek(int fd, off_t offset, int whence)

• Descriptions
− read(): reads data from an open file using its file descriptor

• Read up to maxsize bytes; returns less bytes if the data < maxsize
• Return the number of bytes it read (0 means EOF, and negative values are errors)

− write(): writes data to an open file using its file descriptor
• Returns the number of bytes it wrote

− lseek(): repositions the file offset within the kernel
• (lseek != fseek) fseek holds a position in the FILE pointer

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: READ/WRITE FROM A FILE DESCRIPTOR

• Basic functions
− ssize_t read(int fd, void *buffer, size_t maxsize)
− ssize_t write(int fd, const void *buffer, size_t size)
− off_t lseek(int fd, off_t offset, int whence)

• Descriptions
− read(): reads data from an open file using its file descriptor

• Read up to maxsize bytes; returns less bytes if the data < maxsize
• Return the number of bytes it read (0 means EOF, and negative values are errors)

− write(): writes data to an open file using its file descriptor
• Returns the number of bytes it wrote

− lseek(): repositions the file offset within the kernel
• (lseek != fseek) fseek holds a position in the FILE pointer

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

Data types (size_t, off_t, …):
C has many pre-defined data types. You
can find them in <types.h>; a friendly
version can be found in here (link)

https://mariadb.com/kb/en/operating-system-error-codes/
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_types.h.html

• Example C code:

OFFER STANDARD INTERFACE: LOW-LEVEL I/O

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

#include <stdio.h>
#include <unistd.h>
#include <fctrl.h>

#define BUFFER_SIZE 256

int main(void) {
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));

int fd = open("input.txt", O_RDONLY, S_IRUSR | S_IWUSR);

ssize_t rlen = read(fd, buffer, BUFFER_SIZE);

int err = close(fd);

ssize_t wlen = write(STDOUT_FILENO, buffer, rlen);

return 0;
}

read() system call:
It reads at most, BUFFER_SIZE bytes from the
opened file and returns the total bytes read (rlen).

open() system call:
It opens a file with the read-only permission.
A user can read/write from/to this file descriptor.

write() system call:
It writes the contents in the buffer to the standard
output (Term. screen). It will write rlen bytes.

OFFER STANDARD INTERFACE: LOW-LEVEL I/O SYSTEM CALLS

• Duplicating descriptors
− int dup(int oldfd)
− int dup2(int oldfd, int newfd)

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

OFFER STANDARD INTERFACE: LOW-LEVEL I/O SYSTEM CALLS

• Duplicating descriptors
− int dup(int oldfd)
− int dup2(int oldfd, int newfd)

• Modify configurations of a device file
− int ioctl(int fd, unsigned long request, …)

• Inter-process communication
− int pipe(int pipefd[2], …)
− ex. Process A write to pipefd[1] and Process B reads from pipefd[0]

• …

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O

• I/O
− Definition : input and output
− Def (*NIX): any operation that

read/write system services
(*NIX OS: everything is a file)

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

Hardware (CPU, GPU, Mem, …)

Users Run Applications

……

File System(s)

I/O Drivers

Standard Interfaces (Libraries)

System Calls

Low-level I/O

High-level I/O

Today

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Details :
• fopen() returns a stream represented by a pointer to a FILE data structure
• Returns NULL if we have an error

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Details :
• fopen() returns a stream represented by a pointer to a FILE data structure
• Returns NULL if we have an error

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

Mode Descriptions
r Open existing file for reading
w Open for writing; create if not exists
a Open for appending; create if not exists
r+ Open existing file for reading and writing
w+ Open for reading and writing; empty a file if exists
a+ Open for reading and writing;

read from the beginning and write as append

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Standard streams:
• FILE *stdin : normal source of input, can be redirected
• FILE *stdout: normal source of output; redirection can be done
• FILE *stderr : output errors

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Standard streams:
• FILE *stdin : normal source of input, can be redirected
• FILE *stdout: normal source of output; redirection can be done
• FILE *stderr : output errors

− Standard streams in Terminal:
• Each stream has numbers: 0 (stdin), 1 (stdout), 2 (stderr)
• An example command : $./movie movie.csv > ./output 2>&1 &

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Standard streams:
• FILE *stdin : normal source of input, can be redirected
• FILE *stdout: normal source of output; redirection can be done
• FILE *stderr : output errors

− Standard streams in Terminal:
• Each stream has numbers: 0 (stdin), 1 (stdout), 2 (stderr)
• An example command : $./movie movie.csv > ./output 2>&1

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

Redirects the stdout from “./movie movie.csv” to
“./output” file. “printf” outputs will be stored.

Errors won’t be stored to “./output” “2>&1”
redirects stderr output to stdin; stored to the file

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM
• Character(byte)-level API

− int fputc(int c, FILE *fp)
− int fputs(const char *s, FILE *fp)
− int fgetc(FILE *fp)
− char *fgets(char *buf, int n, FILE *fp)

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM
• Character(byte)-level API

− int fputc(int c, FILE *fp)
− int fputs(const char *s, FILE *fp)
− int fgetc(FILE *fp)
− char *fgets(char *buf, int n, FILE *fp)

• Block-level API
− size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)
− size_t fwrite(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM
• Character(byte)-level API

− int fputc(int c, FILE *fp)
− int fputs(const char *s, FILE *fp)
− int fgetc(FILE *fp)
− char *fgets(char *buf, int n, FILE *fp)

• Block-level API
− size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)
− size_t fwrite(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)

• (More convenient) API allows formatting
− int fprintf(FILE *restrict stream, const char *restrict format, …);
− int fscanf(FILE *restrict stream, const char *restrict format, …);

Secure AI Systems Lab :: CS 344 - Operating Systems I 33

• Example C code:

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

#define BUFFER_SIZE 256

int main(void) {
FILE *input;
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));
size_t len = 0;

input = fopen("input.txt", "r");
if (input == NULL) {

printf("Cannot open the input.txt file, abort.\n");
return -ENOENT;

}

len = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (len > 0) {

printf("[CHAR] read: %c\n", buffer[--len]);
}

fclose(input);
return 0;

}

Macros (some predefineds):
You can define any numbers, strings, etc.
Or you can use what C already defines

fopen / fread system calls:
Open a file and read the contents, 256 bytes,
The file will be open for reading-only. If the
contents are less than 256 bytes. It will return all

https://gcc.gnu.org/onlinedocs/cpp/Predefined-Macros.html

• Example C code:

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

#define BUFFER_SIZE 256

int main(void) {
FILE *input;
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));
size_t len = 0;

input = fopen("input.txt", "r");
if (input == NULL) {

printf("Cannot open the input.txt file, abort.\n");
return -ENOENT;

}

len = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (len > 0) {

printf("[CHAR] read: %c\n", buffer[--len]);
}

fclose(input);
return 0;

}

…

Data stream of “file.txt” contents

The next fread/fwrite will be performed from the new location!

• Example C code:

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

#define BUFFER_SIZE 256

int main(void) {
FILE *input;
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));
size_t len = 0;

input = fopen("input.txt", "r");
if (input == NULL) {

printf("Cannot open the input.txt file, abort.\n");
return -ENOENT;

}

len = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (len > 0) {

printf("[CHAR] read: %c\n", buffer[--len]);
}

fclose(input);
return 0;

}

Good system programming practice
Make your program returns proper errors
in any cases; the error numbers are in here

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: SOME ADDITIONAL APIS
• Current working directory (CWD)

− Each process has CWD (in their process context, i.e., task_struct)
− int chdir(const char *path);

• Set the CWD to path
• Returns zero upon success; otherwise, returns -1

Secure AI Systems Lab :: CS 344 - Operating Systems I 37

TOPICS FOR TODAY

• Part II: I/Os
− Provide abstractions

• What is I/O?
− Offer standard interface

• How can we do low-level I/Os?
• How can we do high-level I/Os?

− Manage resources
• How OS manages (file) I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 38

MANAGE RESOURCES: HIGH-LEVEL VS. LOW-LEVEL I/OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 39

Hardware (CPU, GPU, Mem, …)

User Applications

Manage CPU, Memory, I/Os…

H/W Abstractions

Standard Libraries (GNU C)

OS

Low-level I/O

read()

High-level I/O

fread()

read()

• Low-level I/O uses system calls, while high-level I/Os are not
− System calls

• They directly request OS services/resources
• e.g., open(), read(), write(), and close()

− Standard libraries in C
• They are offered by C libraries
• C libraries eventually do system calls
• e.g., fopen(), fread(), fwrite(), and fclose()

MANAGE RESOURCES: HIGH-LEVEL VS. LOW-LEVEL I/OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 40

High-level I/O calls

size_t fread(…) {
You can do something at here!

asm code … syscall <number> into %eax
put <syscall args> into registers %ebx
special trap instruction

Kernel:
get <syscal args> from %ebx
dispatch to system func
do the work to read from the file
store return value in %eax

get return values from regs

You can do something at here!
}

Low-level I/O calls

ssize_t read(…) {

asm code … syscall <number> into %eax
put <syscall args> into registers %ebx
special trap instruction

Kernel:
get <syscal args> from %ebx
dispatch to system func
do the work to read from the file
store return value in %eax

get return values from regs

}

High-level I/O calls
also use system calls!

MANAGE RESOURCES: AN EXAMPLE OF “SOMETHING”
• Kernel buffering

Secure AI Systems Lab :: CS 344 - Operating Systems I 41

OS Kernel

User

[System call]

H/W

write()

Device I/O

Memory /
Storage

[C library call]

OS Kernel

User

H/W

fwrite()

Your program waits!

Memory /
Storage

Device I/O

Buffer

Your program keeps running!

TOPICS FOR TODAY

• Part II: I/Os
− Provide abstractions

• What is I/O?
− Offer standard interface

• What OS provide us to do raw I/Os?
• What OS provide us to do high-level I/Os?

− Manage resources
• How OS manages (file) I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 42

Thank You!

Secure AI Systems Lab

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

