CS 344: OPERATING SYSTEMS |
02.15: PART lll: SOCKETS

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

D
OregonState SA|L
&re UI‘llVGI'Slty Secure Al Systems Lab

NOTICE

* Announcements
— Sanghyun’s office hours will be on the 16% at 11:00 am to 12:30 pm
* No office hours on the 17t

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

TOPICS WE LEFT

* Part lll: IPC, RPC, and Networking

- Manage resources
* (Overview) How does OS support these mechanisms?

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

MANAGE RESOURCES: SIGNAL INTERNALS

e Signal from Process A -> Process B

- OS kernel
Checks if Process B has pending signals
Pauses the execution of Process B
Invokes do_signal()
do_signal() call invokes handle_signal()

- Process B
* Run code in signal_handler
* Return back to kernel: sigreturn()

- OS Kernel
* Resume Process B

Delivery
of signal

©)

Main program

start of prograir

instruction m
—
instruction m+1

exit()

cesceccdpeccncny seccccnsafecnnnanne
”"n

uornaaxa fo moyf

Kernel calls signal
handler on behalf
of process

7\ -
(2) -
N -
Program

resumes at

point of interruption

Figure 20-1: Signal delivery and handler execution

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

Signal handler

®
Code of

signal handler
is executed

return

MANAGE RESOURCES: SIGNAL MANAGED BY 0S

* Mechanism (OS-level)
— Process A sends a signal to Process B
— OS kernel updates B’s process context (Send)
- OS kernel asks B to react to the signal (Receive)

* Process B will execute a signal handler L S T s
: struct signal_struct *xsignal; 1
. . . ! struct sighand_struc rcu *sighand; |
* Process B declines to receive the signal ol agsee T ke
. . . 1GSQE | sigset_t real_blocked; 1
—_ Multlple processes Send Slgnals to B (Pendlng) Lo) — .>= /* Restored if set_restore_sigmask() was used: */i
1091 1 sigset_t saved_sigmask; 1
* Up to 1 pending signal per type for each process 17 1o s g
* More signals of the same type will be discarded e e |

1223 struct callback_head xtask_works;

1098

1099 #ifdef CONFIG_AUDIT
1100 #ifdef CONFIG_AUDITSYSCALL

1101 struct audit_context *audit_context;
1102 #endif

1103 kuid_t loginuid;

1104 unsigned int sessionid;

1105 #endif

1106 struct seccomp seccomp;

1107 struct syscall_user_dispatch syscall_dispatch;

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 5

MANAGE RESOURCES: PIPE

* Data structure
in memory
— (Rule) If Proc A writes data, the data will be in the kernel queue until Proc B reads it

e OS kernel’s queue control:
- Queue can be
* If the queue is full, OS kernel asks Proc A (write) to wait
* If the queue is empty, OS kernel asks Proc B (read) to wait

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

TOPICS FOR TODAY

* Part Ill: Sockets
- Motivation
* Why do we need RPC?
- Provide abstraction
* What is the mechanism OS support for RPC?
- Offer standard interface
* How can we use a socket(s)?
- Manage resources
* (Not in this lecture) How does OS support the socket?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

MOTIVATION: RPC

* Pipe only support IPCs

- What if Proc A and B are running
on different hosts (or machines)? Process A Process B
(fd = 5/6) (fd = 5/6)
User —% !
1 1]
0OS K I — T
erne EE i PIPE (read) |
HENG PIPE (write)
392 log.txt |

Queue
~ | (afile)

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

MOTIVATION: RPC DESIGN

* Pipe only support IPCs o S S
- What if Proc A and B are running | i

on different hosts (or machines)? | Process A | || ProcessB ||

| (fd=5/6) | | ([d=5/6) |

User - i 5 i

— Each process has its own queue OSKernel 7 : PIPE (read) | i

6 'PIPE (varite)

[392 logtxt,

Queue Queue

| (afile) E | (afile) E

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

MOTIVATION: RPC DESIGN

* Pipe only support IPCs o S S
— What if Proc A and B are running i i

on different hosts (or machines)? || Process A |1 7| ProcessB ||

i (fd:5/6) 4: ih (fd:5/6) i

User - i 5 i

— Each process has its own queue OSKernel 7 : PIPE (read) | i

— Design a communication protocol(s) |6 'PIPE (urite)

E 392 log.txt E

Queue Queue

| (afile) (afile) |

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

10

MOTIVATION: RPC PROTOCOL DESIGN

* Caller (You) Callee (XYZ Restaurant)
- Open up your phone

Search a restaurant’s phone number

Call and wait

- Thank you for calling XYZ. How can | help you?

I'd like to have a table for two today at 7 pm
- Two at 7 pm. Yes, we have a table.
- May | have the name on the reservation?

John Doe
- and a phone number?
123-456-7890

- Today, 7 pm today, John Doe. You’'re all set.

Thank you
- Thank you. See you soon.
- Bye

Hang up

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 11

MOTIVATION: RPC PROTOCOL DESIGN

. PCB
* Pipe only support IPCs o S S
Process A """""" ’ Process B
)) : (fd=5/6) ql :.. (fd=5/6) i
— What if there are multiple hosts? | ; 5 ;
User - i 5 i
OS Kernel . i EPIPE(r:gad) i
— Each process has its own queue |6 'PIPE (urite) §
— Design a communication protocol(s)
| 392 logtxt,
Queue Queue
| (afile) E I (a file) E
8;(_1?‘%;1511?;31:6 :‘““““““““““: : """""""""" :

Secure Al Systems Lab :: CS 344 - Operating Systems |

MOTIVATION: RPC PROTOCOL DESIGN

* Pipe only support IPCs L posth o HotB
Process A """""" ’ Process B
)) fd — 5/6 1' :u. fd — 5/6
— What if there are multiple hosts? () : 1!)
User i ? !
OS Kernel : i EPIPE (rfgad) i
— Each process has its own queue s 'PIPE (write)
— Design a communication protocol(s) |
— Require an address for each host | 392 log.txt,
(like a phone number for the restaurant) ‘ ; i
Queue i Queue
(a file) E | (afile)

! 1
H i
Ao H 1
P8 Oregon State empepeepeyepe ey
gty s DO
o7 University

Secure Al Systems Lab :: CS 344 - Operating Systems |

TOPICS FOR TODAY

* Part Ill: Sockets
- Motivation
* Why do we need RPC?
- Provide abstraction
* What is the mechanism OS support for RPC?
- Offer standard interface
* How can we use a socket(s)?
- Manage resources
* (Not in this lecture) How does OS support the socket?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

14

PROVIDE ABSTRACTION: SOCKET

* Socket
- Definition: an abstract structure for sending and receiving data
- TL; DR: a bi-directional pipe

* Socket components
— A structure (@ a file descriptor and 2) a queue)
— |P addresses (3 source and (@) destination addresses)
- (® Protocols (e.g., TCP/IP or UDP) to use

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

15

PROVIDE ABSTRACTION: SOCKET

e Socket

- Definition: an abstract structure for sending and receiving data

- TL; DR: a bi-directional pipe

* Socket components
— A structure (@ a file descriptor and 2) a queue)

— |P addresses (3 source and (@) destination addresses)

- (® Protocols (e.g., TCP/IP or UDP) to use

A’s Socket fd

A’s Queue

A’s IP address (+Port)
B’s IP address (+Port)
Protocol used

Process A

read() / write()

Process B

Gy Oregon State
¢ c50n.
o7 University

Secure Al Systems Lab :: CS 344 - Operating Systems |

Process A’s socket

I s G

B’s Socket fd

B’s Queue

A’s IP address (+Port)
B’s IP address (+Port)
Protocol used

Process B’s socket

16

PROVIDE ABSTRACTION: SOCKET PROGRAMMING

* Caller (You: client) Callee (XYZ Restaurant: server)
Have a phone Have a phone
v

Turn on the phone

v

v Start receiving calls
Make a call :

- A call recelved

s

[......' _'.' ::.-.-.-’E

S ' ;

Communicate :

y v
Disconnect S

Oregon State
”‘ University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

PROVIDE ABSTRACTION: SOCKET PROGRAMMING

* Caller (You: client) Callee (XYZ Restaurant: server)
socket() socket()
: v
bind()
: v
v listen()
connect() v
S gacehll
g
S
read() / write() '
v v
close() close()

g Oregon State
3‘5‘ Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems |

TOPICS FOR TODAY

e Part Ill: Sockets

— Provide abstraction
* What is the mechanism OS support for RPC?
— Offer standard interface
* How can we use a socket(s)?
- Manage resources
* (Not in this lecture) How does OS support the socket?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

19

OFFER STANDARD INTERFACE: SOCKET

* Socket system calls

int socket(int domain, int type, int protocol);

int setsockopt(int sockfd, int level, int optname, const void *optval, socklen t optlen);
int bind(int sockfd, const struct sockaddr *addr, socklen t addrlen);

int listen(int sockfd, int backlog);

int accept(int sockfd, struct sockaddr *restrict addr, socklen t *restrict addrlen);

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

20

OFFER STANDARD INTERFACE: SOCKET

* Socket system calls
- int socket(int domain, int type, int protocol);

Descriptions
byte streams
raw network protocol access

Domain Descriptions Type
AF_UNIX local communication SOCK_STREM
AF_LOCAL synonym for AF_UNIX SOCK_RAW
AF_INET IPv4 Internet protocol

AF_INET6 IPv6 Internet protocol

AF_PACKET low-level communication protocol Protocol

typically O

Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

21

OFFER STANDARD INTERFACE: SOCKET

* Socket system calls

- int setsockopt(int sockfd, int level, int optname, const void *optval, socklen t optlen);

Level Descriptions
SOL_SOCKET to set the socket option
IPPROTO_TCP to interpret the option as TCP

OPTVAL
OPTLEN

Please refer to this man page (link)

Option Name Descriptions

SO_DEBUG turn on recording of debug info
SO_BROADCAST broadcast messages (e.g., UDP)
SO_KEEPALIVE keeps connection alive

S8 Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

22

https://linux.die.net/man/3/setsockopt

OFFER STANDARD INTERFACE: SOCKET

* Socket system calls

— int bind(int sockfd, const struct sockaddr *addr, socklen t addrlen);

Argument Descriptions
addr IPv4/v6 address structure
addrlen “sizeof” the above structure

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

OFFER STANDARD INTERFACE: SOCKET

* Socket system calls

- int listen(int sockfd, int backlog);

Argument
backlog

Descriptions
max number of waiting connections

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

24

OFFER STANDARD INTERFACE: SOCKET

* Socket system calls

- int accept(int sockfd, struct sockaddr *restrict addr, socklen t *restrict addrlen);

Argument Descriptions
addr IPv4/v6 address structure (client)
addrlen “sizeof” the above structure (client)

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 25

OFFER STANDARD INTERFACE: SERVER.C

Bind the socket to the address
> Any IP (of the host)
> Port # 8080

#define BUF_SIZE
#define PORT

int main(void) {

omit the includes
AF_INET (IPv4)

1024 SOCK_STREAM (bi-directional)

8080

address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY; // bind to any address

address.sin_port = htons(PORT); // format the port num i
\ 4

SO_REUSEADDR
SO_REUSEPORT
opt (optional value)

int server_fd, new_socket, valread;
struct sockaddr_in address;
intopt=1;

// attach socket to the port 8080

if (bind(server_fd, (struct sockaddr*)&address, sizeof(address)) < 0) {
perror("bind failed");
exit(EXIT_FAILURE);

}

int addrlen = sizeof(address);
char buffer[BUF_SIZE]={0};
char* hello = "Hello (server)!"; :
v

// create socket (returns a sockfd for reading/writing)

if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("socket failed");
exit(EXIT_FAILURE);

}

// configure the socket by setting the options
if (setsockopt(server_fd, SOL_SOCKET,
SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsocketopt failed");
exit(EXIT_FAILURE);

}

Oregon State

Universi
ty Secure Al Systems Lab :: CS 344 - Operating Systems |

if (listen(server_fd, 3) < 0) {
perror("listen failed");
exit(EXIT_FAILURE); DR

Listen incoming connections
> Use the socket fd
> Allow 3 connections (max.)

}

if ((new_socket = accept(server_fd,
(struct sockaddr*)&address,
(socklen_t*)&sizeof(address))) < 0) {
perror("accept");
exit(EXIT_FAILURE);
}

valread = read(new_socket, buffer, 1024);
printf("%s\n", buffer);

Start accepting connections
> Use the socket fd

> Use the address specified
> Return the fd (accepted)

send(new_socket, hello, strlen(hello), 0);
printf("Message sent (server)\n");
return O;

pAs)

OFFER STANDARD INTERFACE: SERVER.C

Bind the socket to the address
> Any IP (of the host)
> Port # 8080

Process A (server)

server_fd = 4 (listen)

1. Connection request
2. Server accepts it

» 3. It creates a new fd

’ socket fd = new_socket

Design choice:
We want to separate the file descriptor for listening
connection requests (socket_fd) from the file descriptor
used for communicating with the client (new_socket)

Oregon State
University

Secure Al Systems Lab :: CS 344 - Operating Systems |

address.sin_family = AF_INET;

address.sin_addr.s_addr = INADDR_ANY; // bind to any address

address.sin_port = htons(PORT);

// format the port num i
A 4

// attach socket to the port 8080

if (bind(server_fd, (struct sockaddr*)&address, sizeof(address)) < 0) {

perror("bind failed");
exit(EXIT_FAILURE);

}

if (listen(server_fd, 3) < 0) {
perror("listen failed");

exit(EXIT_FAILURE); R

}

Listen incoming connections
> Use the socket fd
> Allow 3 connections (max.)

if ((new_socket = accept(server_fd,
(struct sockaddr*)&address,
(socklen_t*)&sizeof(address))) < 0) {

perror("accept");
exit(EXIT_FAILURE);
}

valread = read(new_socket, buffer, 1024);

printf("%s\n", buffer);

send(new_socket, hello, strlen(hello), 0);

printf("Message sent (server)\n");
return O;

Start accepting connections
> Use the socket fd

> Use the address specified
> Return the fd (accepted)

Z7/

OFFER STANDARD INTERFACE: CLIENT.C

t#tdefine IPADDR "127.0.0.1"
#tdefine PORT 8080
t#tdefine BUFSIZE 1024

AF_INET (IPv4)
SOCK_STREAM (bi-directional)

int main(void)

{
int sock =0, valread;
struct sockaddr_in serv_addr;
char* hello = "Hello (client)";
char buffer[BUFSIZE] = {0 };

v

// create a socket
((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("Error: socket creation error\n");
-1;

}

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(PORT);

// convert IP addresses from text to binary
(inet_pton(AF_INET, IPADDR, &serv_addr.sin_addr) <= 0) {
printf("Error: invalid address, address not supported\n");

_1;

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

(connect(sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) < 0) {
printf("Connection Failed\n");
return -1;

}

send(sock, hello, strlen(hello), 0);
printf("Message sent (client)\n");
valread = read(sock, buffer, BUFSIZE);

printf("%s\n", buffer); Connect to the server, running on

the IP address we specify “127.0.0.1”

0;

Execution result

$ gce -0 server server.c
S gcc -o client client.c
S ./server &

S ./client

Message sent (client)
Hello (client)
Message sent (server)
Hello (server)

28

OFFER STANDARD INTERFACE: SOCKET W. MULTIPLE CONNECTIONS

* Caller (Client) Callee (Server)
socket() socket()
v
bind()

| v
v listen()

connect() v
accept() R
: i Keep waiting for
v : the next connection
E- .. Create d thread :
::::).
'4::.... :
L "
.4 read() / WritE()
v v

close() terminate the thread

g Oregon State
3‘5‘ Universi
ty

Secure Al Systems Lab :: CS 344 - Operating Systems | 29

OFFER STANDARD INTERFACE: MULTI_THREADED_SERVER.C

... omit the code for creating and binding sockets ... void *conn_handler(void *socket_desc) {
intrlen;
if (listen(server_fd, 100) < 0) {|q.--xxee- Listen; up to 100 connections char buffer[BUFSIZE] ={0 };
perror("listen failed"); char *ack = "Received";
exit(EXIT_FAILURE); .
} ACER RN while (rlen = read(socket_desc, buffer, BUFSIZE)) {
Once csocket is greater than 0O, if (rlen < 0) continue;
struct sockaddr_in client; then it proceeds to the next line
int ¢ = sizeof(struct sockaddr_in); H printf("(server) Received: %s\n", buffer);

pthread_t conn_threads[100];
send(socket_desc, ack, strlen(ack), 0);

while (1) { V printf("(server) Ack sent\n");
if (csocket = accept(server_fd, }
(struct sockaddr *)&client, A
(socklen_t *)&c)) < 0) { } :
printf("Server waits for a connection\n");
continue;
}
printf("Server accepts the connection\n"); ¢....| Create athreat that handles the Keep reading data from the socket
if (othread_create(&tid, NULL, conn_handler, (void *)&csocket) < 0) { communications between this 1. If no data, it continues
perror(*Error: cannot start a thread"); server and the connected client 2. If datais, it prints out the data
) exit(EXIT_FAILURE); (we pass socket_desc as an arg) 3. Then it sends the ack message
}
return O; // this thread infinitely runs, this line won’t be reached
Oregsuae
; Y 30

Secure Al Systems Lab :: CS 344 - Operating Systems |

SOCKET PROGRAMMING EXAMPLE

* Linux daemons
- Linux daemon: a Linux process runs in the background
- How it mostly works:
* Daemons start when we boot an OS and wait for our connections
* We connect to daemons and use their functionalities
- Example daemons:
* httpd: web server daemon
ftpd: FTP server daemon
mysql: MySQL database server daemon

sshd: secure shell daemon
* ... (you can find them; most daemons end with “d”)

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems |

31

SOCKET PROGRAMMING EXAMPLE

* Client-server architecture
— An example HTTP server
- How HTTP server works:
* A server spins up and waits for connections
* A user requests the webpages to the server
* A server accepts this connection and sends HTTP webpages to the user
* (Mostly) The webpages contain code for interactions (e.g., JavaScripts)
- A user clicks a butten (or advertisements), the browser sends a request to the server
- The browser does appropriate actions and sends a new webpage containing the results

1. Type (google.com) in your browser 2. Server accepts the
.. > ConneCtIOI’l from a user

4. Your browser loads
the webpage for you

User (Web) Server

Ao
Oregon State
& University -
Secure Al Systems Lab :: CS 344 - Operating Systems | 32

TOPICS FOR TODAY

* Part Ill: Sockets
- Motivation
* Why do we need RPC?
- Provide abstraction
* What is the mechanism OS support for RPC?
- Offer standard interface
* How can we use a socket(s)?
- Manage resources
* (Not in this lecture) How does OS support the socket?

Oregon State
& University

Secure Al Systems Lab :: CS 344 - Operating Systems |

33

Thank You!

M/W 12:00 — 1:50 PM (LINC #200)
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVEI'Slty Secure Al Systems Lab

