CS 344: OPERATING SYSTEMS |
02.13: PART Il - SIGNALS AND PIPES

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
&re UI‘llVGI'Slty Secure Al Systems Lab

NOTICE

* Announcements
- Sanghyun is back

— Sanghyun’s office hours will be on the 16% at 11:00 am to 12:30 pm
* No office hours on the 17t

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

RECAP: PROCESS ISOLATION

Process A (VA)

* Process segments
- Code segment Stack(A)
— Data segment Heap (A)
- Heap segment Data (A)
— Stack segment -

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

RECAP: PROCESS ISOLATION

Process A (VA) Memory (
* Process segments

Stack (A) A] (0}
- Code segment ",
— Data segment Heap (A - Al Heap(A)
— Heap segment Data (A) "
— Stack segment

Code (A)

1 Stack (A)

Address translation: Code (A)
Virtual to Physical (OS II)

,
Y
.
. %
. 5
1
L
. %
-
.
. %
L
________________ > .
i .
i 1
i s Data (A)
1 .
] .
,

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

RECAP: PROCESS ISOLATION

* Process segments
- Code segment
- Data segment
- Heap segment
— Stack segment

Oregon State
University

Vi

Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A (VA)

Stack (A)

Heap (A) \

Data (A)

Code (A)

Address translation:
rtual to Physical (OS II)

Memory (

0s

" nn
......

Heap (A)

Data (B)

Heap (B)

Stack (B)

Stack (A)

Code (B)

Data (A)

Code (A)

wsl

Process B (

)

Stack (B)

Heap (B)

Data (B)

Code (B)

RECAP: PROCESS ISOLATION

* Process
— Definition: Prevent Process A from reading/writing to Process B
- Why?
 Security reasons (e.g., data breach, system crash, ...)
* Management reasons (e.g., easy to control, ...)
- What happens if we access the other process’ memory
* Segmentation fault
- What'’s the downside?
* Processes can’t talk to each other

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

RECAP: PROCESS ISOLATION

* Processes talked to each other a lot:
— Example scenario A:
* You're a YouTuber
* You're editing a video with Adobe products
* You ask the other program (not Adobe) to convert the video format
* How can OS let the other program know the filename that Adobe uses?

- Example scenario B:
* You chat with your friends on Signal app.
* Your app (process) on your phone needs to share what you type with others
* How can OS let the remote program know what you type?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

STRAWMAN SOLUTIONS

* Hole punching (Link)!
— Definition:
* (from computer networking)
e A technique that allows two or more parties to communicate directly each other
- Downside:
* Potentially ignore the security mechanisms (e.g., firewalls)
* Potentially increase overheads to manage such connections separately

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

https://en.wikipedia.org/wiki/Hole_punching_(networking)

TOPICS FOR TODAY

* Part lll: IPC, RPC, and Networking
- Motivation
* Whatis IPC/RPC?
* Why do we need IPC/RPC?
— Provide abstractions
* What is the mechanisms OS support for IPC?
— Offer standard interface
* How can we use a signal?
* How can we use a pipe?
- Manage resources
* (Overview) How does OS support these mechanisms?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: SIGNALS

Computer

Physical Ports

Kernel

» Background (in 1960-70s)

— Terminals are connected to a (huge) computer Torminal
. . O (%)
- You use terminal to control multiple processes - Applcation
- You want to kill a process; how would you do?
* OS support “signals”

- Definition:

e (Formal) an asynchronous mechanism to notify an event to a process

* (Informal) between processes or a process and a thread

Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

10

PROVIDE ABSTRACTION: SIGNAL TYPES

Signal Default Comment POSIX
: H H Name Action
* Signals in Linux
1 SIGHUP Terminate Hang up controlling terminal or Yes
—_ - =TIMe SIGNAIS (L)JTO Sl) o
32 non real tlme Slgnals (O to 31) i 2 SIGINT Terminate Interrupt from keyboard, Control-C Yes:
I . . I | k T3USIGOUIT T Dump ™ Ouit from keyboard, ‘Control-\""""""T"T"T""Yes®
-— - 4 SIGILL Dump Illegal instruction Yes
31 rea tlme Slgna S (32 to —NSIG [L]) 5 SIGTRAP Dump Breakpoint for debugging No
6 SIGABRT Dump Abnormal termination Yes
6 SIGIOT Dump Equivalent to SIGABRT No
7 SIGBUS Bus error No
8 SIGFPE

* Signals we might know _ :

13 SIGPIPE Terminate Write to pipe with no readers Yes

. . . . 14 SIGALRM Terminate Real-timer clock Yes

- SIG KILL . TO termlnate |mmed|ate|y (kl” '9) 15 SIGTERM Terminate Process termination Yes

16 SIGSTKFLT Terminate Coprocessor stack error No

_ SIGSEGV. If Segmentation fault happens 17 SIGCHLD Ignore Child process stopped or terminated Yes
. or got a signal if traced

18 SIGCONT Continue Resume execution, if stopped Yes

—_ 19 SIGSTOP Stop Stop process execution, Ctrl-Z Yes

o 20 SIGTSTP Stop Stop process issued from tty Yes

21 SIGTTIN Stop Background process requires input Yes

22 SIGTTOU Stop Background process requires output Yes

23 SIGURG Ignore Urgent condition on socket No

24 SIGXCPU Dump CPU time limit exceeded No

25 SIGXFSZ Dump File size limit exceeded No

26 SIGVTALRM Terminate Virtual timer clock No

27 SIGPROF Terminate Profile timer clock No

28 SIGWINCH Ignore Window resizing No

29 SIGIO Terminate I/0 now possible No

29 SIGPOLL Terminate Equivalent to SIGIO No

30 SIGPWR Terminate Power supply failure No

31 SIGSYS Dump Bad system call No

31 SIGUNUSED Dump Equivalent to SIGSYS No

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 11

https://elixir.bootlin.com/linux/v3.7/source/arch/x86/include/asm/signal.h

PROVIDE ABSTRACTION: PIPES

* Are we happy with signals?
— Our communication is limited to 31 types
- We typically want to send more info (e.g., filename to open)

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

12

PROVIDE ABSTRACTION: PIPES

* Are we happy with signals?
— Our communication is limited to 31 types
- We typically want to send more info (e.g., filename to open)

* PIPE:

— Definition: a unidirectional data channel, used for inter-process communication
— Conceptually:
A file shared between two process (only one can write, and the other can only read)
* Note: a file descriptor can be shared between two process
- To write: write(, Wbuf, wlen);
— To read : read(, rbuf, rmax);

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

13

PROVIDE ABSTRACTION: PIPES

* PIPE:
- Definition: a unidirectional data channel, used for inter-process communication
— Conceptually:
A file shared between two process (only one can write, and the other can only read)
* Note: a file descriptor can be shared (aliased) between two process

— To write: write(, Wbuf, wlen);
— To read : read(, rbuf, rmax);
Process A Process B
(fd =10) (fd = 10)
* Problem? User
- Too many storage access? 0S Kernel v v
comm.txt] 10 comm.txt
. 218 database.bin
g
392 log.txt

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: PIPES

* Solution: memory!
— Disk access: 1073s
- Mem. access: 10~%s
- Mem is faster

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

15

PROVIDE ABSTRACTION: PIPES

* Solution: memory!
— Disk access: 1073s
- Mem. access: 107 %s

- Mem is

Oregon State
University

faster

Process A (VA)

Stack (A)

Heap (A)

Data (A)

Code (A)

Shared Mem. |

.
.
. o}
.
.
A
.

Memory (

)

0s

Address translation:
Virtual to Physical (OS II)

Secure Al Systems Lab :: CS 344 - Operating Systems |

‘
“‘
———y

A

Heap (A)

Data (B)

Shared Mem.

Heap (B)

Stack (B)

Stack (A)

Code (B)

Data (A)

Code (A)

Process B (VA)

L Shared Mem.

Stack (B)

Heap (B)

Data (B)

Code (B)

16

PROVIDE ABSTRACTION: PIPES

Process A (VA)

* Solution: memory!
— Disk access: 1073s

Stack (A)

- Mem. access: 107 %s
- Mem is faster

Heap (A)

Shared Mem. S

Data (A)

* Require OS support

Code (A)

— We should not allocate
shared memory arbitrarily

— We should not control the
shared memory arbitrarily

Address translation:

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

Virtual to Physical (OS II)

Memory (

)

0s

A

Heap (A)

Data (B)

Shared Mem.

Heap (B)

Stack (B)

Stack (A)

Code (B)

Data (A)

Code (A)

Process B (VA)

:
;
;
:
o C
:
.: .’:
S
PR Shared Mem.
.

Stack (B)

Heap (B)

Data (B)

Code (B)

17

TOPICS FOR TODAY

* Part lll: IPC, RPC, and Networking

— Provide abstractions
* What is the mechanisms OS support for IPC?
— Offer standard interface
* How can we use a signal?
* How can we use a pipe?
- Manage resources
* (Overview) How does OS support these mechanisms?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

18

OFFER STANDARD INTERFACE: SIGNALS

* CAPIs

- st

}

ruct sigaction {

void (*sa_handler)(int);

void (*sa_sigaction)(int, siginfo_t *, void *)
sigset_t sa_mask;

int sa_flags;

void (*sa_restorer)(void);

.
4

- int sigaction(int signum, const struct sigaction *restrict act,
struct sigaction *restrict oldact);

Oregon State
University

Member
sa_handler

sa_sigaction
sa_mask
sa_flags
sa_restorer

Descriptions

fn that will handle a signal(s)

(SIG_DFL: default action, SIG_IGN: ignore this)

fn that will handle a queued signal(s)

a mask of signals which will be blocked

a set of flags which modify the behavior of signals
no need to care (not intended for application use)

Secure Al Systems Lab :: CS 344 - Operating Systems |

19

OFFER STANDARD INTERFACE: SIGNALS

* CAPIs

- struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;

int sa_flags;
void (*sa_restorer)(void);
}
— int sigaction(int signum, cof Flag Description
SA_SIGINFO signal handler takes three arguments, instead of one

... (mostly we don’t need it in CS 344)

* Control signal masks
- int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset _t *set, int signum);

int sigdelset(sigset_t *set, int signum);

int sigismember(const sigset_t *set, int signum);

Gy Oregon State
¢ c50n.
o7 University

Secure Al Systems Lab :: CS 344 - Operating Systems | 20

OFFER STANDARD INTERFACE:

SIGNALS

* An example code in C

#include <stdio.h>

#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <string.h>

static volatile sig_atomic_t received = 0;

static void hijack_ctrl_c_handler(int sig) {
received = 1;

}

int main(void) {
struct sigaction hijack = {0};
// memset(&hijack, 0, sizeof(struct sigaction));

hijack.sa_handler = &hijack_ctrl_c_handler;

... (continue to the right)

Ao
Oregon State
& University -

: Secure Al Systems Lab :: CS 344 - Operating Systems |

... (continue from the left)

(sigaction(SIGINT, &hijack, NULL) ==-1) {
perror("Error, failed to change signal action");
EXIT_FAILURE;

(1) {

(received) {

received = 0;

printf("Received SIGINT!\n");
}

printf("Keep running.....\n");
sleep(2);

EXIT_SUCCESS;

21

OFFER STANDARD INTERFACE: SIGNALS

* Signalception [Link]
— A nice example shows how to handle different signal types (Try this out!)

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

22

https://www.csl.mtu.edu/cs4411.ck/www/NOTES/signal/two-signals.html

OFFER STANDARD INTERFACE: PIPE

» System call for pipes
- int pipe(int fds[2]);
* It returns two file descriptors to “fds”
» fds[0] is the fd for reading from the pipe
» fds[1] is the fd for writing to the pipe
* Note that the message size limit is 4096 bytes

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

23

OFFER STANDARD INTERFACE: PIPE

» System call for pipes
- int pipe(int fds[2]);
* It returns two file descriptors to “fds”
» fds[0] is the fd for reading from the pipe
» fds[1] is the fd for writing to the pipe
* Note that the message size limit is 4096 bytes

* Tips to use “PIPES” in Terminal
- If you want to count the total number of files and directories: Is|wc —|
- If you have many files for a screen: Is -alh | more
- If you want to catch lines with a specific keywords: cat <filename> | grep <keyword>
- If you want to remove the files with a prefix: find ./ -name <prefix>* | xargs rm -f {} \;

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

24

OFFER STANDARD INTERFACE: PIPE

An example code in C

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define BUFSIZE 512

int main(void) {
char *msg ="It’s a message in the pipe.";
char buf[BUFSIZE];
int pipe_fd[2];

(pipe(pipe_fd) == -1) {
perror("Error, failed to open a pipe.\n");
EXIT_FAILURE;

}

ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);
printf("Send: %s [%ld, %Id]\n", msg, strlen(msg)+1, writelen);

... (continue to the right)

Oregon State

Universi
o Secure Al Systems Lab :: CS 344 - Operating Systems |

... (continue from the left)

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);

printf("Recv: %s [%ld, %Id]\n", buf, strlen(buf)+1, readlen);

close(pipe_fd[0]);
close(pipe_fd[1]);

0;

25

OFFER STANDARD INTERFACE: PIPE

e Another example code in C

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define BUFSIZE 512

int main(void) {

char *msg = "It’s a message in the pipe.\n";
char buf[BUFSIZE];

int pipe_fd[2];

ssize_t readlen, writelen;

(pipe(pipe_fd) == -1) {
perror("Error, failed to open a pipe.\n");
EXIT_FAILURE;

}
pid_t pid = fork();

... (continue to the right)

Oregon State
University

Secure Al Systems Lab :: CS 344 - Operating Systems |

... (continue from the left)

(pid < 0) {
perror("Error, failed to fork().\n");
EXIT_FAILURE;

}
(pid) {
0:
readlen = read(pipe_fd[0], buf, BUFSIZE);
printf("Recv: %s [%ld, %Id]\n", buf, strlen(buf)+1, readlen);
close(pipe_fd[1]);
writelen = write(pipe_fd[1], msg, strlen(msg)+1);
printf("Send: %s [%ld, %Id]\n", msg, strlen(msg)+1, writelen);
close(pipe_fd[0]);
}

26

OFFER STANDARD INTERFACE: PIPE

* PIPE between two processes

— Process A creates a pipe (fd=5/6)

— A can read/write with the pipe Process A Process B
fd=5/6 fd=5/6
— Process A fork() (/6) (/6)
— Process B is created (a child) User —3 !
1 1 1
— Process B can read/write from (fd=5/6) OS Kernel s | - :
4 v {
6 PIPE
read() ;';_.' :.
392 log.txt ;
write() % F
i% | PIPE
Al ot
3 write()

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: PIPE

* PIPE open/close
— Process A closes “write” file descriptor

” Oregon State
& Universi
ty

* Process A can still read from the PIPE
* Process B can still read/write to the PIPE

Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A Process B
(fd =5/6) (fd =5/6)
User —% !
1]
OS Kernel i :
5y PIPE H
HENG PIPE
read() 5::' ------
392 log.txt
write() % 7
i%, | PIPE
N o
write()

28

OFFER STANDARD INTERFACE: PIPE

* PIPE open/close

Process A Process B
(fd =5/6) (fd =5/6)
. _ . User —% 7
— Process A and B close “write” file descriptors 1 .
OS Kernel : ;
* Process A and B only read EOF(0) from the PIPE LER PIPE J
ide PIPE
read() ;_- :.
392 log.txt ;
write() % F
‘:“‘““ | PIPE :,..
Al ot
3 write()

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 29

OFFER STANDARD INTERFACE: PIPE

* PIPE open/close

— Process A closes “read” descriptors

” Oregon State
& Universi
ty

* Process A and B can write to the PIPE

Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A Process B
(fd =5/6) (fd =5/6)
User —% !
1]
OS Kernel i :
5y PIPE H
HENG PIPE
read() 5::' ------
392 log.txt
write() % 7
i%, | PIPE
N o
write()
30

OFFER STANDARD INTERFACE: PIPE

* PIPE open/close

- Process A and B close “read” file descriptors

Oregon State
University

1. U

* Process A or B’s “write” will fail and return EPIPE error

Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A Process B
(fd = 5/6) (fd = 5/6)
User : ? !
]
OS Kernel i :
> 5 J PIPE :
HE NG PIPE
read()
392 log.txt
write() %

PIPE

31

TOPICS FOR TODAY

* Part lll: IPC, RPC, and Networking

— Offer standard interface
* How can we use a signal?
* How can we use a pipe?
- Manage resources
* (Overview) How does OS support these mechanisms?

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

32

MANAGE RESOURCES: SIGNAL INTERNALS

e Signal from Process A -> Process B

- OS kernel
Checks if Process B has pending signals
Pauses the execution of Process B
Invokes do_signal()
do_signal() call invokes handle_signal()

- Process B
* Run code in signal_handler
* Return back to kernel: sigreturn()

- OS Kernel
* Resume Process B

Delivery
of signal

©)

Main program

start of prograir

instruction m
—
instruction m+1

exit()

cesceccdpeccncny seccccnsafecnnnanne
”"n

uornaaxa fo moyf

Kernel calls signal
handler on behalf
of process

7\ -
(2) -
N -
Program

resumes at

point of interruption

Figure 20-1: Signal delivery and handler execution

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

Signal handler

®
Code of

signal handler
is executed

return

33

MANAGE RESOURCES: SIGNAL MANAGED BY 0S

* Mechanism (OS-level)
— Process A sends a signal to Process B
— OS kernel updates B’s process context (Send)
- OS kernel asks B to react to the signal (Receive)

* Process B will execute a signal handler L S T s
: struct signal_struct *xsignal; 1
. . . ! struct sighand_struc rcu *sighand; |
* Process B declines to receive the signal ol agsee T ke
. . . 1GSQE | sigset_t real_blocked; 1
—_ Multlple processes Send Slgnals to B (Pendlng) Lo) — .>= /* Restored if set_restore_sigmask() was used: */i
1091 1 sigset_t saved_sigmask; 1
* Up to 1 pending signal per type for each process 17 1o s g
* More signals of the same type will be discarded e e |

1223 struct callback_head xtask_works;

1098

1099 #ifdef CONFIG_AUDIT
1100 #ifdef CONFIG_AUDITSYSCALL

1101 struct audit_context *audit_context;
1102 #endif

1103 kuid_t loginuid;

1104 unsigned int sessionid;

1105 #endif

1106 struct seccomp seccomp;

1107 struct syscall_user_dispatch syscall_dispatch;

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 34

MANAGE RESOURCES: PIPE

* Data structure
in memory
— (Rule) If Proc A writes data, the data will be in the kernel queue until Proc B reads it

e OS kernel’s queue control:
- Queue can be
* If the queue is full, OS kernel asks Proc A (write) to wait
* If the queue is empty, OS kernel asks Proc B (read) to wait

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

35

TOPICS FOR TODAY

* Part lll: IPC, RPC, and Networking
- Motivation
* Whatis IPC/RPC?
* Why do we need IPC/RPC?
— Provide abstractions
* What is the mechanisms OS support for IPC?
— Offer standard interface
* How can we use a signal?
* How can we use a pipe?
- Manage resources
* (Overview) How does OS support these mechanisms?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

36

Thank You!

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVEI'Slty Secure Al Systems Lab

