
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
02.22: PART III – ONE-TIME PAD (OTP)

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

NOTICE

• Announcements
− No lecture on the 27th

• A slot for quizzes, assignments, and extra opportunities
• SH will be on Discord

− 2 more extra credit opportunities on Canvas
• Build an ML classifier (+2%)
• Multi-process data loader (+3%)

− Programming assignment III

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

TOPICS FOR TODAY

• Part III: One-time pad (OTP)
− OTP

• What is it?
• How does it work?

− OTP in PA IV
• What do we need to do?
• Recap: client-server programming

− OTP in the real-world

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

ONE-TIME PAD

• OTP Example
− Password: _ _ _ _ (4-digit numbers)
− Hint:

• “keep on loving each other as brothers”
• “fear not, for I am with you”
• “You will not certainly die,” the serpent said
• “Behold, I have told you before”

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

ONE-TIME PAD

• OTP Example
− Password: _ _ _ _ (4-digit numbers)
− Hint:

• “keep on loving each other as brothers”
• “fear not, for I am with you”
• “You will not certainly die,” the serpent said
• “Behold, I have told you before”

− Solution: 4 2 5 0
• “keep … ” > Hebrews > 13: 4
• “fear n…” > Isaiah > 66: 2
• “You w…” > Genesis > 50: 5
• “Behol …” > Matthew > 28: 0

Secure AI Systems Lab :: CS 344 - Operating Systems I 5

ONE-TIME PAD

• What is it?
− One-Time Pads (OTP) is an encryption mechanism

• How it works?
− Alice and Bob want to communicate securely
− Alice and Bob share the same OTP
− Alice encrypts a message to send with the OTP
− Alice sends the encrypted message to Bob
− Bob decrypts the received message with the OTP

Secure AI Systems Lab :: CS 344 - Operating Systems I 6

An Example OTP

Let’s meet at the KEC at 9 pm

YCKAJENBVKEIASNELGKTHKD

Let’s meet at the KEC at 9 pm

ONE-TIME PAD: ENCRYPTION

• Encryption example
− Taken from Wikepedia (link)
− Alice wants to say “hello” to Bob

(Key chosen from OTP: XMCKL)

− Alice’s “hello” becomes “EQNVZ”
− Alice sends “EQNVZ” to Bob
− Enc(m, k) := [(m + k) mod 26]

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

EQNVZ: Ciphertext (the output of an encryption)
hello : Plaintext (the text we want to encrypt)
XMCKL: Key (the text we use for the encryp-/decryption)

https://en.wikipedia.org/wiki/One-time_pad

ONE-TIME PAD: DECRYPTION

• Decryption example
− Bob receives “EQNVZ” from Alice
− Bob has the same key chosen from OTP (XMCKL)

− Alice’s “EQNVZ” now becomes “hello”
− Dec(c, k) := [(c - k) mod 26]

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

TOPICS FOR TODAY

• Part III: One-time pad (OTP)
− OTP

• What is it?
• How does it work?

− OTP in PA IV
• What do we need to do?
• Recap: client-server programming

− OTP in the real-world

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

ONE-TIME PAD: PROGRAMMING ASSIGNMENT IV

• Required programs
− (keygen) Key generator
− (enc_server) Encryption server
− (enc_client) Encryption client
− (dec_server) Decryption server
− (dec_client) Decryption client

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

ONE-TIME PAD: PROGRAMMING ASSIGNMENT IV

• Overall process
− (keygen) Alice generates a key via a keygen program
− (keygen) Bob has the same key (do not re-generate)
− Suppose there are two servers

• (enc_server) Encrypt a plaintext using a key
• (dec_server) Decrypt a ciphertext using a key

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

(keygen)
Input: key length (int)
Output: a randomly generated key

ex. $./keygen 10
QKASLKNGDK

enc_serverdec_server

ONE-TIME PAD: PROGRAMMING ASSIGNMENT IV

• Overall process
− (keygen) Alice generates a key via a keygen program
− (keygen) Bob has the same key (do not re-generate)
− Suppose there are two servers

• (enc_server) Encrypt a plaintext using a key
• (dec_server) Decrypt a ciphertext using a key

− Securely communicate using the two servers
• (enc_client) Alice encrypts a msg using enc_server

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

(keygen)
Input: key length (int)
Output: a randomly generated key

ex. $./keygen 10
QKASLKNGDK

enc_server

(enc_client > enc_server)
Send: a plaintext and a key
Recv : an encrypted text

ex. $./enc_client ptext key port
DKUIENBKAK

ONE-TIME PAD: PROGRAMMING ASSIGNMENT IV

• Overall process
− (keygen) Alice generates a key via a keygen program
− (keygen) Bob has the same key (do not re-generate)
− Suppose there are two servers

• (enc_server) Encrypt a plaintext using a key
• (dec_server) Decrypt a ciphertext using a key

− Securely communicate using the two servers
• (enc_client) Alice encrypts a msg using enc_server
• (dec_client) Bob decrypts the msg using dec_server

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

(keygen)
Input: key length (int)
Output: a randomly generated key

ex. $./keygen 10
QKASLKNGDK

enc_server

(enc_client > enc_server)
Send: a plaintext and a key
Recv : an encrypted text

ex. $./enc_client ptext key port
DKUIENBKAK

dec_server

(dec_client > dec_server)
Send: a ciphertext and a key
Recv : a plaintext

ex. $./dec_client ctext key port
ptext

REVISIT NETWORKING: PORT

• Port
− Formal: A communication endpoint (defined at the transport layer)
− TL; DR : A number (0 – 65535) that must be associated with an IP for communication

• Notation
− <IP address>:<Port number>

• ex. 76.298.83.129:433
• IP address: 76.298.83.129 | Port #: 443

• Ports reserved in Linux
− 22: SSH connection
− 80: HTTP
− 443: HTTPS
− 2967: Symantec AV
− 6112: Battle.net

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

Tip:
- Use port # in the 50000+ range
- Use different port number every time you run the server
[Note: it is still unavailable for some time after your program terminates]

- Oftentimes, a port is already used by your fellow; then choose others
- $ netstat -tulp | grep LISTEN (to see used ports)

ONE-TIME PAD: CLIENT-SERVER ARCHITECTURE

• OTP in PA V
− (keygen) Alice generates a key via a keygen program
− (keygen) Bob has the same key (do not re-generate)
− Suppose there are two servers

• (enc_server) Encrypt a plaintext using a key
• (dec_server) Decrypt a ciphertext using a key

− Securely communicate using the two servers
• (enc_client) Alice encrypts a msg using enc_server
• (dec_client) Bob decrypts the msg using dec_server

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

(keygen)
Input: key length (int)
Output: a randomly generated key

ex. $./keygen 10
QKASLKNGDK

enc_server

(enc_client > enc_server)
Send: a plaintext and a key
Recv : an encrypted text

ex. $./enc_client ptext key port
DKUIENBKAK

dec_server

(dec_client > dec_server)
Send: a ciphertext and a key
Recv : a plaintext

ex. $./dec_client ctext key port
ptext

REVISIT: CLIENT-SERVER PROGRAMMING (CLIENT.C)

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

#define IPADDR <SERVER_IP>
#define PORT <SERVER_PORT>
#define BUFSIZE 1024

int main(int argc, char *argv)
{

int sock = 0, valread;
struct sockaddr_in serv_addr;
char* hello = "Hello (client)";
char buffer[BUFSIZE] = { 0 };

// create a socket
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

printf("Error: socket creation error\n");
return -1;

}

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(PORT);

// convert IP addresses from text to binary
if (inet_pton(AF_INET, IPADDR, &serv_addr.sin_addr) <= 0) {

printf("Error: invalid address, address not supported\n");
return -1;

}

if (connect(sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) < 0) {
printf("Connection Failed\n");
return -1;

}

// request encryption/decryption
send(sock, hello, strlen(hello), 0);
printf("Message sent (client)\n");
valread = recv(sock, buffer, BUFSIZE);
printf("%s\n", buffer);

return 0;
}

AF_INET (IPv4)
SOCK_STREAM (bi-directional)

Connect to the server, running on
the IP address we specify “127.0.0.1”

Our OTP case:

1. Send a plan/ciphertext and a key
2. Receive a cipher/plaintext

REVISIT: CLIENT-SERVER PROGRAMMING (SERVER.C)

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

… omit the includes

#define BUF_SIZE 1024
#define PORT SERVER_PORT

int main(void) {
int server_fd, new_socket, valread;
struct sockaddr_in address;
int opt = 1;
int addrlen = sizeof(address);
char buffer[BUF_SIZE] = { 0 };
char* hello = "Hello (server)!";

// create socket (returns a file descriptor for read/write
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {

perror("socket failed"); exit(EXIT_FAILURE);
}

// (you can skip) attach this socket to the port number 8080
if (setsockopt(server_fd, SOL_SOCKET,

SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsocketopt failed"); exit(EXIT_FAILURE);

}

address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY; // bind to any address
address.sin_port = htons(PORT); // format the port num

// attach socket to the port 8080
if (bind(server_fd, (struct sockaddr*)&address, sizeof(address)) < 0) {

perror("bind failed"); exit(EXIT_FAILURE);
}

if (listen(server_fd, 3) < 0) {
perror("listen failed"); exit(EXIT_FAILURE);

}

while (1) {
if ((new_socket = accept(server_fd,

(struct sockaddr*)&address,
(socklen_t*)&sizeof(address))) < 0) {

perror("accept");
exit(EXIT_FAILURE);

}

valread = read(new_socket, buffer, 1024);
printf("%s\n", buffer);
send(new_socket, hello, strlen(hello), 0);
printf("Message sent (server)\n");
close(new_socket);

}
close(server_fd);
return 0;

}

AF_INET (IPv4)
SOCK_STREAM (bi-directional)

SO_REUSEADDR
SO_REUSEPORT
opt (optional value)

Bind the socket to the address
> Any IP (of the host)
> Port # 8080

Listen incoming connections
> Use the socket fd
> Allow 3 connections (max.)

Our OTP case:

1. Receive a plan/ciphertext and a key
2. Send a cipher/plaintext

TOPICS FOR TODAY

• Part III: One-time pad (OTP)
− OTP

• What is it?
• How does it work?

− OTP in PA IV
• What do we need to do?
• Recap: client-server programming

− OTP in the real-world

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

ONE-TIME PAD: PROBLEMS

• What if
− Your key is not (completely) random?
− An adversary knows the OTP you use?
− An adversary observes both ciphertext and plaintext?
− Someone implements OTP incorrectly?

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

ONE-TIME PASSWORD

• What is it?
− One-Time Password (OTP) is a password only valid for one session

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

ONE-TIME PASSWORD

• What is it?
− One-Time Password (OTP) is a password only valid for one session

• How it works?
− Alice and Bob want to communicate securely
− Alice and Bob share the same OTP
− Alice encrypts a message to send with the OTP
− Alice sends the encrypted message to Bob
− Bob decrypts the received message with the OTP

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

Let’s meet at the KEC at 9 pm

YCKAJENBVKEIASNELGKTHKD

Let’s meet at the KEC at 9 pm

(for only one session)

• OSU log-in process
− Bob requests a login to the OSU server
− Bob provides his password to there
− OSU server checks if the password is correct

• (Incorrect) Deny the login request
• (Correct) Request OTP to Duo security and ask Bob the same

− Bob opens his authenticator app and type the OTP
− OSU server checks if the OTPs are the same

ONE-TIME PASSWORD

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

OSU Server(s)

ONID / Password

Duo security (server)

OTP

OTP

• OSU log-in process
− Bob requests a login to the OSU server
− Bob provides his password to there
− OSU server checks if the password is correct

• (Incorrect) Deny the login request
• (Correct) Request OTP to Duo security and ask Bob the same

− Bob opens his authenticator app and type the OTP
− OSU server checks if the OTPs are the same

ONE-TIME PASSWORD: CLIENT-SERVER PROGRAMMING

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

OSU Server(s)

ONID / Password

Duo security (server)

OTP

OTP

TOPICS FOR TODAY

• Part III: One-time pad (OTP)
− OTP

• What is it?
• How does it work?

− OTP in PA IV
• What do we need to do?
• Recap: client-server programming

− OTP in the real-world

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

Thank You!

Secure AI Systems Lab

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong
sanghyun.hong@oregonstate.edu

