
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
02.06: FILESYSTEM INTERNALS

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

NOTICE

• Announcements
− No class on the 8th

− No Sanghyun’s office hours on the 10th

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

NOTICE

• Deadlines (~2 weeks)
− (2/06 11:59 PM) Programming assignment 2 (Grace period)
− (2/13 11:59 PM) Midterm quiz 2

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

RECAP

• Part II: I/Os
− Provide abstractions

• What is I/O?
− Offer standard interface

• How can we do low-level I/Os?
• How can we do high-level I/Os?

− Manage resources
• How OS manages (file) I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O

• I/O
− Definition : input and output
− Def (*NIX): any operation that

read/write system services
(*NIX OS: everything is a file)

Secure AI Systems Lab :: CS 344 - Operating Systems I 5

Hardware (CPU, GPU, Mem, …)

Users Run Applications

……

File System(s)

I/O Drivers

Standard Interfaces (Libraries)

System Calls

Low-level I/O

High-level I/O

Today

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
− fopen() returns a stream represented by a pointer to a FILE data structure
− Returns NULL if we have an error

• int fclose(FILE *fp)

Secure AI Systems Lab :: CS 344 - Operating Systems I 6

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
− fopen() returns a stream represented by a pointer to a FILE data structure
− Returns NULL if we have an error

• int fclose(FILE *fp)

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

Mode Descriptions
r Open existing file for reading
w Open for writing; create if not exists
a Open for appending; create if not exists
r+ Open existing file for reading and writing
w+ Open for reading and writing; empty a file if exists
a+ Open for reading and writing;

read from the beginning and write as append

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Standard streams:
• FILE *stdin : normal source of input, can be redirected
• FILE *stdout: normal source of output; redirection can be done
• FILE *stderr : output errors

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Standard streams:
• FILE *stdin : normal source of input, can be redirected
• FILE *stdout: normal source of output; redirection can be done
• FILE *stderr : output errors

− Standard streams in Terminal:
• Each stream has numbers: 0 (stdin), 1 (stdout), 2 (stderr)
• An example command : $./movie movie.csv > ./output 2>&1 &

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Standard streams:
• FILE *stdin : normal source of input, can be redirected
• FILE *stdout: normal source of output; redirection can be done
• FILE *stderr : output errors

− Standard streams in Terminal:
• Each stream has numbers: 0 (stdin), 1 (stdout), 2 (stderr)
• An example command : $./movie movie.csv > ./output 2>&1

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

Redirects the stdout from “./movie movie.csv” to
“./output” file. “printf” outputs will be stored.

Errors won’t be stored to “./output” “2>&1”
redirects stderr output to stdin; stored to the file

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM
• Character(byte)-level API

− int fputc(int c, FILE *fp)
− int fputs(const char *s, FILE *fp)
− int fgetc(FILE *fp)
− char *fgets(char *buf, int n, FILE *fp)

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM
• Character(byte)-level API

− int fputc(int c, FILE *fp)
− int fputs(const char *s, FILE *fp)
− int fgetc(FILE *fp)
− char *fgets(char *buf, int n, FILE *fp)

• Block-level API
− size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)
− size_t fwrite(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

OFFER STANDARD INTERFACE: READ/WRITE FROM/TO A STREAM
• Character(byte)-level API

− int fputc(int c, FILE *fp)
− int fputs(const char *s, FILE *fp)
− int fgetc(FILE *fp)
− char *fgets(char *buf, int n, FILE *fp)

• Block-level API
− size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)
− size_t fwrite(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)

• (More convenient) API allows formatting
− int fprintf(FILE *restrict stream, const char *restrict format, …);
− int fscanf(FILE *restrict stream, const char *restrict format, …);

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

• Example C code:

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

#define BUFFER_SIZE 256

int main(void) {
FILE *input;
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));
size_t len = 0;

input = fopen("input.txt", "r");
if (input == NULL) {

printf("Cannot open the input.txt file, abort.\n");
return -ENOENT;

}

len = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (len > 0) {

printf("[CHAR] read: %c\n", buffer[--len]);
}

fclose(input);
return 0;

}

Macros (some predefineds):
You can define any numbers, strings, etc.
Or you can use what C already defines

fopen / fread system calls:
Open a file and read the contents, 256 bytes,
The file will be open for reading-only. If the
contents are less than 256 bytes. It will return all

https://gcc.gnu.org/onlinedocs/cpp/Predefined-Macros.html

• Example C code:

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

#define BUFFER_SIZE 256

int main(void) {
FILE *input;
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));
size_t len = 0;

input = fopen("input.txt", "r");
if (input == NULL) {

printf("Cannot open the input.txt file, abort.\n");
return -ENOENT;

}

len = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (len > 0) {

printf("[CHAR] read: %c\n", buffer[--len]);
}

fclose(input);
return 0;

}

…

Data stream of “file.txt” contents

The next fread/fwrite will be performed from the new location!

• Example C code:

OFFER STANDARD INTERFACE: HIGH-LEVEL I/O

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

#define BUFFER_SIZE 256

int main(void) {
FILE *input;
char *buffer = (char *) calloc(BUFFER_SIZE * sizeof(char));
size_t len = 0;

input = fopen("input.txt", "r");
if (input == NULL) {

printf("Cannot open the input.txt file, abort.\n");
return -ENOENT;

}

len = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (len > 0) {

printf("[CHAR] read: %c\n", buffer[--len]);
}

fclose(input);
return 0;

}

Good system programming practice
Make your program returns proper errors
in any cases; the error numbers are in here

https://mariadb.com/kb/en/operating-system-error-codes/

OFFER STANDARD INTERFACE: SOME ADDITIONAL APIS
• Current working directory (CWD)

− Each process has CWD (in their process context, i.e., task_struct)
− int chdir(const char *path);

• Set the CWD to path
• Returns zero upon success; otherwise, returns -1

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

TOPICS FOR TODAY

• Part II: I/Os
− Provide abstractions

• What is I/O?
− Offer standard interface

• How can we do low-level I/Os?
• How can we do high-level I/Os?

− Manage resources
• How OS manages (file) I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

MANAGE RESOURCES: HIGH-LEVEL VS. LOW-LEVEL I/OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

Hardware (CPU, GPU, Mem, …)

User Applications

Manage CPU, Memory, I/Os…

H/W Abstractions

Standard Libraries (GNU C)

OS

Low-level I/O

read()

High-level I/O

fread()

read()

• Low-level I/O uses system calls, while high-level I/Os are not
− System calls

• They directly request OS services/resources
• e.g., open(), read(), write(), and close()

− Standard libraries in C
• They are offered by C libraries
• C libraries eventually do system calls
• e.g., fopen(), fread(), fwrite(), and fclose()

MANAGE RESOURCES: HIGH-LEVEL VS. LOW-LEVEL I/OS

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

High-level I/O calls

size_t fread(…) {
You can do something at here!

asm code … syscall <number> into %eax
put <syscall args> into registers %ebx
special trap instruction

Kernel:
get <syscal args> from %ebx
dispatch to system func
do the work to read from the file
store return value in %eax

get return values from regs

You can do something at here!
}

Low-level I/O calls

ssize_t read(…) {

asm code … syscall <number> into %eax
put <syscall args> into registers %ebx
special trap instruction

Kernel:
get <syscal args> from %ebx
dispatch to system func
do the work to read from the file
store return value in %eax

get return values from regs

}

High-level I/O calls
also use system calls!

HIGH-LEVEL API INTERNALS: WHY?
• Given the functionalities we’ve learned:

− fopen() anyway uses open() system call
− fopen() may make users (or developers) more confusing which one to use (open?, fopen?)

• Problem
− System calls are 25x slower than the standard function call
− Solutions?

• Kernel buffering
− Create a buffer (in user-space or kernel-space?)
− Read/write data asynchronously

• Read whatever amount of data in the buffer
• Write the data to devices when the buffer is full

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

Recall the read() system call:

ssize_t read(…) {
asm code … syscall <number> into %eax
put <syscall args> into registers %ebx
special trap instruction

Kernel:
get <syscal args> from %ebx
dispatch to system func
do the work to read from the file
store return value in %eax

get return values from regs
}

HIGH-LEVEL API INTERNALS: AN EXAMPLE OF “SOMETHING”
• Kernel buffering

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

OS Kernel

User

[System call]

H/W

write()

Device I/O

Memory /
Storage

[C library call]

OS Kernel

User

H/W

fwrite()

Your program waits!

Memory /
Storage

Device I/O

Buffer

Your program keeps running!

HIGH-LEVEL API INTERNALS: AN EXAMPLE OF “SOMETHING”
• When fwrite flushes the buffer?

− When we write data to the buffer, but it is full
− When we close the stream, i.e., fclose(FILE *fp)
− When the program that has called fwrite() finished its execution (i.e., terminated)
− When a new line (i.e., \n) is written to the buffer
− When a program reads data from a file (not from the buffer)
− …

• Or if you explicitly call fflush()
− int fflush(FILE *fp);

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

TOPICS FOR TODAY

• Part II: Filesystem internals
− Manage resources

• How OS manages high-level I/O internally?
• How OS manages low-level I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

HIGH-LEVEL API INTERNALS: HOW?
• FILE data structure contents (code)

− File descriptor (fd), from open()
− Offsets, a position to read/write data
− Buffer (an array of bytes to read/write data)
− Lock (only one process can access data)

• FILE (Diagram)

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

……

…

Buffer for data stream

Position (offsets)

Process A Process B

X

https://github.com/bminor/glibc/blob/master/libio/bits/types/struct_FILE.h

HIGH-LEVEL API INTERNALS: AN EXAMPLE OF “SOMETHING”
• When fwrite flushes the buffer?

− When we write data to the buffer, but it is full
− When we close the stream, i.e., fclose(FILE *fp)
− When the program that has called fwrite() finished its execution (i.e., terminated)
− When a new line (i.e., \n) is written to the buffer
− When a program reads data from a file (not from the buffer)
− …

• Or if you explicitly call fflush()
− int fflush(FILE *fp);

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

HIGH-LEVEL API INTERNALS: HOW?
• Exercise

− Before the sleep(10), what message you’ll see in your terminal?
− After the sleep(10), what message you’ll see in your terminal?

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

… many #include …

int main(void) {
char name[8] = "Sanghyun";
char desc[28] = "is an instructor of CS 344\n";

fwrite(name, sizeof(char), strlen(name), stdout);
sleep(10);
fwrite(desc, sizeof(char), strlen(desc), stdout);
return 0;

}

… many #include …

int main(void) {
char name[8] = "Sanghyun";
char desc[28] = "is an instructor of CS 344\n";

write(STDOUT_FILENO, name, strlen(name));
sleep(10);
write(STDOUT_FILENO, desc, strlen(desc));
return 0;

}

HIGH-LEVEL API INTERNALS: HOW?
• Exercise

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

… many #include …

int main(void) {
char x = "S";

FILE *fp1 = fopen("input.txt", "w");
fwrite("H", sizeof(char), 1, fp1);

FILE *fp2 = fopen("input.txt", "r");
fread(&x, sizeof(char), 1, fp2);

printf("I read %c\n", x);
return 0;

}

• Case I
− “H” is written to the file by fwrite()
− fread() will read “H” from the file
− Print “H”

• Case II
− “H” is in the kernel buffer
− fread() won’t read anything from the file
− Print “S”

… many #include …

int main(void) {
char x = "S";

FILE *fp1 = fopen("input.txt", "w");
fwrite("H", sizeof(char), 1, fp1);
fflush(fp1);

FILE *fp2 = fopen("input.txt", "r");
fread(&x, sizeof(char), 1, fp2);

printf("I read %c\n", x);
return 0;

}

HIGH-LEVEL API INTERNALS: HOW?
• Exercise

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

• Case I
− “H” is written to the file by fwrite()
− fread() will read “H” from the file
− Print “H”

• Case II
− “H” is in the kernel buffer
− fread() won’t read anything from the file
− Print “S”

• Case with fflush()
− “H” is written to the buffer
− It will be flushed to the file by fflush()
− fread() will read “H” from the file
− Print “H”

TOPICS FOR TODAY

• Part II: Filesystem internals
− Manage resources

• How OS manages high-level I/O internally?
• How OS manages low-level I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

LOW-LEVEL API INTERNALS
• File descriptors (fd)

− Definition : an integer that uniquely identifies an open file in Linux
− System calls: (fctrl.h)

• int open(const char *filename, int flags, mode_t *mode)

− Magic behind the open()
• open() creates an open file descriptor table for each process (fd is here)
• open() also creates an entry in system-wide table of open files (offset are here)
• open file description object in the kernel represents an instance of an actual open file

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

LOW-LEVEL API INTERNALS: HOW?
• File descriptor (code) in Linux kernel

− iNode, a structure that holds data on disk
− Offsets, a position to read/write data
− No buffer

• File descriptor (Diagram)

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

OS Kernel

User

Process A
(fd = 200)

200 input.txt

218 input.txt

……

392 database.bin

Process B
(fd1 = 218,
fd2 = 392)

https://github.com/torvalds/linux/blob/master/include/linux/fs.h

LOW-LEVEL API INTERNALS: HOW?
• Let’s check with the following program

• Note
− Process A opens a file “input.txt”
− OS Kernel opens the file, offset is 0
− OS Kernel create an entry to the descriptor table
− OS Kernel returns fd = 200

Secure AI Systems Lab :: CS 344 - Operating Systems I 33

… many #include …
#define BSIZE 100

int main(void) {
char buf1[BSIZE];
char buf2[BSIZE];
int fd = open("input.txt", O_RDONLY);

read(fd, buf1, BSIZE);
read(fd, buf2, BSIZE);
return 0;

}

OS Kernel

User

Process A
(fd = 200)

200 input.txt

218 database.bin

……

392 log.txt

index.txt
Offset: 0

LOW-LEVEL API INTERNALS: HOW?
• Let’s check with the following program

• Note
− Process A read the file
− OS Kernel reads the file, 100 bytes
− OS Kernel moves the offset to 100
− OS Kernel returns the data to Process A

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

… many #include …
#define BSIZE 100

int main(void) {
char buf1[BSIZE];
char buf2[BSIZE];
int fd = open("input.txt", O_RDONLY);

read(fd, buf1, BSIZE);
read(fd, buf2, BSIZE);
return 0;

}

OS Kernel

User

Process A
(fd = 200)

200 input.txt

218 database.bin

……

392 log.txt

index.txt
Offset: 0
index.txt
Offset: 100

• Let’s check with the following program

• Note
− Process A read the file
− OS Kernel reads the file, 100 bytes
− OS Kernel moves the offset to 100
− OS Kernel returns the data to Process A

index.txt
Offset: 100

LOW-LEVEL API INTERNALS: HOW?

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

… many #include …
#define BSIZE 100

int main(void) {
char buf1[BSIZE];
char buf2[BSIZE];
int fd = open("input.txt", O_RDONLY);

read(fd, buf1, BSIZE);
read(fd, buf2, BSIZE);
return 0;

}

OS Kernel

User

Process A
(fd = 200)

200 input.txt

218 database.bin

……

392 log.txt

index.txt
Offset: 200

• Let’s do more exercise

• Note
− Process A fork()!
− Process B is created (a child)
− Process B has the same file descriptor (200)
− The fd is copied and aliased (share the offset)

index.txt
Offset: 200

LOW-LEVEL API INTERNALS: HOW?

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

… many #include …
#define BSIZE 100

int main(void) {
char buf1[BSIZE];
char buf2[BSIZE];
int fd = open("input.txt", O_RDONLY), pid;

read(fd, buf1, BSIZE);
read(fd, buf2, BSIZE);

switch (pid = fork()) {

OS Kernel

User

Process A
(fd = 200)

Parent

200 input.txt

218 database.bin

……

392 log.txt

Process B
(fd = 200)

Child

• Let’s do more exercise

• Note
− Proc A (parent) read data from fd and close it
− The fd will remain available to Proc B

index.txt
Offset: 200

LOW-LEVEL API INTERNALS: HOW?

Secure AI Systems Lab :: CS 344 - Operating Systems I 37

… many #include …
#define BSIZE 100

int main(void) {
…
switch (pid = fork()) {

case 0:
sleep(3); read(fd, buf1, BSIZE);
break;

default:
read(fd, buf1, BSIZE);
close(fd);

OS Kernel

User

Process A

Parent

200 input.txt

218 database.bin

……

392 log.txt

Process B
(fd = 200)

Child

index.txt
Offset: 300

• File descriptors (fd)
− A unique identifier for an open file

• Each process has an open file descriptor table
• OS also has a system-wide desciptor table

− Properties of file descriptors
• The fd can point to the same file

LOW-LEVEL API INTERNALS: SUMMARY

Secure AI Systems Lab :: CS 344 - Operating Systems I 38

OS Kernel

User

200 input.txt

218 input.txt

……

392 log.txt

Process A
(fd = 200)

input.txt

Process B
(fd1 = 218,
fd2 = 392)

• File descriptors (fd)
− A unique identifier for an open file

• Each process has an open file descriptor table
• OS also has a system-wide desciptor table

− Properties of file descriptors
• The fd can point to the same file
• The fd can be copied and aliased

− Proc A and C share the offset
− Proc A and B do not

LOW-LEVEL API INTERNALS: SUMMARY

Secure AI Systems Lab :: CS 344 - Operating Systems I 39

OS Kernel

User

Process A
(fd = 200)

200 input.txt

218 input.txt

……

392 log.txt

Process B
(fd1 = 218,
fd2 = 392)

Process C
(fd = 200)

fork()

input.txt

TOPICS FOR TODAY

• Part II: Filesystem internals
− Manage resources

• How OS manages high-level I/O internally?
• How OS manages low-level I/O internally?

Secure AI Systems Lab :: CS 344 - Operating Systems I 40

Thank You!

Secure AI Systems Lab

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

