
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
02.13: PART III – SIGNALS AND PIPES

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

NOTICE

• Announcements
− Sanghyun is back
− Sanghyun’s office hours will be on the 16th at 11:00 am to 12:30 pm

• No office hours on the 17th

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

RECAP: PROCESS ISOLATION

• Process segments
− Code segment
− Data segment
− Heap segment
− Stack segment

Secure AI Systems Lab :: CS 344 - Operating Systems I

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A (VA)

RECAP: PROCESS ISOLATION

• Process segments
− Code segment
− Data segment
− Heap segment
− Stack segment

Secure AI Systems Lab :: CS 344 - Operating Systems I

Memory (PA)

OS

Address translation:
Virtual to Physical (OS II)

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A (VA)

Code (A)

Data (A)

Heap (A)

Stack (A)

RECAP: PROCESS ISOLATION

• Process segments
− Code segment
− Data segment
− Heap segment
− Stack segment

Secure AI Systems Lab :: CS 344 - Operating Systems I

Memory (PA)

OS

Address translation:
Virtual to Physical (OS II)

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A (VA)

Code (A)

Data (A)

Heap (A)

Stack (A)

Data (B)

Heap (B)

Code (B)

Stack (B)

Process B (VA)

Code (B)

Data (B)

Heap (B)

Stack (B)

RECAP: PROCESS ISOLATION

• Process isolation
− Definition: Prevent Process A from reading/writing to Process B
− Why?

• Security reasons (e.g., data breach, system crash, …)
• Management reasons (e.g., easy to control, …)

− What happens if we access the other process’ memory
• Segmentation fault

− What’s the downside?
• Processes can’t talk to each other

Secure AI Systems Lab :: CS 344 - Operating Systems I

RECAP: PROCESS ISOLATION

• Processes talked to each other a lot:
− Example scenario A:

• You’re a YouTuber
• You’re editing a video with Adobe products
• You ask the other program (not Adobe) to convert the video format
• How can OS let the other program know the filename that Adobe uses?

− Example scenario B:
• You chat with your friends on Signal app.
• Your app (process) on your phone needs to share what you type with others
• How can OS let the remote program know what you type?

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

STRAWMAN SOLUTIONS

• Hole punching (Link)!
− Definition:

• (from computer networking)
• A technique that allows two or more parties to communicate directly each other

− Downside:
• Potentially ignore the security mechanisms (e.g., firewalls)
• Potentially increase overheads to manage such connections separately
• …

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

https://en.wikipedia.org/wiki/Hole_punching_(networking)

TOPICS FOR TODAY

• Part III: IPC, RPC, and Networking
− Motivation

• What is IPC/RPC?
• Why do we need IPC/RPC?

− Provide abstractions
• What is the mechanisms OS support for IPC?

− Offer standard interface
• How can we use a signal?
• How can we use a pipe?

− Manage resources
• (Overview) How does OS support these mechanisms?

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

PROVIDE ABSTRACTION: SIGNALS

• Background (in 1960-70s)
− Terminals are connected to a (huge) computer
− You use terminal to control multiple processes
− You want to kill a process; how would you do?

• OS support “signals”
− Definition:

• (Formal) an asynchronous mechanism to notify an event to a process
• (Informal) notifications between processes or a process and a thread

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

.

.

.

PROVIDE ABSTRACTION: SIGNAL TYPES

• Signals in Linux
− 32 non-real-time signals (0 to 31)
− 31 real-time signals (32 to _NSIG [link])

• Signals we might know
− SIGINT : To terminate (CTRL+C)
− SIGKILL : To terminate immediately (kill -9)
− SIGSEGV: If segmentation fault happens
− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

https://elixir.bootlin.com/linux/v3.7/source/arch/x86/include/asm/signal.h

PROVIDE ABSTRACTION: PIPES

• Are we happy with signals?
− Our communication is limited to 31 types
− We typically want to send more info (e.g., filename to open)

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

PROVIDE ABSTRACTION: PIPES

• Are we happy with signals?
− Our communication is limited to 31 types
− We typically want to send more info (e.g., filename to open)

• PIPE:
− Definition: a unidirectional data channel, used for inter-process communication
− Conceptually:

• A file shared between two process (only one can write, and the other can only read)
• Note: a file descriptor can be shared between two process

− To write: write(writefd, wbuf, wlen);
− To read : read(readfd, rbuf, rmax);

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

PROVIDE ABSTRACTION: PIPES

• PIPE:
− Definition: a unidirectional data channel, used for inter-process communication
− Conceptually:

• A file shared between two process (only one can write, and the other can only read)
• Note: a file descriptor can be shared (aliased) between two process

− To write: write(writefd, wbuf, wlen);
− To read : read(readfd, rbuf, rmax);

• Problem?
− Too many storage access?

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

comm.txt
Offset: 4

OS Kernel

User

Process A
(fd = 10)

10 comm.txt

218 database.bin

……

392 log.txt

Process B
(fd = 10)

PROVIDE ABSTRACTION: PIPES

• Solution: memory!
− Disk access: 10!"s
− Mem. access: 10!#s
− Mem is ~𝟏𝟎𝟔x faster

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

PROVIDE ABSTRACTION: PIPES

• Solution: memory!
− Disk access: 10!"s
− Mem. access: 10!#s
− Mem is ~𝟏𝟎𝟔x faster

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

Memory (PA)

OS

Address translation:
Virtual to Physical (OS II)

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A (VA)

Code (A)

Data (A)

Heap (A)

Stack (A)

Data (B)

Heap (B)

Code (B)

Stack (B)

Process B (VA)

Code (B)

Data (B)

Heap (B)

Stack (B)

Shared Mem.

Shared Mem.
Shared Mem.

PROVIDE ABSTRACTION: PIPES

• Solution: memory!
− Disk access: 10!"s
− Mem. access: 10!#s
− Mem is ~𝟏𝟎𝟔x faster

• Require OS support
− We should not allocate

shared memory arbitrarily
− We should not control the

shared memory arbitrarily
− Require OS kernel support!

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

Memory (PA)

OS

Address translation:
Virtual to Physical (OS II)

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A (VA)

Code (A)

Data (A)

Heap (A)

Stack (A)

Data (B)

Heap (B)

Code (B)

Stack (B)

Process B (VA)

Code (B)

Data (B)

Heap (B)

Stack (B)

Shared Mem.

Shared Mem.
Shared Mem.

TOPICS FOR TODAY

• Part III: IPC, RPC, and Networking
− Motivation

• What is IPC/RPC?
• Why do we need IPC/RPC?

− Provide abstractions
• What is the mechanisms OS support for IPC?

− Offer standard interface
• How can we use a signal?
• How can we use a pipe?

− Manage resources
• (Overview) How does OS support these mechanisms?

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

OFFER STANDARD INTERFACE: SIGNALS
• C APIs

− struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}
− int sigaction(int signum, const struct sigaction *restrict act,

struct sigaction *restrict oldact);

• Control signal masks
− int sigemptyset(sigset_t *set);
− int sigfillset(sigset_t *set);
− int sigaddset(sigset_t *set, int signum);
− int sigdelset(sigset_t *set, int signum);
− int sigismember(const sigset_t *set, int signum);

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

Member Descriptions
sa_handler fn that will handle a signal(s)

(SIG_DFL: default action, SIG_IGN: ignore this)
sa_sigaction fn that will handle a queued signal(s)
sa_mask a mask of signals which will be blocked
sa_flags a set of flags which modify the behavior of signals
sa_restorer no need to care (not intended for application use)

OFFER STANDARD INTERFACE: SIGNALS
• C APIs

− struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

}
− int sigaction(int signum, const struct sigaction *restrict act,

struct sigaction *restrict oldact);

• Control signal masks
− int sigemptyset(sigset_t *set);
− int sigfillset(sigset_t *set);
− int sigaddset(sigset_t *set, int signum);
− int sigdelset(sigset_t *set, int signum);
− int sigismember(const sigset_t *set, int signum);

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

Flag Description
SA_SIGINFO signal handler takes three arguments, instead of one
… (mostly we don’t need it in CS 344)

OFFER STANDARD INTERFACE: SIGNALS

• An example code in C

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <string.h>

static volatile sig_atomic_t received = 0;

static void hijack_ctrl_c_handler(int sig) {
received = 1;

}

int main(void) {
struct sigaction hijack = {0};
// memset(&hijack, 0, sizeof(struct sigaction));

hijack.sa_handler = &hijack_ctrl_c_handler;

… (continue to the right)

… (continue from the left)

if (sigaction(SIGINT, &hijack, NULL) == -1) {
perror("Error, failed to change signal action");
return EXIT_FAILURE;

}

while (1) {

if (received) {
received = 0;
printf("Received SIGINT!\n");

}

printf("Keep running……\n");
sleep(2);

}

return EXIT_SUCCESS;
}

OFFER STANDARD INTERFACE: SIGNALS
• Signalception [Link]

− A nice example shows how to handle different signal types (Try this out!)

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

https://www.csl.mtu.edu/cs4411.ck/www/NOTES/signal/two-signals.html

OFFER STANDARD INTERFACE: PIPE

• System call for pipes
− int pipe(int fds[2]);

• It returns two file descriptors to “fds”
• fds[0] is the fd for reading from the pipe
• fds[1] is the fd for writing to the pipe
• Note that the message size limit is 4096 bytes

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

OFFER STANDARD INTERFACE: PIPE

• System call for pipes
− int pipe(int fds[2]);

• It returns two file descriptors to “fds”
• fds[0] is the fd for reading from the pipe
• fds[1] is the fd for writing to the pipe
• Note that the message size limit is 4096 bytes

• Tips to use “PIPEs” in Terminal
− If you want to count the total number of files and directories: ls|wc –l
− If you have many files for a screen: ls -alh | more
− If you want to catch lines with a specific keywords: cat <filename> | grep <keyword>
− If you want to remove the files with a prefix: find ./ -name <prefix>* | xargs rm -f {} \;
− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

OFFER STANDARD INTERFACE: PIPE
• An example code in C

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define BUFSIZE 512

int main(void) {
char *msg = "It’s a message in the pipe.";
char buf[BUFSIZE];
int pipe_fd[2];

if (pipe(pipe_fd) == -1) {
perror("Error, failed to open a pipe.\n");
return EXIT_FAILURE;

}

ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);
printf("Send: %s [%ld, %ld]\n", msg, strlen(msg)+1, writelen);

… (continue to the right)

… (continue from the left)

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);
printf("Recv: %s [%ld, %ld]\n", buf, strlen(buf)+1, readlen);

close(pipe_fd[0]);
close(pipe_fd[1]);

return 0;
}

OFFER STANDARD INTERFACE: PIPE
• Another example code in C

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define BUFSIZE 512

int main(void) {
char *msg = "It’s a message in the pipe.\n";
char buf[BUFSIZE];
int pipe_fd[2];
ssize_t readlen, writelen;

if (pipe(pipe_fd) == -1) {
perror("Error, failed to open a pipe.\n");
return EXIT_FAILURE;

}

pid_t pid = fork();

… (continue to the right)

… (continue from the left)

if (pid < 0) {
perror("Error, failed to fork().\n");
return EXIT_FAILURE;

}

switch (pid) {
case 0:

readlen = read(pipe_fd[0], buf, BUFSIZE);
printf("Recv: %s [%ld, %ld]\n", buf, strlen(buf)+1, readlen);
close(pipe_fd[1]);
break;

default:
writelen = write(pipe_fd[1], msg, strlen(msg)+1);
printf("Send: %s [%ld, %ld]\n", msg, strlen(msg)+1, writelen);
close(pipe_fd[0]);

}

return 0;
}

• PIPE between two processes
− Process A creates a pipe (fd=5/6)
− A can read/write with the pipe
− Process A fork()
− Process B is created (a child)
− Process B can read/write from (fd=5/6)

PIPE

OFFER STANDARD INTERFACE: PIPE

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

OS Kernel

User

Process A
(fd = 5/6)

5 PIPE

6 PIPE

……

392 log.txt

Process B
(fd = 5/6)

write()

read()

write()

read()

OFFER STANDARD INTERFACE: PIPE

• PIPE open/close
− Process A closes “write” file descriptor

• Process A can still read from the PIPE
• Process B can still read/write to the PIPE

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

PIPE

OS Kernel

User

Process A
(fd = 5/6)

5 PIPE

6 PIPE

……

392 log.txt

Process B
(fd = 5/6)

write()

read()

write()

read()

OFFER STANDARD INTERFACE: PIPE

• PIPE open/close
− Process A closes “write” file descriptor

• Process A can still read from the PIPE
• Process B can still read/write to the PIPE

− Process A and B close “write” file descriptors
• Process A and B only read EOF(0) from the PIPE

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

PIPE

OS Kernel

User

Process A
(fd = 5/6)

5 PIPE

6 PIPE

……

392 log.txt

Process B
(fd = 5/6)

write()

read()

write()

read()

OFFER STANDARD INTERFACE: PIPE

• PIPE open/close
− Process A closes “write” file descriptor

• Process A can still read from the PIPE
• Process B can still read/write to the PIPE

− Process A and B close “write” file descriptors
• Process A and B only read EOF, i.e., 0, from the PIPE

− Process A closes “read” descriptors
• Process A and B can write to the PIPE

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

PIPE

OS Kernel

User

Process A
(fd = 5/6)

5 PIPE

6 PIPE

……

392 log.txt

Process B
(fd = 5/6)

write()

read()

write()

read()

OFFER STANDARD INTERFACE: PIPE

• PIPE open/close
− Process A closes “write” file descriptor

• Process A can still read from the PIPE
• Process B can still read/write to the PIPE

− Process A and B close “write” file descriptors
• Process A and B only read EOF, i.e., 0, from the PIPE

− Process A closes “read” descriptors
• Process A and B can write to the PIPE

− Process A and B close “read” file descriptors
• Process A or B’s “write” will fail and return EPIPE error

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

PIPE

OS Kernel

User

Process A
(fd = 5/6)

5 PIPE

6 PIPE

……

392 log.txt

Process B
(fd = 5/6)

write()

read()

write()

read()

TOPICS FOR TODAY

• Part III: IPC, RPC, and Networking
− Motivation

• What is IPC/RPC?
• Why do we need IPC/RPC?

− Provide abstractions
• What is the mechanisms OS support for IPC?

− Offer standard interface
• How can we use a signal?
• How can we use a pipe?

− Manage resources
• (Overview) How does OS support these mechanisms?

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

MANAGE RESOURCES: SIGNAL INTERNALS

• Signal from Process A -> Process B
− OS kernel

• Checks if Process B has pending signals
• Pauses the execution of Process B
• Invokes do_signal()
• do_signal() call invokes handle_signal()

− Process B
• Run code in signal_handler
• Return back to kernel: sigreturn()

− OS Kernel
• Resume Process B

Secure AI Systems Lab :: CS 344 - Operating Systems I 33

MANAGE RESOURCES: SIGNAL MANAGED BY OS

• Mechanism (OS-level)
− Process A sends a signal to Process B
− OS kernel updates B’s process context (Send)
− OS kernel asks B to react to the signal (Receive)

• Process B will execute a signal handler
• Process B declines to receive the signal

− Multiple processes send signals to B (Pending)
• Up to 1 pending signal per type for each process
• More signals of the same type will be discarded

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

MANAGE RESOURCES: PIPE

• Data structure
− Queue in memory
− (Rule) If Proc A writes data, the data will be in the kernel queue until Proc B reads it

• OS kernel’s queue control:
− Queue can be full/empty

• If the queue is full, OS kernel asks Proc A (write) to wait
• If the queue is empty, OS kernel asks Proc B (read) to wait

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

TOPICS FOR TODAY

• Part III: IPC, RPC, and Networking
− Motivation

• What is IPC/RPC?
• Why do we need IPC/RPC?

− Provide abstractions
• What is the mechanisms OS support for IPC?

− Offer standard interface
• How can we use a signal?
• How can we use a pipe?

− Manage resources
• (Overview) How does OS support these mechanisms?

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

Thank You!

Secure AI Systems Lab

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

