
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
03.13: PART IV – RUST

Mon/Wed 12:00 – 1:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

ANNOUNCEMENT

• Upcoming deadlines
− 3/15: Programming assignment V
− 3/17: Extra credit opportunity (Linus Torvalds article)
− 3/20: Midterm quiz IV
− 3/20: The other three extra credit opportunities
− 3/22: Late submissions for programming assignments only

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

TOPICS FOR TODAY

• Rust
− Motivation

• Problem: control vs. safety
• Solution: Rust

− Core concepts
• Ownership and borrowing
• Concurrency
• Unsafe code

− Benefits
• No need for a runtime
• Memory safety
• Data-race freedom

− Example practice
• Multi-threaded map-reduce

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

MOTIVATION

• Popular(?) programming languages
− C
− C++
− Java
− JavaScript (JS)
− Python
− Go
− Perl
− Scala
− Lua
− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

MOTIVATION: A TRADE OFF BETWEEN CONTROL AND SAFETY

Secure AI Systems Lab :: CS 344 - Operating Systems I 5

Control Safety

C C++ Java Python
JS

…
#define BUFSIZE 20

int main(void) {
char *buf;
char *str = "Hello world!";

// initialize the memory space
buf = (char *) malloc(sizeof(char) * BUFSIZE);

// copy the string to the buffer
strncpy(buf, str, BUFSIZE);

// print the string
printf("Buffer contains: %s.\n", buf);

return 0;
}

…import

if __main__ == "__main__":
buf = ""
str = "Hello world!"

// copy the string
buf += str

// print out it
print ("{}".format(buf))
done.

Example:
- C: More control over mem. allocation, but less safe
- Python: Less control, but more safe

MOTIVATION: A TRADE OFF BETWEEN CONTROL AND SAFETY

• Example: C has more control, but care must be taken

Secure AI Systems Lab :: CS 344 - Operating Systems I 6

…
#define BUFSIZE 20

int main(void) {
char *buf;
char *str = "Hello world!";

// initialize the memory space
buf = (char *) malloc(sizeof(char) * BUFSIZE);

// copy the string to the buffer
strncpy(buf, str, BUFSIZE);

// free the buffer
free(buf);

// print the string
printf("Buffer contains: %s.\n", buf);

return 0;
}

• Allocate 20 bytes
• “buf” points the first char of “Hello world!”

• “buf” points “NULL”
• “buf” is used in the printf statement

(Note: use-after-free vulnerability – link)

C (example):
- We can control the memory allocations
- We must be careful when we allocate (safety)

Example scenario
- Programs run on the OS for satellites
- Programs run on the NASA’s Curiosity

https://cwe.mitre.org/data/definitions/416.html

• Example: Python doesn’t need mem. control, but often less efficient
…import

if __main__ == "__main__":
buf = ""
str = "Hello world!"

// copy the string
buf += str

// nullify the string
str = ""

// print out it
print ("{}".format(buf))
done.

MOTIVATION: A TRADE OFF BETWEEN CONTROL AND SAFETY

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

• Python interpreter allocates 20 bytes
• The interpreter allocates 20 bytes

• “str” releases the string, but we do not
know if the mem is de-allocated after this

• “buf” is used in the print statement

Python (example):
- We cannot control the memory allocations
- We do not need to care the mem. de-allocations
[Garbage collector (GC) will do this management,
but it requires ++computations and ++memory]

Example scenario
- Programs run on your laptop
- Programs run on the clusters (or in the cloud)

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

A SOLUTION: RUST!

• Rust
− A programming language designed for (memory) safety and performance
− Try this example (link)!

• Write a Rust program (hello.rs)
• Compile and run the program (rustc hello.rs)

• Rust addresses
− Runtime performance (unlike Python or Java, Rust does not use GC)
− Memory leaks (no explicit allocation/de-allocation)
− No data-race condition

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

https://doc.rust-lang.org/rust-by-example/hello.html

RUST EXAMPLE: HELLO WORLD

• Hello-world

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

fn main() {
println! ("Hello world! ");

}

RUST TYPE: WE CAN EXPLICITLY/IMPLICITLY SET A VARIABLE TYPE

• Hello-world

• Types supported

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

fn main() {
println! ("Hello world! ");

}

fn main() {
let logical: bool = true;
let a_float: f64 = 1.0;
let default_float = 3.0; // f64
let default_integer = 7; // i32
let default_unsigned64: usize = 100; // u64

let mut inferred_type = 12;
inferred_type = 4294967296i64;

let mut mutable = 12; mutable = 21;
mutable = true;

let mutable = true;
}

Initialize variables:
- Line 1: we can set it to “bool”
- Line 2: we can set it to “f64” (64-bit float: double)
- Line 3: it can automatically define it to “f64” (3.0)
- Line 4: it can automatically define it to “i32” (7)
- Line 5: we can use “usize” to define “u64” (64-bit)

RUST TYPE: FIXED VARIABLES AND MUTABLE VARIABLES

• Hello-world

• Types supported

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

fn main() {
println! ("Hello world! ");

}

fn main() {
let logical: bool = true;
let a_float: f64 = 1.0;
let default_float = 3.0; // f64
let default_integer = 7; // i32
let default_unsigned64: usize = 100; // u64

let mut inferred_type = 12;
inferred_type = 4294967296i64;

let mut mutable = 12; mutable = 21;
mutable = true;

let mutable = true;
}

Initialize variables:
- Line 1: we can set it to “bool”
- Line 2: we can set it to “f64” (64-bit float: double)
- Line 3: it can automatically define it to “f64” (3.0)
- Line 4: it can automatically define it to “i32” (7)
- Line 5: we can use “usize” to define “u64” (64-bit)

Variable types can be inferred from context:
- Line 1: we can set the var. to a mutable (mut)
- Line 2: it will automatically set the var to “i64”

RUST TYPE: FIXED VARIABLES AND MUTABLE VARIABLES – CONT’D

• Hello-world

• Types supported

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

fn main() {
println! ("Hello world! ");

}

fn main() {
let logical: bool = true;
let a_float: f64 = 1.0;
let default_float = 3.0; // f64
let default_integer = 7; // i32
let default_unsigned64: usize = 100; // u64

let mut inferred_type = 12;
inferred_type = 4294967296i64;

let mut mutable = 12; mutable = 21;
mutable = true;

let mutable = true;
}

Initialize variables:
- Line 1: we can set it to “bool”
- Line 2: we can set it to “f64” (64-bit float: double)
- Line 3: it can automatically define it to “f64” (3.0)
- Line 4: it can automatically define it to “i32” (7)
- Line 5: we can use “usize” to define “u64” (64-bit)

Variable types can be inferred from context:
- Line 1: we can set the var. to a mutable (mut)
- Line 2: it will automatically set the var to “i64”

Mutable variables:
- Line 1: we can update the value of the mutable var.
- Line 2: but we cannot change the type of it

RUST TYPE: VARIABLE SHADOWING

• Hello-world

• Types supported

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

fn main() {
println! ("Hello world! ");

}

fn main() {
let logical: bool = true;
let a_float: f64 = 1.0;
let default_float = 3.0; // f64
let default_integer = 7; // i32
let default_unsigned64: usize = 100; // u64

let mut inferred_type = 12;
inferred_type = 4294967296i64;

let mut mutable = 12; mutable = 21;
mutable = true;

let mutable = true;
}

Initialize variables:
- Line 1: we can set it to “bool”
- Line 2: we can set it to “f64” (64-bit float: double)
- Line 3: it can automatically define it to “f64” (3.0)
- Line 4: it can automatically define it to “i32” (7)
- Line 5: we can use “usize” to define “u64” (64-bit)

Variable types can be inferred from context:
- Line 1: we can set the var. to a mutable (mut)
- Line 2: it will automatically set the var to “i64”

Mutable variables:
- Line 1: we can update the value of the mutable var.
- Line 2: but we cannot change the type of it

Shadowing:
- Line 1: we can override the variable

(variable shadowing: link)

https://en.wikipedia.org/wiki/Variable_shadowing

• Example I

RUST EXAMPLE: ARRAY, INDEXING, FOR-LOOP, AND IF STATEMENTS

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

fn main() {
let xs: [i32; 5] = [1, 2, 3, 4, 5];
let ys: [i32; 10] = [0; 10];

println! ("The first element: {}", xs[0]);
println! ("Elements from the first to the fourth: {}", xs[0 .. 3]);

}

Initialize arrays:
- Line 1: we can create an array “i32”; the len is 5
- Line 2: we can initialize with all 0s

Indexing:
- Line 1: we can access an element by the index
- Line 2: we can access multiple elements

• Example I

• Example II
fn main() {

for n in 1…101 {
if n < 10 && n % 5 == 0 {

println!("The number smaller than 10 and divisible by 5: {}", n);
} else {

println!("The number is {}", n);
}

}

println!("The final number will be {}", n);
}

RUST EXAMPLE: ARRAY, INDEXING, FOR-LOOP, AND IF STATEMENTS

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

fn main() {
let xs: [i32; 5] = [1, 2, 3, 4, 5];
let ys: [i32; 10] = [0; 10];

println! ("The first element: {}", xs[0]);
println! ("Elements from the first to the fourth: {}", xs[0 .. 3]);

}

Initialize arrays:
- Line 1: we can create an array “i32”; the len is 5
- Line 2: we can initialize with all 0s

Indexing:
- Line 1: we can access an element by the index
- Line 2: we can access multiple elements

If … else:
- Line 1: we can use && for the “and” condition

(“or” is || / “not” is ! / “not eq” is !=)

For loop:
- Line 1: it iterates from 1 to 100 (i.e., 101 – 1)

(alternative: for n in 1..=100)

• Function calls

RUST EXAMPLE: FUNCTION

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

fn compute(x: u32, y: u32) -> u32 {
if x == 0 {

return 0;
}

let z = x.pow(y);
z

}

fn main() {
let val;

val = compute(3, 4);
println! ("Result: {}", val);

}

Rust function:
- Line 1: we receive two arguments x, y

(both x, y are “u32” and returns “u32”)
- Line 2: if “x == 0” then return 0

(we need “return” if we exit the fn early)
- Line 3: compute x^y and store it to z
- Line 4: return z

(no explicit return statement is required)

Rust function “call”:
- Line 1: create “val” variable
- Line 2: call the “compute” function with 3 and 4
- Line 3: store the result to “val”

(Note: won’t work if we “let val = 0;” in Line 1)

TOPICS FOR TODAY

• Rust
− Motivation

• Problem: control vs. safety
• Solution: Rust

− Core concepts
• Ownership and borrowing
• Concurrency
• Unsafe code

− Benefits
• No need for a runtime
• Memory safety
• Data-race freedom

− Example practice
• Multi-threaded map-reduce

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

RUST CORE CONCEPTS

• Core concepts
− Ownership and borrowing
− Concurrency
− Unsafe code

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

RUST OWNERSHIP

• Ownership
− Definition: a set of rules how a Rust program manages memory
− Rust rules:

• Each value in Rust has a variable “owner”
• There can be only one owner at a time
• If the owner goes out of scope, the value will disappear

− Ownership example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

fn take(vec: Vec<String>){
println!("{:?}", vec);

}

fn main() {
let mut vec = Vec::new();
vec.push(String::from("Hello "));
vec.push(String::from("World "));
take(vec);

vec.push(String::from("from the other side!"))
}

vector

data

length

capacity

Hello

World

vector

data

length

capacity

RUST OWNERSHIP

• Ownership
− Definition: a set of rules how a Rust program manages memory
− Rust rules:

• Each value in Rust has a variable “owner”
• There can be only one owner at a time
• If the owner goes out of scope, the value will disappear

− Ownership example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

fn take(vec: Vec<String>){
println!("{:?}", vec);

}

fn main() {
let mut vec = Vec::new();
vec.push(String::from("Hello "));
vec.push(String::from("World "));
take(vec);

vec.push(String::from("from the other side!"))
}

Note:
The last line will cause an error! No “vec”
Ownership is forced by the Rust compiler

It prevents:
Use-after-free vulnerability
(dangling pointers)

But Sometimes, We Need “vec” again in main!

RUST BORROWING

• Borrowing
− Definition: a way to access data without taking ownership over it
− Borrowing example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

fn borrow(vec: &Vec<String>){
println!("{:?}", vec);

}

fn main() {
let mut vec = Vec::new();
vec.push(String::from("Hello "));
vec.push(String::from("World "));
borrow(&vec);

vec.push(String::from("from the other side!"))
}

vector

data

length

capacity

Hello

World

vec

from the…

RUST BORROWING

• Borrowing
− Definition: a way to access data without taking ownership over it
− Borrowing example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

fn borrow(vec: &Vec<String>){
println!("{:?}", vec);

}

fn main() {
let mut vec = Vec::new();
vec.push(String::from("Hello "));
vec.push(String::from("World "));
borrow(&vec);

vec.push(String::from("from the other side!"))
}

vector

data

length

capacity

Hello

World

vec

from the…

Note:
The “borrow” fn uses a shared reference “vec”
The “vec” disappears if the function ends
The “vec” in main still is alive

But “vec” Is Immutable in “borrow”!

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses
− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

use std::thread;

fn main() {
let mut balance = 200;
let mut threads = vec![];

// deposit thread
threads.push(thread::spawn(move || {

let mut new_balance = balance;
new_balance += 100;
println!("Increase the balance {}", new_balance);

}));

// withdrawal thread
threads.push(thread::spawn(move || {

let mut new_balance = balance;
new_balance -= 300;
println!("Decrease the balance {}", new_balance);

}));

for thread in threads {
let _ = thread.join();

}
println!("Final balance {}", balance);

}

Deposit thread:
- Line 1: read the balance and make it mutable
- Line 2: increase the balance by 100
- Line 3: print out the balance

Withdrawal thread:
- Line 1: read the balance and make it mutable
- Line 2: decrease the balance by 300
- Line 3: print out the balance

Thread join:
- Line 1: wait for the threads to join
- Line 2: print out the balance value

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses
− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

use std::thread;

fn main() {
let mut balance = 200;
let mut threads = vec![];

// deposit thread
threads.push(thread::spawn(move || {

let mut new_balance = balance;
new_balance += 100;
println!("Increase the balance {}", new_balance);

}));

// withdrawal thread
threads.push(thread::spawn(move || {

let mut new_balance = balance;
new_balance -= 300;
println!("Decrease the balance {}", new_balance);

}));

for thread in threads {
let _ = thread.join();

}
println!("Final balance {}", balance);

}

Results:
$./main
Decrease the balance -100
Increase the balance 300
Final balance 200

Note:
“balance” is a read-only shared variable
“new_balance” only exists in each thread
No effect on the actual “balance” in main

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses
− Shared mutable accesses
− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

use std::thread; use std::sync::{Arc,Mutex};

fn main() {
let balance = Arc::new(Mutex::new(200));
let mut threads = vec![];

// deposit thread
let balance4deposit = Arc::clone(&balance);
threads.push(thread::spawn(move || {

let mut new_balance = balance4deposit.lock().unwrap();
*new_balance += 100;
println!("Increase the balance {}", new_balance);

}));

// withdrawal thread
let balance4withdrawal = Arc::clone(&balance);
threads.push(thread::spawn(move || {

let mut new_balance = balance4withdrawal.lock().unwrap();
*new_balance -= 300;
println!("Decrease the balance {}", new_balance);

}));

for thread in threads {
let _ = thread.join();

}

println!("Final balance {}", *balance.lock().unwrap());
}

Mutable by threads:
- Mutex: mutable if we lock() the variable
- Arc : send-able to multiple threads

Deposit thread:
- Line 1: clone the Arc instance; point to the same.
- Line 2: lock and get the balance value
- Line 3: increase 100 (cf. access with *)

Withdrawal thread:
- The same as the deposit thread
– Decrease the balance by $300

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses
− Shared mutable accesses
− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

use std::thread; use std::sync::{Arc,Mutex};

fn main() {
let balance = Arc::new(Mutex::new(200));
let mut threads = vec![];

// deposit thread
let balance4deposit = Arc::clone(&balance);
threads.push(thread::spawn(move || {

let mut new_balance = balance4deposit.lock().unwrap();
*new_balance += 100;
println!("Increase the balance {}", new_balance);

}));

// withdrawal thread
let balance4withdrawal = Arc::clone(&balance);
threads.push(thread::spawn(move || {

let mut new_balance = balance4withdrawal.lock().unwrap();
*new_balance -= 300;
println!("Decrease the balance {}", new_balance);

}));

for thread in threads {
let _ = thread.join();

}

println!("Final balance {}", *balance.lock().unwrap());
}

Results:
$./main
Increase the balance 300
Decrease the balance 0
Final balance 0

Note:
“balance” is a mutable shared variable
“new_balance” points to the mutable variable
Require to wrap with Arc for sending to threads
Modify the value is only available after lock()

UNSAFE CODE IN RUST

• Safety that Rust offers:
− Memory safety

• Cannot mutate an immutable variable
• To modify a mutable variable in a function:

− The function should own the variable (ownership)
− The function that just borrows the variable cannot mutate it (borrowing)

− Data-race freedom
• Threads cannot mutate a shared variable without “locking”

• Safety that is “out-of-scope”:
− Deadlocks (not the data-race)
− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

use std::thread;

static anumber: i32 = 10;

fn main() {
let mut threads = vec![];

for tidx in 0..10 {
threads.push(thread::spawn(move || {

println!("Thread {}: anumber is {}", tidx, anumber);
}));

}

for thread in threads {
let _ = thread.join();

}
}

Static variable:
- “anumber” can be accessible in any code in this file

Create 10 threads:
- Each thread prints the thread index and “anumber”

Results:
$./main
Thread 0: anumber is 10
Thread 4: anumber is 10
Thread 5: anumber is 10
Thread 2: anumber is 10
Thread 8: anumber is 10
…

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

use std::thread;

static mut anumber: i32 = 10;

fn main() {
let mut threads = vec![];

for tidx in 0..10 {
threads.push(thread::spawn(move || {

println!("Thread {}: anumber is {}", tidx, anumber);
}));

}

for thread in threads {
let _ = thread.join();

}
}

Static (mutable) variable:
- We want “anumber” can be modified in any code

Create 10 threads:
- Each thread prints the thread index and “anumber”

Static variable:
- “anumber” can be accessible in any code in this file

Create 10 threads:
- It will return a Rust compilation error
- Rust prevents us from directly modifying static mut
- Rust prohibits us from even just accessing it

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

use std::thread;

static mut anumber: i32 = 10;

fn main() {
let mut threads = vec![];

for tidx in 0..10 {
threads.push(thread::spawn(move || {

unsafe {
anumber += 1;
println!("Thread {}: anumber is {}", tidx, anumber);

}
}));

}

for thread in threads {
let _ = thread.join();

}

unsafe {
println!("The final anumber is {}", anumber);

}
}

Static (mutable) variable:
- We want “anumber” can be modified in any code

Create 10 threads:
- Use “unsafe” keyword if we modify “anumber”
- “unsafe” means we understand the consequences
- Now each thread will increase “anumber” by 10

Print out the static mutable:
- Use “unsafe” even for just printing out

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

use std::thread;

static mut anumber: i32 = 10;

fn main() {
let mut threads = vec![];

for tidx in 0..10 {
threads.push(thread::spawn(move || {

unsafe {
anumber += 1;
println!("Thread {}: anumber is {}", tidx, anumber);

}
}));

}

for thread in threads {
let _ = thread.join();

}

unsafe {
println!("The final anumber is {}", anumber);

}
}

Static (mutable) variable:
- We want “anumber” can be modified in any code

Create 10 threads:
- Use “unsafe” keyword if we modify “anumber”
- “unsafe” means we understand the consequences
- Now each thread will increase “anumber” by 10

Print out the static mutable:
- Use “unsafe” even for just printing out

Results:
$./main
Thread 0: anumber is 20
Thread 2: anumber is 30
Thread 3: anumber is 40
Thread 4: anumber is 50
Thread 5: anumber is 60
Thread 7: anumber is 70
Thread 1: anumber is 80
Thread 6: anumber is 90
Thread 8: anumber is 100
Thread 9: anumber is 110
The final anumber is 110

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 33

fn main() {
let s: &str = "123";
let ptr: *const u8 = s.as_ptr();

println!("{}", *ptr.offset(1) as char);
println!("{}", *ptr.offset(2) as char);

}

A variable:
- “s” contains the address of the string “123”

A (pointer) variable:
- “ptr” is the pointer for the string “123”
- “ptr” is “constant” and the type of “u8”

Dereference the pointer values:
- “ptr.offset(#)” is the same as *(ptr + 1) in C
- “as char” converts the output of “ptr.offset” as char
- It causes a compilation error (Rust prevents this)

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

fn main() {
let s: &str = "123";
let ptr: *const u8 = s.as_ptr();

unsafe {
println!("{}", *ptr.offset(1) as char);
println!("{}", *ptr.offset(2) as char);

}
}

A variable:
- “s” contains the address of the string “123”

A (pointer) variable:
- “ptr” is the pointer for the string “123”
- “ptr” is “constant” and the type of “u8”

Dereference the pointer values:
- “ptr.offset(#)” is the same as *(ptr + 1) in C
- “as char” converts the output of “ptr.offset” as char
- It causes a compilation error (Rust prevents this)

Results:
$./main
2
3

What Does It Mean by “Understanding the Consequences”?

Access the pointer values:
- Use “unsafe” to do the pointer arithmetic
- “unsafe” means we understand the consequences

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

fn main() {
let s: &str = "123";
let ptr: *const u8 = s.as_ptr();

unsafe {
println!("{}", *ptr.offset(1) as char);
println!("{}", *ptr.offset(2) as char);
println!("{}", *ptr.offset(3));

}
}

Access the out-of-bound values:
- “*ptr.offset(3)” accesses the 4th character [?!]

Results:
$./main
2
3
10

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

extern "C" {
fn abs(input: i32) -> i32;

}

fn main() {
println!("Absolute value of -3 according to C: {}", abs(-3));

}

An external function:
- The function “abs” is defined in C (not in Rust)

Use of the external function:
- A compilation error (cannot call “abs” directly)
- Not sure whether the abs implementation is safe

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 37

extern "C" {
fn abs(input: i32) -> i32;

}

fn main() {
unsafe {

println!("Absolute value of -3 according to C: {}", abs(-3));
}

}

An external function:
- The function “abs” is defined in C (not in Rust)

Use of the external function:
- A compilation error (cannot call “abs” directly)
- Not sure whether the abs implementation is safe

Use of the external function:
- Use “unsafe” to call the “abs” function

Results:
$./main
Absolute value of -3 according to C: 3

TOPICS FOR TODAY

• Rust
− Motivation

• Problem: control vs. safety
• Solution: Rust

− Core concepts
• Ownership and borrowing
• Concurrency
• Unsafe code

− Benefits
• No need for a runtime
• Memory safety
• Data-race freedom

− Example practice
• Multi-threaded map-reduce

Secure AI Systems Lab :: CS 344 - Operating Systems I 38

RUST ADVANTAGES

• Rust addresses these problems:
− Runtime check and performance

• Rust does not require to use GC
• Rust users (who write the code) consider memory allocations
• Rust performs compilation time checks

− Memory safety (no explicit allocation/de-allocation)
• Memory allocations are handled by “ownerships” and “borrowing”
• Only one “owner” exists at a time; “ownership” transfers if we pass the variable to fn
• “borrowing” allows to access data without “own”ing it

− No data-race condition
• Shared data have two types: “read-only” and “mutable”
• “read-only” data can only be read by others (e.g., threads that access it)
• “mutable” data can only be read after the lock()

Secure AI Systems Lab :: CS 344 - Operating Systems I 39

TOPICS FOR TODAY

• Rust
− Motivation

• Problem: control vs. safety
• Solution: Rust

− Core concepts
• Ownership and borrowing
• Concurrency
• Unsafe code

− Benefits
• No need for a runtime
• Memory safety
• Data-race freedom

− Example practice
• Multi-threaded map-reduce

Secure AI Systems Lab :: CS 344 - Operating Systems I 40

BACKGROUND: MAP-REDUCE

• Map-reduce:
− Definition: a programming model to process large-scale datasets in parallel on a cluster
− TL; DR: Map large data to multiple machines, run in parallel, and reduce the results

• Procedure:
− Define a set of operations required to run on the entire data
− Split the data into multiple chunks (and send them to multiple machines)
− Map the operations to each split and compute intermediate results in parallel
− Reduce the intermediate results into a final output

Secure AI Systems Lab :: CS 344 - Operating Systems I 41

Data

fn Operation

(, fn)

(, fn)

(, fn)

Result

Map Reduce

BACKGROUND: MAP-REDUCE

• Data abstraction:
− Key/value pairs
− ex. in word-counts, (“cs344”, 5) as (key, value)

• Word count example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 42

Entire Wiki articles

……

(Wikipedia, 1)
(OS, 10)
(operating, 3)
(task, 5)
(abstraction, 2)
…

(storage, 1)
(systems, 45)
(Linux, 7)
(task, 5)
…

Map

Intermediate results

(Wikipedia, 1)
(OS, 13)
(operating, 3)
(task, 8)
(abstraction, 2)
(storage, 1)
(systems, 45)
(Linux, 7)
…

Reduce

Final results

ECO I: MULTI-THREADED MAP REDUCE IN RUST

• Goal
− Compute the sum of integers in an array in a map-reduce manner

• Runtime outputs:
./main <# partition> <# of integers>
$./main 5 150
Number of partitions = 2

size of partition 0 = 75
size of partition 1 = 75

Intermediate sums = [2775, 8400]
Sum = 11175
Number of partitions = 5

size of partition 0 = 30
size of partition 1 = 30
size of partition 2 = 30
size of partition 3 = 30
size of partition 4 = 30
Intermediate sums = [435, 1335, 2235, 3135, 4035]

Sum = 11175
Secure AI Systems Lab :: CS 344 - Operating Systems I 43

Output from the sample code
- Compute the sum of 150 numbers with 2 partitions
- Use this part for sanity-checking

Output that is required to implement
- Compute the sum of 150 numbers with 5 partitions

ECO I: MULTI-THREADED MAP REDUCE IN RUST

• Goal
− Compute the sum of integers in an array in a map-reduce manner

• Runtime outputs:
./main <# partition> <# of integers>
$./main 5 150
Number of partitions = 2

size of partition 0 = 75
size of partition 1 = 75

Intermediate sums = [2775, 8400]
Sum = 11175
Number of partitions = 5

size of partition 0 = 30
size of partition 1 = 30
size of partition 2 = 30
size of partition 3 = 30
size of partition 4 = 30
Intermediate sums = [435, 1335, 2235, 3135, 4035]

Sum = 11175
Secure AI Systems Lab :: CS 344 - Operating Systems I 44

Note:
- Each partition contains the same number of elements
- Map: we divide 150 into 2 x 75 elements

each thread computes each partition
- Intermediate sums contain the sum from each partition

Note:
- Reduce: compute the sum of the intermediate sums

ECO I: MULTI-THREADED MAP REDUCE IN RUST

• Plan of attack
− Must: start by reading the description on Canvas
− Must: understand the sample program provided and compile+run it
− Must:

• Implement “partition_data” function
• Map: create # threads (= # partitions) that compute the intermediate sums
• Store the intermediate sums returned from each thread
• Reduce: run “reduce_data” and print out the final sum

Secure AI Systems Lab :: CS 344 - Operating Systems I 45

TOPICS FOR TODAY

• Rust
− Motivation

• Problem: control vs. safety
• Solution: Rust

− Core concepts
• Ownership and borrowing
• Concurrency
• Unsafe code

− Benefits
• No need for a runtime
• Memory safety
• Data-race freedom

− Example practice
• Multi-threaded map-reduce

Secure AI Systems Lab :: CS 344 - Operating Systems I 46

Thank You!

Secure AI Systems Lab

Mon/Wed 12:00 – 1:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

