CS 344: OPERATING SYSTEMS |
02.06: FILESYSTEM INTERNALS

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
&re UI‘llVCI'Slty Secure Al Systems Lab

NOTICE

* Announcements
— No class on the 8t
— No Sanghyun’s office hours on the 10t

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

NOTICE

e Deadlines (~2 weeks)

-{2/06-11:59 PM)-Programming-assighment2 (Grace period)
- (2/13 11:59 PM) Midterm quiz 2

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

RECAP

e Partll: 1/0Os
— Provide abstractions
* Whatis I/O?
— Offer standard interface
* How can we do low-level I/0s?
* How can we do high-level I/Os?

- Manage resources
* How OS manages (file) I/0 internally?

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: HIGH-LEVEL I/0

Users Run Applications
o | /O PP

- Definition: input and output

— Def (*NIX): any operation that
read/write system services
(*NIX OS: everything is a file)

<
T

T
)
<

o
<
@)

Today

Ao
Oregon State
& University -

: Secure Al Systems Lab :: CS 344 - Operating Systems | 5

OFFER STANDARD INTERFACE: HIGH-LEVEL I/0

* File as a stream
- Definition: an unformatted sequence of bytes
- Functions:
* FILE *fopen(const char *filename, const char *mode)
- fopen() returns a stream represented by toa
— Returns NULL if we have an error
* int fclose(FILE *fp)

Gy Oregon State
¢ c50n.
o7 University

Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: HIGH-LEVEL 1/0

* File as a stream
- Definition: an unformatted sequence of bytes
- Functions:
* FILE *fopen(const char *filename,|const char *mode
- fopen() returns a stream represented by toa
— Returns NULL if we have an error
* int fclose(FILE *fp)

S—

Mode Descriptions
r Open existing file for reading
w Open for writing; create if not exists
a Open for appending; create if not exists
r+ Open existing file for reading and writing
w+ Open for reading and writing; empty a file if exists
a+ Open for reading and writing;
read from the beginning and write as append

Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: HIGH-LEVEL 1/0

* File as a stream
- Definition: an unformatted sequence of bytes
- Functions:
* FILE *fopen(const char *filename, const char *mode)
* int fclose(FILE *fp)

- Standard streams:
* FILE *stdin : normal source of input, can be redirected
* FILE *stdout: normal source of output; redirection can be done
* FILE *stderr : output errors

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: HIGH-LEVEL 1/0

* File as a stream
- Definition: an unformatted sequence of bytes
- Functions:
* FILE *fopen(const char *filename, const char *mode)
* int fclose(FILE *fp)

- Standard streams:
* FILE *stdin : normal source of input, can be redirected
* FILE *stdout: normal source of output; redirection can be done
* FILE *stderr : output errors

— Standard streams in Terminal:
e Each stream has numbers: O (stdin), 1 (stdout), 2 (stderr)
* An example command :S$./movie movie.csv > ./output 2>&1 &

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: HIGH-LEVEL 1/0

* File as a stream
- Definition: an unformatted sequence of bytes
- Functions:
* FILE *fopen(const char *filename, const char *mode)

* int fclose(FILE *fp) Redirects the stdout from “./movie movie.csv” to
“/Joutput” file. “printf” outputs will be stored.

7y

- Standard streams:

]] Errors won’t be stored to “./output” “2>&1”
e FILE *stdin : normal source of input, can b

redirects stderr output to stdin; stored to the file

* FILE *stdout: normal source of output; redi
* FILE *stderr : output errors

- Standard streams in Terminal:
e Each stream has numbers: O (stdin), 1 (stdout), 2 (stderr)
« An example command :$|./movie movie.csv > ./output|2>&1]

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems | 10

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM

* Character(byte)-level API
- int fputc(int ¢, FILE *fp)
— int fputs(const char *s, FILE *fp)
- int fgetc(FILE *fp)
— char *fgets(char *buf, int n, FILE *fp)

xS
kP8 Oregon State
& Universi

ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

11

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM

* Character(byte)-level API
- int fputc(int ¢, FILE *fp)
— int fputs(const char *s, FILE *fp)
- int fgetc(FILE *fp)
— char *fgets(char *buf, int n, FILE *fp)

* Block-level API
- size_t fread(void *ptr, size_t size_of _elements, size_t number_of_elements, FILE *fp)
- size_t fwrite(void *ptr, size_t size_of_elements, size_t number_of elements, FILE *fp)

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

12

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM

* Character(byte)-level API
- int fputc(int ¢, FILE *fp)
— int fputs(const char *s, FILE *fp)
- int fgetc(FILE *fp)
— char *fgets(char *buf, int n, FILE *fp)

* Block-level API
- size_t fread(void *ptr, size_t size_of _elements, size_t number_of_elements, FILE *fp)
- size_t fwrite(void *ptr, size_t size_of_elements, size_t number_of elements, FILE *fp)

* (More convenient) API allows formatting
— int fprintf(FILE *restrict stream, const char *restrict format, ...);
— int fscanf(FILE *restrict stream, const char *restrict format, ...);

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

13

OFFER STANDARD INTERFACE: HIGH-LEVEL I/0

* Example C code:

|#define BUFFER_SIZE ~ 256 }\, Macros (some predefineds):
You can define any numbers, strings, etc.

int main(void) {
FILE *input;
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));
size_tlen=0;

Or you can use what C already defines

input =|fopen("input.txt“, "r");

if (input == NULL) {
printf("Cannot open the input.txt file, abort.\
return -ENOENT;

}

len =|fread(buffer, BUFFER_SIZE, sizeof(char), input); |
while (len > 0) {
printf("[CHAR] read: %c\n", buffer[--

}

fopen / fread system calls:

Open a file and read the contents, 256 bytes,
The file will be open for reading-only. If the
contents are less than 256 bytes. It will return all

e

fclose(input);
return 0;

" Oregon State
University -
: Secure Al Systems Lab :: CS 344 - Operating Systems | 14

https://gcc.gnu.org/onlinedocs/cpp/Predefined-Macros.html

OFFER STANDARD INTERFACE: HIGH-LEVEL I/0

* Example C code:

#define BUFFER_SIZE 256

Data stream of “file.txt” contents

int main(void){ -~ ,,:
FILE *input; e
char *buffer = (char *) caIIoc(BUFFER___SIZE—*STié—o_f(char)); o
size tlen=0; =TT e

-
Prias
-

if (input == NULL) {

printf("Cannot open the input.txt file, abort.\n");

return -ENOENT;
}

len :|fread(buffer, BUFFER_SIZE, sizeof(char),

input);| ’

while (len > 0) {
printf("[CHAR] read: %c\n", buffer[--len]);
}

fclose(input);
return 0;

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

The next fread/fwrite will be performed from the new location!

15

OFFER STANDARD INTERFACE: HIGH-LEVEL I/0

* Example C code:

#define BUFFER_SIZE 256

int main(void) {
FILE *input;
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));
size_tlen=0;

input = fopen("input.txt”", "r"); e » Good system programming practice

if (input == NULL) { K
printf("Cannot open the input.txt file, abort.\n"); Make your program returns proper errors

return -ENOENT; in any cases; the error numbers are in here
}

len = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (len > 0) {
printf("[CHAR] read: %c\n", buffer[--len]);

}

fclose(input);
return 0;

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: SOME ADDITIONAL APIS

* Current working directory (CwD)
— Each process has CWD (in their process context, i.e., task_struct)

— int chdir(const char *path);
* Set the CWD to path
* Returns zero upon success; otherwise, returns -1

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

17

TOPICS FOR TODAY

e Partll: I/Os

— Offer standard interface
* How can we do low-level I/0s?
* How can we do high-level I/Os?
- Manage resources
* How OS manages (file) I/O internally?

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

18

MANAGE RESOURCES: HIGH-LEVEL VS. LOW-LEVEL 1/0s

* Low-level I/O uses system calls, while high-level I/Os are not

— System calls User Applications
* They directly request OS services/resources | —TTTTTTTTTTt TR

* e.g., open(), read(), write(), and close()

- Standard librariesinC ~ peemmmmemmesem s

* They are offered by C libraries i Standprd Libraries (GNU C) i
« Clibraries eventually do system calls e Sl el

* e.g., fopen(), fread(), fwrite(), and fclose() i Manage CPU, Memory, I/Os...

Oregon State
3‘5 Universi

ty i

Secure Al Systems Lab :: CS 344 - Operating Systems | 19

oS

MANAGE RESOURCES: HIGH-LEVEL VS. LOW-LEVEL 1/0s

High-level 1/0 calls

size_t fread(...) {
You can do something at here!

Low-level 1/0 calls

ssize_tread(...) {

asm code ... syscall <number> into %eax
put <syscall args> into registers %ebx
special trap instruction

Kernel:
get <syscal args> from %ebx
dispatch to system func
do the work to read from the file
store return value in %eax

get return values from regs

asm code ... syscall <number> into %eax
put <syscall args> into registers %ebx
special trap instruction

Kernel:
get <syscal args> from %ebx
dispatch to system func
do the work to read from the file
store return value in %eax

get return values from regs

You can do something at here!

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

High-level 1/0 calls
also use system calls!

20

HIGH-LEVEL APl INTERNALS: WHY?

* Given the functionalities we’ve learned:
- fopen() anyway uses open() system call
- fopen() may make users (or developers) more confusing which one to use (open?, fopen?)

* Problem
— System calls are 25x slower than the standard function call | Recall the read() system call:
— Solutions? ssize_t read(...) {
asm code ... syscall <number> into %eax
. put <syscall args> into registers %ebx
* Kernel bufferlng special trap instruction
— Create a buffer (in user-space or kernel-space?) Kernel:
_ . get <syscal args> from %ebx
Read/write data asynchronously | dispatch to system func
* Read whatever amount of data in the buffer do the work to read from the file
. . . i o
« Write the data to devices when the buffer is full SCELETAUREIEI
get return values from regs
}

Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 21

HIGH-LEVEL API INTERNALS: AN EXAMPLE OF “SOMETHING”

* Kernel buffering

[System call] [C library call]
Your program waits! Your program keeps running!
> :f > >
write() f----- ; fwrite() |-
User User
OS Kernel OS Kernel |
i E Buffer
Device 1/0 v H
4 Device /O
i | | A
H/W | | H/W |
v ! ' ;
Memory / Memory /
Storage Storage

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

HIGH-LEVEL API INTERNALS: AN EXAMPLE OF “SOMETHING”

* When fwrite flushes the buffer?
- When we write data to the buffer, but it is full
— When we close the stream, i.e., fclose(FILE *fp)
- When the program that has called fwrite() finished its execution (i.e., terminated)
- When a new line (i.e., \n) is written to the buffer
- When a program reads data from a file (not from the buffer)

* Or if you explicitly call fflush()
— int fflush(FILE *fp);

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

23

TOPICS FOR TODAY

* Part Il: Filesystem internals
- Manage resources

* How OS manages high-level I/O internally?
* How OS manages low-level I/0O internally?

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

24

HIGH-LEVEL API INTERNALS:

HOW?

* FILE data structure contents (code)

File descriptor (fd), from open()

 FILE (Diagram)

Offsets, a position to read/write data
Buffer (an array of bytes to read/write data)
Lock (only one process can access data)

Buffer for data stream

4 A

N\
X

Position (offsets)

Process A

Process B

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

49 | struct _IO_FILE
50 |
51 int _flags; /* High-order word is _IO_MAGIC; rest is flags. =/
52
53 /* The following pointers correspond to the C++ streambuf protocol. */
54 char %_IO0_read_ptr; /% Current read pointer */
55 char %_IO0_read_end; /* End of get area. */
56 char x_IO0_read_base; /x Start of putback+get area. x/
i~ P\ char x_I0_write_base; /% Start of put area. %/
: 58 char %_I0_write_ptr; /% Current put pointer. *x/
H : 59 char x_I0_write_end; /* End of put area. */
E i 60 char %_IO0_buf_base; /* Start of reserve area. %/
: : 61 char %_IO0_buf_end; /* End of reserve area. x/
_+__J 62
: 63 /* The following fields are used to support backing up and undo. */
: 64 char x_IO0_save_base; /x Pointer to start of non-current get area. %/
: 65 char x_IO0_backup_base; /x Pointer to first valid character of backup area x
i 66 char x_IO0_save_end; /x Pointer to end of non-current get area. %/
: 67
: 68 struct _IO_marker x_markers;
! 69
| 70 struct _TO_FILE *_chain;
| 71
73 int _flags2;
74 _off_t _old_offset; /x This used to be _offset but it's too small. =/
75
76 /* 1+column number of pbase(); @ is unknown. %/
77 unsigned short _cur_column;
78 signed char _vtable_offset;
79 char _shortbuf[1];
80
-------- e]
89 __offéd_t _offset;
90 /* Wide character stream stuff. */
91 struct _IO_codecvt *_codecvt;
92 struct _I0_wide_data x_wide_data;
93 struct _IO_FILE *_freeres_list;
94 void *_freeres_buf;
95 size_t __pad5;
96 int _mode;
97 /* Make sure we don't get into trouble again. */
98 char _unused2[15 % sizeof (int) - 4 % sizeof (void %) - sizeof (size_t)];
29 ¥

https://github.com/bminor/glibc/blob/master/libio/bits/types/struct_FILE.h

HIGH-LEVEL API INTERNALS: AN EXAMPLE OF “SOMETHING”

* When fwrite flushes the buffer?
- When we write data to the buffer, but it is full
— When we close the stream, i.e., fclose(FILE *fp)
- When the program that has called fwrite() finished its execution (i.e., terminated)
- When a new line (i.e., \n) is written to the buffer
- When a program reads data from a file (not from the buffer)

* Or if you explicitly call fflush()
— int fflush(FILE *fp);

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

26

HIGH-LEVEL API INTERNALS: HOW?

* Exercise

... many #include ...

int main(void) {
char name[8] = "Sanghyun";
char desc[28] = "is an instructor of CS 344\n";

fwrite(name, sizeof(char), strlen(name), stdout);

sleep(10);

fwrite(desc, sizeof(char), strlen(desc), stdout);
0;

... many #include ...

int main(void) {
char name[8] = "Sanghyun";
char desc[28] = "is an instructor of CS 344\n";

write(STDOUT_FILENO, name, strlen(name));
sleep(10);
write(STDOUT_FILENO, desc, strlen(desc));
0;
}

- Before the sleep(10), what message you’ll see in your terminal?
- After the sleep(10), what message you’ll see in your terminal?

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

27

HIGH-LEVEL API INTERNALS: HOW?

* Exercise * Casel
.. many #include ... - “H” is written to the file by fwrite()
int main(void) { - fread() will read “H” from the file
charx="S"; - Print “H”
FILE *fpl = fopen("input.txt", "w"); o
fwrite("H", sizeof(char), 1, fpl); Case I
- “H” is in the kernel buffer
FILE *fp2 = fopen("input.txt", "r"); _ ’ : :
fread(8a, sizeofichar), 1. fp2); fread()Swon t read anything from the file
— Print “S”

printf("l read %c\n", x);
0;

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 28

HIGH-LEVEL API INTERNALS: HOW?

* Exercise

... many #include ...

int main(void) {
charx="S";

FILE *fp1 = fopen("input.txt", "w");
fwrite("H", sizeof(char), 1, fpl);
fflush(fp1);

FILE *fp2 = fopen("input.txt", "r");
fread(&x, sizeof(char), 1, fp2);

printf("l read %c\n", x);
0;

g Oregon State
3‘5‘ Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

* Casel
- “H” is written to the file by fwrite()

- fread() will read “H” from the file
- Print “H”

* Casell
- “H” is in the kernel buffer

- fread() won’t read anything from the file
- Print “S”

e Case with fflush()
- “H” is written to the buffer
— It will be flushed to the file by fflush()
- fread() will read “H” from the file
- Print “H”

29

TOPICS FOR TODAY

* Part Il: Filesystem internals
- Manage resources

* How OS manages high-level I/O internally?
* How OS manages low-level I/0O internally?

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

30

LOW-LEVEL API INTERNALS

* File descriptors (fd)
- Definition :an integer that uniquely identifies an open file in Linux
— System calls: (fctrl.h)
* int open(const char *filename, int flags, mode_t *mode)

- Magic behind the open()
* open() creates an open file descriptor table for each process (fd is here)
* open() also creates an entry in system-wide table of open files (offset are here)
» open file description object in the kernel represents an instance of an actual open file

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

31

LOW-LEVEL API INTERNALS: HOW?

+ 1932 | struct file {

* File descriptor (code) in Linux kernel - T et st ottt

935 struct rcu_head fu_rcuhead;

- iNode, a structure that holds data on disk ---------- poo o y tu

1 937 struct path f i
e o3F === "'51%(1 inode *f_inode; /* cached value x/

— Offsets, a position to read/write data

_______________ 940
- No buffer N
1 942 * Protects f_ep, f_flags.
: 943 * Must not be taken from IRQ context.
: 944 */
i 945 spinlock_t f_lock;
. . . 1 946 atomic_long_t f_count;
i FIIe descrlptor (Dlagram) i 947 unsigned int f_flags;
: 948 fmode_t f_mode;
: 949 struct mutex f _pos_lock;
b e 95— p
951 struct fown_struct f_owner;
Process A Process B 952 const struct cred *f_cred;
953 struct file_ra_state f_ra;

(fd = 200) (fd1 = 218,

955 u64 f_version;
fd2 = 392) 956 #ifdef CONFIG_SECURITY
User 957 void *f_security;
958 #endif
959 /* needed for tty driver, and maybe others x/

960 void *private_data;
OS Kernel 200 input.txt s61 D

962 #ifdef CONFIG_EPOLL

963 /* Used by fs/eventpoll.c to link all the hooks to this file x/

218 InPUt-tXt 964 struct hlist_head *f_ep;

965 #endif /x #ifdef CONFIG_EPOLL %/

966 struct address_space *f_mapping;
""" 967 errseq_t f_wb_err;
968 errseq_t f_sb_err; /% for syncfs %/
392 database.bln 969 } __randomize_layout
o 970 __attribute__((aligned(4))); /% lest something weird decides that 2 is 0K %/

) Oregon State -
3‘5‘ Universi
ty i
Secure Al Systems Lab :: CS 344 - Operating Systems | 32

https://github.com/torvalds/linux/blob/master/include/linux/fs.h

LOW-LEVEL API INTERNALS: HOW?

* Let’s check with the following program

... many #include ...
#define BSIZE 100

int main(void) {
char buf1[BSIZE];
char buf2[BSIZE];
int fd = open("input.txt", O_RDONLY); <=s=ssssausananss

read(fd, bufl, BSIZE);
read(fd, buf2, BSIZE);
0;

}

* Note
- Process A opens a file “input.txt”
— OS Kernel opens the file, offset is 0

Process A
(fd = 200)
User
OS Kernel -
.{ 200 input.txt
218 database.bin

— OS Kernel create an entry to the descriptor table

— OS Kernel returns fd = 200

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

392

index.txt
Offset: 0

33

LOW-LEVEL API INTERNALS: HOW?

* Let’s check with the following program

... many #include ...
#define BSIZE 100

int main(void) {
char buf1[BSIZE];
char buf2[BSIZE];
int fd = open("input.txt", O_RDONLY);

read(fd, bufl, BSIZE); @
read(fd, buf2, BSIZE);
0;

}

* Note
- Process A read the file
— OS Kernel reads the file, 100 bytes
— OS Kernel moves the offset to 100
- OS Kernel returns the data to Process A

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A
(fd = 200)
User
OS Kernel -
.{ 200 input.txt
218 database.bin

392

index.txt
Offset: 100

34

LOW-LEVEL API INTERNALS: HOW?

* Let’s check with the following program

... many #include ...
#define BSIZE 100

int main(void) {
char buf1[BSIZE];
char buf2[BSIZE];
int fd = open("input.txt", O_RDONLY);

read(fd, bufl, BSIZE);
read(fd, buf2, BSIZE); @
0;

}

* Note
- Process A read the file
— OS Kernel reads the file, 100 bytes
— OS Kernel moves the offset to 100
- OS Kernel returns the data to Process A

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A
(fd = 200)
User
OS Kernel -
.{ 200 input.txt
218 database.bin

392

index.txt
Offset: 200

35

LOW-LEVEL API INTERNALS: HOW?

Let’s do more exercise

... many #include ...
#define BSIZE 100

int main(void) {
char buf1[BSIZE];
char buf2[BSIZE];
int fd = open("input.txt", O_RDONLY), pid;

read(fd, buf1, BSIZE);
read(fd, buf2, BSIZE);

(pid = fork()) {

Note
— Process A fork()!
— Process B is created (a child)
— Process B has the same file descriptor (200)
- Thefdis and

Oregon State

Universi
o Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A Process B
(fd = 200) (fd = 200)
Parent Child

User ; :
OS Kernel = - .

200 input.txt

218 database.bin

392 log.txt

index.txt

Offset: 200

36

LOW-LEVEL API INTERNALS: HOW?

e Let’s do more exercise

... many #include ...
#define BSIZE 100

int main(void) {
(pid = fork()) {
0:
sleep(3); read(fd, bufl, BSIZE);

’

read(fd, bufl, BSIZE);
close(fd);

* Note

Process A Process B
(fd = 200)
Parent Child
User ; :
OS Kernel ¥ - ¥
.{ 200 input.txt

218 database.bin

392 log.txt

index.txt

Offset: 300

- Proc A (parent) read data from fd and close it

— The fd will

g Oregon State
3‘5‘ Universi
ty

to Proc B

Secure Al Systems Lab :: CS 344 - Operating Systems |

37

LOW-LEVEL APl INTERNALS: SUMMARY

* File descriptors (fd)

- A

uniqgue identifier for an open file

* Each process has an open file descriptor table

* OS also has a system-wide desciptor table

- Properties of file descriptors

” Oregon State
& Universi
ty

* The fd can

Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A Process B
(fd = 200) (fd1 =218,
fd2 =392)
User - —
¥ i
OS Kernel) i
1 200 input.txt iy
..' 1
.+ 218 input.txt i
2 |
4
392 log.txt
input.txt

38

LOW-LEVEL APl INTERNALS: SUMMARY

] . fork()
* File descriptors (fd) e N
- A unique identifier for an open file
. . Process A Process C Process B
* Each process has an open file descriptor table (fd = 200) (fd = 200) (fd1 = 218,
* OS also has a system-wide desciptor table fd2 = 392)
- Properties of file descriptors User : : =
* The fd can OS Kernel 4 : 4 : :
.{ 200 input.txt i1
* The fd can be P 'E
input.txt
— Proc A and C share the offset ; it i
- Proc Aand B do not """ v
: 392 log.txt
.| input.txt

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

TOPICS FOR TODAY

* Part Il: Filesystem internals
- Manage resources

* How OS manages high-level I/O internally?
* How OS manages low-level I/0O internally?

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

40

Thank You!

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVEI'Slty Secure Al Systems Lab

