
Secure AI Systems Lab

CS 344: OPERATING SYSTEMS I
03.15: RECAP – SUMMARY

Mon/Wed 12:00 – 1:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

ANNOUNCEMENT

• Upcoming deadlines
− 3/15: Programming assignment V
− 3/17: Extra credit opportunity (Linus Torvalds article)
− 3/20: Midterm quiz IV
− 3/20: The other three extra credit opportunities
− 3/22: Late submissions for programming assignments only

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

OUTLINE

• Part I:
− Process
− Threads
− Scheduling basics

• Part II:
− Files and I/Os
− File system basics

• Part III:
− IPC
− RPC
− Networking

• Part IV:
− Synchronization
− Rust

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

OPERATING SYSTEMS

• Operating systems (OS)
− Computer software that lies

between hardware and user applications

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

Hardware (CPU, GPU, Mem, …)

Humans Run Applications

……

Manage CPU, Memory, Networking, Storage…

H/W Abstractions

Standard interfaces (libraries)

OS

OPERATING SYSTEMS

• Operating systems (OS)
− Computer software that lies

between hardware and user applications

• Why do we learn OS?
− To understand better how computers think

(how you can run your programs in OS)

Secure AI Systems Lab :: CS 344 - Operating Systems I 5

Hardware (CPU, GPU, Mem, …)

Humans Run Applications

……

Manage CPU, Memory, Networking, Storage…

H/W Abstractions

Standard interfaces (libraries)

OS

OPERATING SYSTEMS

• Operating systems (OS)
− Computer software that lies

between hardware and user applications

• Why do we learn OS?
− To understand better how computers think

(how you can run your programs in OS)

• Functionalities of modern OS
− Manage resources
− Provide abstractions
− Provide standard interface (e.g., C libraries)

Secure AI Systems Lab :: CS 344 - Operating Systems I 6

Hardware (CPU, GPU, Mem, …)

Humans Run Applications

……

Manage CPU, Memory, Networking, Storage…

H/W Abstractions

Standard interfaces (libraries)

OS

PROGRAM

• (Computer) Program
− Definition: a set of instructions for an OS to execute

Secure AI Systems Lab :: CS 344 - Operating Systems I 7

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

PROGRAM

• (Computer) Program
− Definition: a set of instructions for an OS to execute

Secure AI Systems Lab :: CS 344 - Operating Systems I 8

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit Compile

GCC Assembly code

Data

Assembly Code

PROGRAM

• (Computer) Program
− Definition: a set of instructions for an OS to execute

Secure AI Systems Lab :: CS 344 - Operating Systems I 9

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit Compile

GCC Assembly code

Data

Assembly Code

Executable

Compile

Data

Machine Code
(Instructions)

PROVIDE ABSTRACTION: A PROCESS

• (OS) Process
− Definition: an abstract view of an executing program
− Process segments:

• Code, data, heap and stack

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

Process on memory

OS
0xFFF…

0x000…

OS loads &
execute

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

Executable

Compile

Data

Machine Code
(Instructions)

PROVIDE ABSTRACTION: A PROCESS

• (OS) Process
− Definition: an abstract view of an executing program
− Process segments:

• Code, data, heap and stack

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

Process on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

0xFFF…

0x000…

OS loads &
execute

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

Executable

Compile

Data

Machine Code
(Instructions)

PROVIDE ABSTRACTION: A PROCESS

• (OS) Process
− Definition: an abstract view of an executing program
− Process segments:

• Code, data, heap and stack

Secure AI Systems Lab :: CS 344 - Operating Systems I 12

Process on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

0xFFF…

0x000…

OS loads &
execute

void myfunc(void) {
int data2 = 4;
int data3 = 5;

}

int main(void) {
int data1 = 3;
myfunc();

return 0;
}

You Source code

Edit

Executable

Compile

Data

Machine Code
(Instructions)

STACK AND HEAP SEGMENTS

• Stack vs. heap
− Definition: Both are the areas of memory
− Stack

• OS controls the memory allocations (size)
• Store data in Last in first out (LIFO) manner
• Stack mostly holds data initialized within a function

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

Memory

OS

Machine Code
(Instructions)

Data

STACK AND HEAP SEGMENTS

• Stack vs. heap
− Definition: Both are the areas of memory
− Heap

• User allocates the memory with a specific size
• OS finds an empty space and then place the mem.
• Mem. fragmentation (also mem. leak!) can occur

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

Stack

OS

Machine Code
(Instructions)

Data

Heap

OS

Machine Code
(Instructions)

Data

PROCESS CREATION: SYSTEM CALL

• System call
− Definition: a user-level function call to request a service from the OS
− Example: when we allocate memory with “malloc()”

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

void myfunc(void) {
char *data2 = (char *) malloc(5);
char *data3 = (char *) malloc(2);
free(data2);

}

int main(void) {
int num = 100;
myfunc();

return 0;
}

User program OS Kernel

Kernel allocates the memory space
that has the size of 5 bytes, and
return the starting address of this
memory to the user’s program

PROCESS CREATION: FORK SYSTEM CALL

• fork() system call
− Operation:

• Create a new process that is an exact copy of the calling process
• Return the process ID (PID) of a new process (and if it’s in child, returns 0)

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

Parent process

Code
(Instructions)

Data

Stack

Heap

Child process

Code
(Instructions)

Data

Stack

Heap

fork()

PROCESS MANAGEMENT

• fork() tree
− OS manages processes with a tree
− Use ($ pstree) command to see the tree!
− Root of the fork() tree (in Linux)

• PID=0: Sched (swapper) process
• PID=1: Init process

• Properties
− User processes always have a parent
− If we kill the parent, all the child processes will be killed, too

(an exception, any process launched by $ nohup or $ disown)
− PIDs allocated by OS increases as we fork() more

Secure AI Systems Lab :: CS 344 - Operating Systems I

THREAD

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

• Thread
− Definition: a smallest schedulable execution context
− Terminology:

• Smallest: it’s much light-weight than a process
• Schedulable execution context: one thread can run on a CPU at a time

THREAD VS. PROCESS

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

Processes on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Proc. 1 Proc. 2 Proc. 3

THREAD VS. PROCESS – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

Processes on memory

OS

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Machine Code
(Instructions)

Data

Heap

Stack

Threads in a process on memory

OS

Heap

StackStack

Machine Code
(Instructions)

Data

Stack

Thread 1 Thread 2 Thread 3Proc. 1 Proc. 2 Proc. 3

Reduce
Duplications

THREAD VS. PROCESS – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

Threads in a process on memory

OS

Heap

StackStack

Machine Code
(Instructions)

Data

Stack

Thread 1 Thread 2 Thread 3

• Threads share:
− Code and data segments
− Heap memory (ex. global variables)
− Open files (ex. I/O access points)

• Threads do not share:
− Stack segments, e.g.:

• arguments passed when we launch them
• local variables we initialize within them
• return address, when they terminate (OS II)

− Running contexts, e.g.:
• thread state
• stack pointer
• …

THREAD CREATION: THREAD-SPECIFIC SYSTEM CALLS

• Thread-specific system calls
− pthread_create(thread, attribute, subroutine, subroutine-arguments);

• Create a new thread executing the subroutine in the current process
• Returns zero if it’s successful, otherwise it returns errno

− pthread_exit(return-value);
• Terminate the thread and returns the return-value to any successful join
• Note: If a thread terminates, it will be automatically called and always return success

− pthread_join(thread, return-value-loc);
• Suspend execution of the calling thread until the thread terminates
• Once the thread terminates, the function will copy the return value to return-value-loc
• Returns zero if it’s successful, otherwise it returns an error

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

https://mariadb.com/kb/en/operating-system-error-codes/

THREAD PROGRAMMING PATTERN: FORK-JOIN

• Fork - Join Pattern
− Fork: Main process creates a set of sub-

(or child)-threads that runs a function
− Each thread exits if the function returns
− Join: Main waits until all the threads exit

• Example: download a large file
− Splits a file into smaller chunks
− Create a thread for downloading each
− Sum-up all the downloaded chunks and

combine them to create a single large file

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

Your process

pthread_create() calls

pthread_join() calls

pthread_exit() call

THREAD MANAGEMENT

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

• (Linux) OS
− A thread is treated as the same as a process
− (Linux) thread control block ≈ process context

• A thread can have three states:
− Ready: a thread is created and ready to run, but not running now
− Running: a thread running now
− Blocked: a thread is unable to run (terminated or errors)

SCHEDULING: TERMINOLOGY

• Three confusing terms:
− Multiprogramming vs. multi-processing vs. multi-threading

• Multi-programming: multiple jobs (or processes)
• Multi-processing: multiple processors (CPUs)
• Multi-threading: multiple threads

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

CPU0
P1 P2 P3

Multiprogramming

CPU0 P1

P2

P3

CPU1

CPU2

Multiprocessing

CPU0 P1-T1

P1-T2CPU1

/ P1-T3
Multithreading

SCHEDULING: CONTEXT SWITCH

• Context switch
− Definition: OS stores the current process’s status and loads the new process’s one
− Informal: OS takes a CPU from one process and gives it to another

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

OS KernelProcess A Process B
Running

Running

Save Process A’s status

Load Process B’s status

Save Process B’s status

Load Process A’s status

Idle

Running

Idle

Idle

Recall: Process control block

A structure in OS that contains a set of
information required to run a process on
a CPU. Recall that Linux has task_struct.

- CPU#
- Program counter
- Instruction pointer
- Heap/stack pointer
- Process state [!]
- …

SCHEDULING: PROCESS STATES
• A process can have five states:

− New: a process (or thread) is being created (by fork())
− Ready: the process is waiting to run
− Running: the process is running on a CPU(or CPUs)
− Waiting: the process is waiting for some events to occur (e.g., a data loaded from storage)
− Terminated: the process has finished execution; waiting for removal

• State transition (life cycle):

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

Termi-
nated

Exit
New Ready

Admit Run-
ning

Dispatch

Interrupt

Wait-
ing

I/O waitI/O done Zombie process

A process finished its execution
and is waiting for its removal

SCHEDULING IN OS
• Scheduling

− Definition: an OS activity that schedules processes in different states
− Note: OS implements queues to hold multiple processes in the same state

• Illustration (single CPU)

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

Run

Ready

Wait

Ready Q

I/O Q

Proc A
(PCBA)

Proc B
(PCBB)

Proc C
(PCBC)

…

Proc D
(PCBD)

Interrupt Q

Timeout Q

Proc H
(PCBH)

Proc I
(PCBI)

Proc J
(PCBJ)

…

Proc G
(PCBG)

…

Proc E
(PCBE)

Proc F
(PCBF)

…

SCHEDULING IN OS: EXAMPLE
• Scheduling

− Definition: an OS activity that schedules processes in different states
− Note: OS implements queues to hold multiple processes in the same state

• Illustration (single CPU)

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

Run

Ready

Wait

Ready Q

I/O Q

Proc A
(PCBA)

Proc B
(PCBB)

Proc C
(PCBC)

…

Proc D
(PCBD)

Interrupt Q

Timeout Q

Proc H
(PCBH)

Proc I
(PCBI)

Proc J
(PCBJ)

…

Proc G
(PCBG)

…

Proc E
(PCBE)

Proc F
(PCBF)

…

Illustrated Example

1. Kicks out Proc D (timeout)
2. Runs Proc B
3. Puts Proc F in the ready Q

(I/O has done, in this case)

SCHEDULING: OS SCHEDULER

• (OS) Scheduler:
− Definition: An OS task (process) that manages the process scheduling activity

• Implementation

− It is also a process (an infinite loop)
− The scheduler process terminates if we stop (turn-off) a computer

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

while (<some condition,
but eventually will be infinite>) {

RunProcess(curProc);
newProc = chooseNextProc();
saveCurrentProc(curProc);
LoadNextState(newProc);

}

SCHEDULING: OS SCHEDULER – CONT’D

• What triggers OS scheduling?

− RunProcess(): a CPU executes the machine code of “curProc”
− chooseNextProc(): OS kernel selects the next process to run
− saveCurrentProc(): OS kernel saves the CPU’s state to “curProc”
− loadNextState(): OS kernel stores “newProc” state to the CPU

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

while (<some condition,
but eventually will be infinite>) {

RunProcess(curProc);
newProc = chooseNextProc();
saveCurrentProc(curProc);
LoadNextState(newProc);

}

Yield or interrupt triggers this code line

OUTLINE

• Part I:
− Process
− Threads
− Scheduling basics

• Part II:
− Files and I/Os
− File system basics

• Part III:
− IPC
− RPC
− Networking

• Part IV:
− Synchronization
− Rust

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

FILE AND DIRECTORY

• File
− Definition: a named collection of data (e.g., movie.csv containing movie data)
− POSIX : a sequence of data bytes
− *NIX OS : everything is a file

• Directories
− Definition : a folder containing files and directories

Secure AI Systems Lab :: CS 344 - Operating Systems I 33

USERS, GROUPS, AND PERMISSIONS

• Users and groups
− User : owner of a file or a directory
− Group : the group where users are
− Others: all the other users

• Permissions
− Read : one can read files and directories with ‘r’ permission
− Write : one can write files and dirs. with ‘w’ permission
− Execute: one can execute files and dirs. with ‘x’ permission

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

FILE SYSTEM STRUCTURE

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

• Basic components
− File : a named collection of data
− Directory: a file that holds other files as data

• Access control, permission
− Access control: user, group, and others (u, g, o)
− Permission : read, write, and execute (r, w, x)

• Filesystem structure
− iNode: a data-structure that describes a file-system object
− Block : a unit of data storage, the size is defined by OS (e.g., 4kB)

FILESYSTEM STRUCTURE OVERVIEW

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

• A file stored in a filesystem (12 blocks ≈ 48kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

… 4kB 4kB

Disk drive

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 37

• A (larger) file stored in a filesystem (indirect block ≈ 4MB + 4kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

… 4kB 4kB

Disk drive

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

Block

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 38

• A (larger) file stored in a filesystem (double I-blk ≈ 4GB +4MB +4kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

4kB

Disk drive

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

Block

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

Block

FILESYSTEM STRUCTURE OVERVIEW – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 39

• A (largest) file stored in a filesystem (triple I-blk ≈ 4TB +4GB +4MB +4kB)

(example.c)

Files

Device ID
File ID
Permission
Access
Size
Block 0
Block 1
Block 2
Block 3
Block 4
…
Indirect blk
Double I-blk
Triple I-blk

iNode

4kB

Disk drive

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

Block

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

Block

…
Block 0
Block 1
Block 2
…
Indirect blk
Double I-blk
Triple I-blk

Block

I/O

• I/O
− Definition : input and output
− Def (*NIX): any operation that

read/write system services
(*NIX OS: everything is a file)

Secure AI Systems Lab :: CS 344 - Operating Systems I 40

Hardware (CPU, GPU, Mem, …)

Users Run Applications

……

File System(s)

I/O Drivers

Standard Interfaces (Libraries)

System Calls

Low-level I/O

High-level I/O

Today

LOW-LEVEL I/O
• File descriptors (fd)

− Definition : an integer that uniquely identifies an open file in Linux
− System calls: (fctrl.h)

• int open(const char *filename, int flags, mode_t *mode)
• int create(const char *filename, mode_t *mode)
• int close(int *fd)

− Standard file descriptors:
• STDIN_FILENO : 0
• STDOUT_FILENO: 1
• STDERR_FILENO : 2

Secure AI Systems Lab :: CS 344 - Operating Systems I 41

LOW-LEVEL I/O – CONT’D
• Basic functions

− ssize_t read(int fd, void *buffer, size_t maxsize)
− ssize_t write(int fd, const void *buffer, size_t size)
− off_t lseek(int fd, off_t offset, int whence)

• Descriptions
− read(): reads data from an open file using its file descriptor

• Read up to maxsize bytes; returns less bytes if the data < maxsize
• Return the number of bytes it read (0 means EOF, and negative values are errors)

− write(): writes data to an open file using its file descriptor
• Returns the number of bytes it wrote

− lseek(): repositions the file offset within the kernel
• (lseek != fseek) fseek holds a position in the FILE pointer

Secure AI Systems Lab :: CS 344 - Operating Systems I 42

https://mariadb.com/kb/en/operating-system-error-codes/

HIGH-LEVEL I/O
• File as a stream

− Definition: an unformatted sequence of bytes with a position
− Functions :

• FILE *fopen(const char *filename, const char *mode)
• int fclose(FILE *fp)

− Standard streams:
• FILE *stdin : normal source of input, can be redirected
• FILE *stdout: normal source of output; redirection can be done
• FILE *stderr : output errors

Secure AI Systems Lab :: CS 344 - Operating Systems I 43

HIGH-LEVEL I/O – CONT’D
• Character(byte)-level API

− int fputc(int c, FILE *fp)
− int fputs(const char *s, FILE *fp)
− int fgetc(FILE *fp)
− char *fgets(char *buf, int n, FILE *fp)

• Block-level API
− size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)
− size_t fwrite(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *fp)

Secure AI Systems Lab :: CS 344 - Operating Systems I 44

LOW-LEVEL I/O VS. HIGH-LEVEL I/O

Secure AI Systems Lab :: CS 344 - Operating Systems I 45

Hardware (CPU, GPU, Mem, …)

User Applications

Manage CPU, Memory, I/Os…

H/W Abstractions

Standard Libraries (GNU C)

OS

Low-level I/O

read()

High-level I/O

fread()

read()

• Low-level I/O uses system calls, while high-level I/Os are not
− System calls

• They directly request OS services/resources
• e.g., open(), read(), write(), and close()

− Standard libraries in C
• They are offered by C libraries
• C libraries eventually do system calls
• e.g., fopen(), fread(), fwrite(), and fclose()

OUTLINE

• Part I:
− Process
− Threads
− Scheduling basics

• Part II:
− Files and I/Os
− File system basics

• Part III:
− IPC
− RPC
− Networking

• Part IV:
− Synchronization
− Rust

Secure AI Systems Lab :: CS 344 - Operating Systems I 46

IPC: SIGNALS

• Signals
− Definition:

• (Formal) an asynchronous mechanism to notify an event to a process
• (Informal) notifications between processes or a process and a thread

• Signals in Linux
− 32 non-real-time signals (0 to 31)
− 31 real-time signals (32 to _NSIG [link])

Secure AI Systems Lab :: CS 344 - Operating Systems I 47

https://elixir.bootlin.com/linux/v3.7/source/arch/x86/include/asm/signal.h

IPC: SIGNALS

• Signals
− Definition:

• (Formal) an asynchronous mechanism to notify an event to a process
• (Informal) notifications between processes or a process and a thread

• Signals in Linux
− 32 non-real-time signals (0 to 31)
− 31 real-time signals (32 to _NSIG [link])

• Signals we might know
− SIGINT : To terminate (CTRL+C)
− SIGKILL : To terminate immediately (kill -9)
− SIGSEGV: If segmentation fault happens
− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 48

https://elixir.bootlin.com/linux/v3.7/source/arch/x86/include/asm/signal.h

IPC: SIGNAL INTERNALS

• Signal from Process A -> Process B
− OS kernel

• Checks if Process B has pending signals
• Pauses the execution of Process B
• Invokes do_signal()
• do_signal() call invokes handle_signal()

− Process B
• Run code in signal_handler
• Return back to kernel: sigreturn()

− OS Kernel
• Resume Process B

Secure AI Systems Lab :: CS 344 - Operating Systems I 49

IPC: PIPES

• PIPE:
− Definition: a unidirectional data channel, used for inter-process communication
− Conceptually:

• A file shared between two process (only one can write, and the other can only read)
• Note: a file descriptor can be shared (aliased) between two process

− To write: write(writefd, wbuf, wlen);
− To read : read(readfd, rbuf, rmax);

Secure AI Systems Lab :: CS 344 - Operating Systems I 50

IPC: PIPE – CONT’D

• Data structure
− Queue in memory
− (Rule) If Proc A writes data, the data will be in the kernel queue until Proc B reads it

• OS kernel’s queue control:
− Queue can be full/empty

• If the queue is full, OS kernel asks Proc A (write) to wait
• If the queue is empty, OS kernel asks Proc B (read) to wait

Secure AI Systems Lab :: CS 344 - Operating Systems I 51

• PIPE between two processes
− Process A creates a pipe (fd=5/6)
− A can read/write with the pipe
− Process A fork()
− Process B is created (a child)
− Process B can read/write from (fd=5/6)

PIPE
(queue)

IPC: PIPE

Secure AI Systems Lab :: CS 344 - Operating Systems I 52

OS Kernel

User

Process A
(fd = 5/6)

5 PIPE

6 PIPE

……

392 log.txt

Process B
(fd = 5/6)

write()

read()

write()

read()

RPC: SOCKET

• Socket
− Definition: an abstract structure for sending and receiving data
− TL; DR: a bi-directional pipe

• Socket components
− A structure (① a file descriptor and ② a queue)
− IP addresses (③ source and ④ destination addresses)
− ⑤ Protocols (e.g., TCP/IP or UDP) to use

Secure AI Systems Lab :: CS 344 - Operating Systems I 53

Process A Process B

Process A’s socket Process B’s socket

read() / write()

B’s Socket fd
B’s Queue
A’s IP address (+Port)
B’s IP address (+Port)
Protocol used

A’s Socket fd
A’s Queue
A’s IP address (+Port)
B’s IP address (+Port)
Protocol used

RPC: SOCKET – PROCEDURE

Secure AI Systems Lab :: CS 344 - Operating Systems I 54

• Caller (Client)
− Open up your phone
− Search a restaurant’s phone number
− Call and wait

− I’d like to have a table for two today at 7 pm

− John Doe

− 123-456-7890

− Thank you

− Hang up

• Callee (Server)

− Thank you for calling XYZ. How can I help you?

− Two at 7 pm, hold on a minute
− May I have the name on the reservation?

− and a phone number?

− Today, 7 pm today, John Doe. You’re all set.

− Thank you. See you soon.
− Bye

Have a phoneHave a phone

DisconnectDisconnect

Turn on the phone

Start receiving calls

A call received

Communicate

Make a call

socket()socket()

bind()

listen()

accept()

connect()

read() / write()

terminate the threadclose()

create a thread

Keep waiting for
the next connection

RPC: SOCKET – SERVER.C

Secure AI Systems Lab :: CS 344 - Operating Systems I 55

… omit the includes

#define BUF_SIZE 1024
#define PORT 8080

int main(void) {
int server_fd, new_socket, valread;
struct sockaddr_in address;
int opt = 1;
int addrlen = sizeof(address);
char buffer[BUF_SIZE] = { 0 };
char* hello = "Hello (server)!";

// create socket (returns a sockfd for reading/writing)
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {

perror("socket failed");
exit(EXIT_FAILURE);

}

// configure the socket by setting the options
if (setsockopt(server_fd, SOL_SOCKET,

SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsocketopt failed");
exit(EXIT_FAILURE);

}

address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY; // bind to any address
address.sin_port = htons(PORT); // format the port num

// attach socket to the port 8080
if (bind(server_fd, (struct sockaddr*)&address, sizeof(address)) < 0) {

perror("bind failed");
exit(EXIT_FAILURE);

}

if (listen(server_fd, 3) < 0) {
perror("listen failed");
exit(EXIT_FAILURE);

}

if ((new_socket = accept(server_fd,
(struct sockaddr*)&address,
(socklen_t*)&sizeof(address))) < 0) {

perror("accept");
exit(EXIT_FAILURE);

}

valread = read(new_socket, buffer, 1024);
printf("%s\n", buffer);
send(new_socket, hello, strlen(hello), 0);
printf("Message sent (server)\n");
return 0;

}

AF_INET (IPv4)
SOCK_STREAM (bi-directional)

SO_REUSEADDR
SO_REUSEPORT
opt (optional value)

Bind the socket to the address
> Any IP (of the host)
> Port # 8080

Listen incoming connections
> Use the socket fd
> Allow 3 connections (max.)

Start accepting connections
> Use the socket fd
> Use the address specified
> Return the fd (accepted)

RPC: SOCKET – SERVER.C

Secure AI Systems Lab :: CS 344 - Operating Systems I 56

address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY; // bind to any address
address.sin_port = htons(PORT); // format the port num

// attach socket to the port 8080
if (bind(server_fd, (struct sockaddr*)&address, sizeof(address)) < 0) {

perror("bind failed");
exit(EXIT_FAILURE);

}

if (listen(server_fd, 3) < 0) {
perror("listen failed");
exit(EXIT_FAILURE);

}

if ((new_socket = accept(server_fd,
(struct sockaddr*)&address,
(socklen_t*)&sizeof(address))) < 0) {

perror("accept");
exit(EXIT_FAILURE);

}

valread = read(new_socket, buffer, 1024);
printf("%s\n", buffer);
send(new_socket, hello, strlen(hello), 0);
printf("Message sent (server)\n");
return 0;

}

Bind the socket to the address
> Any IP (of the host)
> Port # 8080

Listen incoming connections
> Use the socket fd
> Allow 3 connections (max.)

Start accepting connections
> Use the socket fd
> Use the address specified
> Return the fd (accepted)

Process A (server)

server_fd = 4 (listen) 1. Connection request

2. Server accepts it

new_socket = 30 3. It creates a new fd

socket fd != new_socket

Design choice:
We want to separate the file descriptor for listening
connection requests (socket_fd) from the file descriptor
used for communicating with the client (new_socket)

RPC: SOCKET – CLIENT.C

Secure AI Systems Lab :: CS 344 - Operating Systems I 57

#define IPADDR "127.0.0.1"
#define PORT 8080
#define BUFSIZE 1024

int main(void)
{

int sock = 0, valread;
struct sockaddr_in serv_addr;
char* hello = "Hello (client)";
char buffer[BUFSIZE] = { 0 };

// create a socket
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

printf("Error: socket creation error\n");
return -1;

}

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(PORT);

// convert IP addresses from text to binary
if (inet_pton(AF_INET, IPADDR, &serv_addr.sin_addr) <= 0) {

printf("Error: invalid address, address not supported\n");
return -1;

}

if (connect(sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) < 0) {
printf("Connection Failed\n");
return -1;

}

send(sock, hello, strlen(hello), 0);
printf("Message sent (client)\n");
valread = read(sock, buffer, BUFSIZE);
printf("%s\n", buffer);

return 0;
}

AF_INET (IPv4)
SOCK_STREAM (bi-directional)

Connect to the server, running on
the IP address we specify “127.0.0.1”

Execution result
$ gcc -o server server.c
$ gcc -o client client.c
$./server &
$./client

Message sent (client)
Hello (client)
Message sent (server)
Hello (server)

(COMPUTER) NETWORKING

• Networking
− Definition: two or more applications on different computers (hosts) exchanging data

Secure AI Systems Lab :: CS 344 - Operating Systems I 58

Process Process

socket socket

read/write

Host A Host B

Hello

OS OSHow Does It Work?

NETWORKING: PACKET ENCAPSULATION

• In the TCP/IP 4-layer model

Secure AI Systems Lab :: CS 344 - Operating Systems I 59

Process Process

socket socket

Host A Host B

Hello

Physical (or Link)

Internet

Transport

Application

Physical (or Link)

Internet

Transport

Application

read/write

TCP Hello

IP TCP Hello

ETH IP TCP Hello ETH IP TCP Hello

IP TCP Hello

TCP Hello

Hello

NETWORKING: ETHERNET (PHYSICAL LAYER)

• Ethernet Protocol (~80s)
− Each network device (NIC) has 48-bit MAC address
− Each NIC is connected via Ethernet cable
− ETH header contains:

• (64 bit) Preamble (0x111111111… or a unique data)
• (48-bit) Destination MAC address
• (48-bit) Source MAC address
• (16-bit) Type
• (up to 1500 bytes) Data
• (32-bit) CRC for error correcting

Secure AI Systems Lab :: CS 344 - Operating Systems I 60

Physical (or Link)Physical (or Link) read/write
ETH IP TCP Hello ETH IP TCP Hello

MAC (4B 00…)

MAC (7C…) MAC (4D…) MAC (65…) MAC (43…)

NETWORKING: ETHERNET (PHYSICAL LAYER)

• Ethernet Protocol (~80s)
− Each network device (NIC) has 48-bit MAC address
− Each NIC is connected via Ethernet cable
− ETH header contains:

• (64 bit) Preamble (0x111111111… or a unique data)
• (48-bit) Destination MAC address
• (48-bit) Source MAC address
• (16-bit) Type
• (up to 1500 bytes) Data
• (32-bit) CRC for error correcting

Secure AI Systems Lab :: CS 344 - Operating Systems I 61

Physical (or Link)Physical (or Link) read/write
ETH IP TCP Hello ETH IP TCP Hello

NETWORKING: IP LAYER

• Internet Protocol (IP)
− IP allows us to connect multiple networks
− Each host has a unique IP address

• IPv4: 32-bit address (e.g., 147.56.28.101)
• IPv6: 128-bit address (e.g., 2001:db8:3333:4444:5555:6666:7777:8888)

− IP data (packets) is routed based on destination IP

Secure AI Systems Lab :: CS 344 - Operating Systems I 62

Physical (or Link)

Internet

Physical (or Link)

Internet

read/write

IP TCP Hello IP TCP Hello

S

D

NETWORKING: TRANSPORT LAYER

• TCP vs UDP Protocol
− Transmission Control Protocol: TCP Packet

• (16-bit, for each) Source and destination ports
• (32-bit) Sequence number
• (32-bit) Acknowledgement number
• Others: flags, checksums, window-size, pointer, …

− User Datagram Protocol: UDP Packet
• (16-bit, for each) Source and destination port
• (16-bit, for each) Length and checksum

Secure AI Systems Lab :: CS 344 - Operating Systems I 63

Physical (or Link)

Internet

Transport

Physical (or Link)

Internet

TransportTCP Hello

IP TCP Hello

ETH IP TCP Hello ETH IP TCP Hello

IP TCP Hello

TCP Hello

read/write

NETWORKING: TRANSPORT LAYER

• TCP vs UDP Protocol
− TCP requires an established connection, but UDP is not (broadcast)
− TCP can use sequences, but UDP is not
− TCP is like a PIPE; data won’t be lost, but UDP will (can lose data)
− TCP guarantees delivery, but UDP does not
− TCP is slower than UDP (suppose that we deliver all the packets)

Secure AI Systems Lab :: CS 344 - Operating Systems I 64

Physical (or Link)

Internet

Transport

Physical (or Link)

Internet

TransportTCP Hello

IP TCP Hello

ETH IP TCP Hello ETH IP TCP Hello

IP TCP Hello

TCP Hello

read/write

NETWORKING: APPLICATION LAYER

• Application layer
− Support various user-defined or OS-defined protocols (on top of TCP/UDP)
− TCP-based : HTTPS, HTTP, SMTP, POP, FTP, …
− UDP-based: Video streaming, conferencing, DNS, VoIP, …

Secure AI Systems Lab :: CS 344 - Operating Systems I 65

Physical (or Link)

Internet

Transport

Application

Physical (or Link)

Internet

Transport

Application

read/write

TCP Hello

IP TCP Hello

ETH IP TCP Hello ETH IP TCP Hello

IP TCP Hello

TCP Hello

OUTLINE

• Part I:
− Process
− Threads
− Scheduling basics

• Part II:
− Files and I/Os
− File system basics

• Part III:
− IPC
− RPC
− Networking

• Part IV:
− Synchronization
− Rust

Secure AI Systems Lab :: CS 344 - Operating Systems I 66

SYNCHRONIZATION: TERMINOLOGY

• Concurrency vs. parallelism:
− Concurrency: handling multiple processes (or threads) at once
− Parallelism: running multiple processes (or threads) simultaneously

• Example:
− On the CPU0

• P1 and P3 can execute concurrently
• P1 and P3 is not running in parallel

− On the CPU0 and CPU1
• P1 and P2 runs in parallel

Secure AI Systems Lab :: CS 344 - Operating Systems I 67

CPU0 P1

P2

P3

CPU1

CPU2

Parallelism
(P1, P2, P3)

CPU0 P1 → P3 → P1

CPU1
Concurrency

(P1, P3) P2

SYNCHRONIZATION: ATM BANK SERVER PROBLEM

• ATM bank’s server
− The server(s) takes care of multiple deposit / withdrawal requests
− Bank want to make sure all the transactions are correct

Server at the Bank

Deposit / withdraw
Deposit / withdraw

Deposit / withdrawDeposit / withdraw

SYNCHRONIZATION: CONCURRENT ATM BANK SERVER IN C

• Threaded ATM bank server
− Receive a request
− Create a thread for processing it
− Multiple threads can co-exist

Secure AI Systems Lab :: CS 344 - Operating Systems I 69

void ProcessRequest(op, accountId, amount) {
switch (op) {

case OP_DEPOSIT:
pthread_t *newTh = <mem alloc>;
pthread_create(newTh, Deposit, info);

case OP_WITHDRAW:
pthread_t *newTh = <mem alloc>;
pthread_create(newTh, Withdraw, info);

}
}

void Deposit(accountId, amount) {
account = GetAccount(accountId);
account->balance += amount;
StoreAccount(account);

}

int main(void) {
int op = -1;
int accountId, amount = -1, -1;

while (1) {
ReceiveRequest(&op, &accountId, &amount);
ProcessRequest(op, accountId, amount);

}

return 0; // code only reaches here if the server terminates
}

SYNCHRONIZATION: RACE CONDITION

• Race condition:
− Definition: an undesirable scenario; performs multiple operations on a shared resource
− Example: two “deposit” threads, running concurrently, increase the balance

B: Deposit $100

2. Load my balance: $400
3. Deposit $100

A: Deposit $200
1. Load my balance: $400

4. Deposit $200

$400

My account

$500$600

How Can We Make Sure My Balance Is $700 at the End?

SYNCHRONIZATION: ATOMIC OPERATION

• Solution approach:
− Deposit() is indivisible
− Make sure to execute “Deposit()” at once

• Atomic operation:
− Code should be executed w/o interrupt
− TL; DR: Code should be run at once

Secure AI Systems Lab :: CS 344 - Operating Systems I 71

void ProcessRequest(op, accountId, amount) {
switch (op) {

case OP_DEPOSIT:
pthread_t *newTh = <mem alloc>;
pthread_create(newTh, Deposit, info);

case OP_WITHDRAW:
pthread_t *newTh = <mem alloc>;
pthread_create(newTh, Withdraw, info);

}
}

void Deposit(accountId, amount) {
account = GetAccount(accountId);
account->balance += amount;
StoreAccount(account);

}

int main(void) {
int op = -1;
int accountId, amount = -1, -1;

while (1) {
ReceiveRequest(&op, &accountId, &amount);
ProcessRequest(op, accountId, amount);

}

return 0; // code only reaches here if the server terminates
}

SYNCHRONIZATION: MUTUAL EXCLUSION (MUTEX)

• Mutex (lock)
− Prevents two+ process access the code
− Supports three operations

• Lock before running atomic code
• Unlock after running the code
• Wait while someone locked the code

Secure AI Systems Lab :: CS 344 - Operating Systems I 72

pthread_mutex_t deposit_lock;

void ProcessRequest(op, accountId, amount) {
switch (op) {

case OP_DEPOSIT:
…

}
}

void Deposit(accountId, amount) {
pthread_mutex_lock(&foo_mutex); // lock before the atomic op.
account = GetAccount(accountId);
account->balance += amount;
StoreAccount(account);
pthread_mutex_unlock(&foo_mutex); // unlock after the atomic op.

}

int main(void) {
int op = -1;
int accountId, amount = -1, -1;
pthread_mutex_init(&deposit_lock, NULL);

while (1) {
ReceiveRequest(&op, &accountId, &amount);
ProcessRequest(op, accountId, amount);

}

return 0; // code only reaches here if the server terminates

SYNCHRONIZATION: MUTUAL EXCLUSION (MUTEX)

• Mutex (lock)
− Prevents two+ process access the code
− Supports three operations

• Lock before running atomic code
• Unlock after running the code
• Wait while someone locked the code

• Critical section
− A code section protected by lock & unlock

Secure AI Systems Lab :: CS 344 - Operating Systems I 73

pthread_mutex_t deposit_lock;

void ProcessRequest(op, accountId, amount) {
switch (op) {

case OP_DEPOSIT:
…

}
}

void Deposit(accountId, amount) {
pthread_mutex_lock(&foo_mutex); // lock before the atomic op.
account = GetAccount(accountId);
account->balance += amount;
StoreAccount(account);
pthread_mutex_unlock(&foo_mutex); // unlock after the atomic op.

}

int main(void) {
int op = -1;
int accountId, amount = -1, -1;
pthread_mutex_init(&deposit_lock, NULL);

while (1) {
ReceiveRequest(&op, &accountId, &amount);
ProcessRequest(op, accountId, amount);

}

return 0; // code only reaches here if the server terminates

SYNCHRONIZATION PROBLEM: A COKE MACHINE

• A coke machine
− Two workers (or threads):

• Producer: fills the coke machine
• Consumer: takes cokes from the machine

SYNCHRONIZATION PROBLEM: A COKE MACHINE W. MUTEX

• Coke machine in C
− A coke machine (can hold 64 cokes)
− Two workers (or threads):

• Producer thread puts cokes
• Consumer thread gets a coke

• Problem:
− Producer/consumer can wait forever
− “Busy-wait” does not guarantee running

Secure AI Systems Lab :: CS 344 - Operating Systems I 75

#define MACHINE_CAPACITY 64
static struct coke_machine;

void producer_fn() {
while (1) {

while (machine == full) {};
pthread_mutex_lock(&machine);
enqueue(acoke, coke_machine);
pthread_mutex_unlock(&machine);

}
}

void consumer_fn() {
while (1) {

while (machine == empty) {};
pthread_mutex_lock(&machine);
acoke = dequeue(coke_machine);
pthread_mutex_unlock(&machine);

}
}

int main(void) {
pthread_t producer, consumer;

….

return 0; // code only reaches here if the machine is broken
}

SYNCHRONIZATION: SEMAPHORE

• Semaphore
− Definition: a variable used to control access to a shared resource
− TL; DR: Mutex + Variable + Signal

• Semaphore operations
− P(): wait until a semaphore becomes positive and decrease it by 1
− V(): increase a semaphore by 1 and wake up any thread that waits by P()

Secure AI Systems Lab :: CS 344 - Operating Systems I 76

SYNCHRONIZATION: COKE MACHINE

• Coke machine in C
− A coke machine (can hold 64 cokes)
− Two workers (or threads):

• Producer thread puts cokes
• Consumer thread gets a coke

• Solution:
− Use semaphore
− P() is sem_wait()
− V() is sem_post()

Secure AI Systems Lab :: CS 344 - Operating Systems I 77

sem_t mutex;
sem_t slots_filled;
sem_t slots_empty;

void producer_fn() {
while (1) {

sem_wait(&slots_empty);
sem_wait(&mutex);
enqueue(acoke, coke_machine);
sem_post(&mutex);
sem_post(&slots_filled);

}
}

void consumer_fn() {
while (1) {

sem_wait(&slots_filled);
sem_wait(&mutex);
acoke = dequeue(coke_machine);
sem_post(&mutex);
sem_post(&slots_empty);

}
}

int main(void) {
int ret;
ret = sem_init(&mutex, 0, 1);
ret = sem_init(&slots_empty, 0, 64);
ret = sem_init(&slots_filled, 0, 0);
….

}

Initialize with the # resources
1) Mutex := lock := 1
2) Empty slots := 64 (capacity)
3) Filled slots := 0 (empty at first)

The semaphore only allows one
thread to enqueue (or dequeue)

It decreases “filled slot” by one

It increases “empty slot” by one,
and wakes up any thread (i.e.,
producer thread) by sending a
signal to that thread

SYNCHRONIZATION: A COKE MACHINE

• Example scenario
− Initially the coke machine is empty
− Consumer tries to get a coke

• It decreases “slots_filled” by one
• “slots_filled” becomes -1
• The thread sleeps

− Producer runs
• It decreases “slots_empty” by one
• It adds a coke to the machine
• It signals the thread waiting by “slots_filled”

− Consumer wakes up and run

Secure AI Systems Lab :: CS 344 - Operating Systems I 78

sem_t mutex;
sem_t slots_filled;
sem_t slots_empty;

void producer_fn() {
while (1) {

sem_wait(&slots_empty);
sem_wait(&mutex);
enqueue(acoke, coke_machine);
sem_post(&mutex);
sem_post(&slots_filled);

}
}

void consumer_fn() {
while (1) {

sem_wait(&slots_filled);
sem_wait(&mutex);
acoke = dequeue(coke_machine);
sem_post(&mutex);
sem_post(&slots_empty);

}
}

int main(void) {
int ret;
ret = sem_init(&mutex, 0, 1);
ret = sem_init(&slots_empty, 0, 64);
ret = sem_init(&slots_filled, 0, 0);
….

}

Initialize with the # resources
1) Mutex := lock := 1
2) Empty slots := 64 (capacity)
3) Filled slots := 0 (empty at first)

The semaphore only allows one
thread to enqueue (or dequeue)

It decreases “filled slot” by one

It increases “empty slot” by one,
and wakes up any thread (i.e.,
producer thread) by sending a
signal to that thread

MONITOR

• Monitor:
− Def: a synchronization object

• Conditional variable
• Monitoring mechanism

• Supported operations:
− wait(&lock): release lock and sleep
− signal(): wake up one waiting worker
− broadcast(): wake up all waiting jobs

Secure AI Systems Lab :: CS 344 - Operating Systems I 79

MONITOR

• Monitor:
− Def: a synchronization object

• Conditional variable
• Monitoring mechanism

• Supported operations:
− wait(&lock): release lock and sleep
− signal(): wake up one waiting worker
− broadcast(): wake up all waiting jobs

Secure AI Systems Lab :: CS 344 - Operating Systems I 80

Room 1 Room 2 Room 3 Room 4

E

G

F

B C D

A

H

Monitor struct

> A lock
> A conditional var (queue)

> Required functions
room_reserve()
room_release()

MONITOR IN C

• Monitor:
− Def: a synchronization object

• Conditional variable
• Monitoring mechanism

• Supported operations:
− wait(&lock): release lock and sleep
− signal(): wake up one waiting worker
− broadcast(): wake up all waiting jobs

Secure AI Systems Lab :: CS 344 - Operating Systems I 81

#ifndef MONITOR_H
#define MONITOR_H

#define NUM_ROOMS 4

void reserve_a_room(int room_num, struct user_t* employee);
struct user_t* release_a_room(int room_num);

#endif

static lock monitor_lock; // lock
static struct queue wait_queue; // conditional variable
static struct room_t meeting_rooms[4];

void reserve_a_room(int room_num, struct user_t* employee) {
acquire(&monitor_lock);
while (meeting_rooms[room_num] != empty) {

wait(&wait_queue, &monitor_lock); // wait + unlock + sleep
}
room_assign(room_num, employee);
release(&monitor_lock);

}

struct user_t* release_a_room(int room_num) {
acquire(&monitor_lock);
employee = room_empty(room_num);
signal(&wait_queue); // wake up one of them
release(&monitor_lock);
return employee;

}

monitor.h

monitor.c

MONITOR IN C

Secure AI Systems Lab :: CS 344 - Operating Systems I 82

#ifndef MONITOR_H
#define MONITOR_H

#define NUM_ROOMS 4

void reserve_a_room(int room_num, struct user_t* employee);
struct user_t* release_a_room(int room_num);

#endif

static lock monitor_lock; // lock
static struct queue wait_queue; // conditional variable
static struct room_t meeting_rooms[4];

void reserve_a_room(int room_num, struct user_t* employee) {
acquire(&monitor_lock);
while (meeting_rooms[room_num] != empty) {

wait(&wait_queue, &monitor_lock); // wait + unlock + sleep
}
room_assign(room_num, employee);
release(&monitor_lock);

}

struct user_t* release_a_room(int room_num) {
acquire(&monitor_lock);
employee = room_empty(room_num);
signal(&wait_queue); // wake up one of them
release(&monitor_lock);
return employee;

}

monitor.h

monitor.c

Room 1 Room 2 Room 3 Room 4

E

G

B C D

A

H

Monitor

> A lock
> A conditional var (queue)

> Required functions
room_reserve()
room_release()

Runs
Queue

F

MONITOR IN C

Secure AI Systems Lab :: CS 344 - Operating Systems I 83

#ifndef MONITOR_H
#define MONITOR_H

#define NUM_ROOMS 4

void reserve_a_room(int room_num, struct user_t* employee);
struct user_t* release_a_room(int room_num);

#endif

static lock monitor_lock; // lock
static struct queue wait_queue; // conditional variable
static struct room_t meeting_rooms[4];

void reserve_a_room(int room_num, struct user_t* employee) {
acquire(&monitor_lock);
while (meeting_rooms[room_num] != empty) {

wait(&wait_queue, &monitor_lock); // wait + unlock + sleep
}
room_assign(room_num, employee);
release(&monitor_lock);

}

struct user_t* release_a_room(int room_num) {
acquire(&monitor_lock);
employee = room_empty(room_num);
signal(&wait_queue); // wake up one of them
release(&monitor_lock);
return employee;

}

monitor.h

monitor.c

Room 1 Room 2 Room 3 Room 4

E

G

B C D

A

H

Monitor

> A lock
> A conditional var (queue)

> Supported functions
room_reserve()
room_release()

Runs

Queue

F

RUST: A TRADE OFF BETWEEN CONTROL AND SAFETY

Secure AI Systems Lab :: CS 344 - Operating Systems I 84

Control Safety

C C++ Java Python
JS

…
#define BUFSIZE 20

int main(void) {
char *buf;
char *str = "Hello world!";

// initialize the memory space
buf = (char *) malloc(sizeof(char) * BUFSIZE);

// copy the string to the buffer
strncpy(buf, str, BUFSIZE);

// print the string
printf("Buffer contains: %s.\n", buf);

return 0;
}

…import

if __main__ == "__main__":
buf = ""
str = "Hello world!"

// copy the string
buf += str

// print out it
print ("{}".format(buf))
done.

Example:
- C: More control over mem. allocation, but less safe
- Python: Less control, but more safe

RUST!

• Rust
− A programming language designed for (memory) safety and performance

• Rust addresses
− Runtime performance (unlike Python or Java, Rust does not use GC)
− Memory leaks (no explicit allocation/de-allocation)
− No data-race condition

• Rust concept
− Ownership and borrowing
− Concurrency
− Unsafe code

Secure AI Systems Lab :: CS 344 - Operating Systems I 85

RUST OWNERSHIP

• Ownership
− Definition: a set of rules how a Rust program manages memory
− Rust rules:

• Each value in Rust has a variable “owner”
• There can be only one owner at a time
• If the owner goes out of scope, the value will disappear

− Ownership example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 86

fn take(vec: Vec<String>){
println!("{:?}", vec);

}

fn main() {
let mut vec = Vec::new();
vec.push(String::from("Hello "));
vec.push(String::from("World "));
take(vec);

vec.push(String::from("from the other side!"))
}

vector

data

length

capacity

Hello

World

vector

data

length

capacity

RUST BORROWING

• Borrowing
− Definition: a way to access data without taking ownership over it
− Borrowing example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 87

fn borrow(vec: &Vec<String>){
println!("{:?}", vec);

}

fn main() {
let mut vec = Vec::new();
vec.push(String::from("Hello "));
vec.push(String::from("World "));
borrow(&vec);

vec.push(String::from("from the other side!"))
}

vector

data

length

capacity

Hello

World

vec

from the…

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses
− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 88

use std::thread;

fn main() {
let mut balance = 200;
let mut threads = vec![];

// deposit thread
threads.push(thread::spawn(move || {

let mut new_balance = balance;
new_balance += 100;
println!("Increase the balance {}", new_balance);

}));

// withdrawal thread
threads.push(thread::spawn(move || {

let mut new_balance = balance;
new_balance -= 300;
println!("Decrease the balance {}", new_balance);

}));

for thread in threads {
let _ = thread.join();

}
println!("Final balance {}", balance);

}

Results:
$./main
Decrease the balance -100
Increase the balance 300
Final balance 200

Note:
“balance” is a read-only shared variable
“new_balance” only exists in each thread
No effect on the actual “balance” in main

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses
− Shared mutable accesses
− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 89

use std::thread; use std::sync::{Arc,Mutex};

fn main() {
let balance = Arc::new(Mutex::new(200));
let mut threads = vec![];

// deposit thread
let balance4deposit = Arc::clone(&balance);
threads.push(thread::spawn(move || {

let mut new_balance = balance4deposit.lock().unwrap();
*new_balance += 100;
println!("Increase the balance {}", new_balance);

}));

// withdrawal thread
let balance4withdrawal = Arc::clone(&balance);
threads.push(thread::spawn(move || {

let mut new_balance = balance4withdrawal.lock().unwrap();
*new_balance -= 300;
println!("Decrease the balance {}", new_balance);

}));

for thread in threads {
let _ = thread.join();

}

println!("Final balance {}", *balance.lock().unwrap());
}

Mutable by threads:
- Mutex: mutable if we lock() the variable
- Arc : send-able to multiple threads

Deposit thread:
- Line 1: clone the Arc instance; point to the same.
- Line 2: lock and get the balance value
- Line 3: increase 100 (cf. access with *)

Withdrawal thread:
- The same as the deposit thread
– Decrease the balance by $300

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses
− Shared mutable accesses
− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 90

use std::thread; use std::sync::{Arc,Mutex};

fn main() {
let balance = Arc::new(Mutex::new(200));
let mut threads = vec![];

// deposit thread
let balance4deposit = Arc::clone(&balance);
threads.push(thread::spawn(move || {

let mut new_balance = balance4deposit.lock().unwrap();
*new_balance += 100;
println!("Increase the balance {}", new_balance);

}));

// withdrawal thread
let balance4withdrawal = Arc::clone(&balance);
threads.push(thread::spawn(move || {

let mut new_balance = balance4withdrawal.lock().unwrap();
*new_balance -= 300;
println!("Decrease the balance {}", new_balance);

}));

for thread in threads {
let _ = thread.join();

}

println!("Final balance {}", *balance.lock().unwrap());
}

Results:
$./main
Increase the balance 300
Decrease the balance 0
Final balance 0

Note:
“balance” is a mutable shared variable
“new_balance” points to the mutable variable
Require to wrap with Arc for sending to threads
Modify the value is only available after lock()

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 91

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 92

use std::thread;

static anumber: i32 = 10;

fn main() {
let mut threads = vec![];

for tidx in 0..10 {
threads.push(thread::spawn(move || {

println!("Thread {}: anumber is {}", tidx, anumber);
}));

}

for thread in threads {
let _ = thread.join();

}
}

Static variable:
- “anumber” can be accessible in any code in this file

Create 10 threads:
- Each thread prints the thread index and “anumber”

Results:
$./main
Thread 0: anumber is 10
Thread 4: anumber is 10
Thread 5: anumber is 10
Thread 2: anumber is 10
Thread 8: anumber is 10
…

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 93

use std::thread;

static mut anumber: i32 = 10;

fn main() {
let mut threads = vec![];

for tidx in 0..10 {
threads.push(thread::spawn(move || {

println!("Thread {}: anumber is {}", tidx, anumber);
}));

}

for thread in threads {
let _ = thread.join();

}
}

Static (mutable) variable:
- We want “anumber” can be modified in any code

Create 10 threads:
- Each thread prints the thread index and “anumber”

Static variable:
- “anumber” can be accessible in any code in this file

Create 10 threads:
- It will return a Rust compilation error
- Rust prevents us from directly modifying static mut
- Rust prohibits us from even just accessing it

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 94

use std::thread;

static mut anumber: i32 = 10;

fn main() {
let mut threads = vec![];

for tidx in 0..10 {
threads.push(thread::spawn(move || {

unsafe {
anumber += 1;
println!("Thread {}: anumber is {}", tidx, anumber);

}
}));

}

for thread in threads {
let _ = thread.join();

}

unsafe {
println!("The final anumber is {}", anumber);

}
}

Static (mutable) variable:
- We want “anumber” can be modified in any code

Create 10 threads:
- Use “unsafe” keyword if we modify “anumber”
- “unsafe” means we understand the consequences
- Now each thread will increase “anumber” by 10

Print out the static mutable:
- Use “unsafe” even for just printing out

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 95

fn main() {
let s: &str = "123";
let ptr: *const u8 = s.as_ptr();

println!("{}", *ptr.offset(1) as char);
println!("{}", *ptr.offset(2) as char);

}

A variable:
- “s” contains the address of the string “123”

A (pointer) variable:
- “ptr” is the pointer for the string “123”
- “ptr” is “constant” and the type of “u8”

Dereference the pointer values:
- “ptr.offset(#)” is the same as *(ptr + 1) in C
- “as char” converts the output of “ptr.offset” as char
- It causes a compilation error (Rust prevents this)

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 96

fn main() {
let s: &str = "123";
let ptr: *const u8 = s.as_ptr();

unsafe {
println!("{}", *ptr.offset(1) as char);
println!("{}", *ptr.offset(2) as char);

}
}

A variable:
- “s” contains the address of the string “123”

A (pointer) variable:
- “ptr” is the pointer for the string “123”
- “ptr” is “constant” and the type of “u8”

Dereference the pointer values:
- “ptr.offset(#)” is the same as *(ptr + 1) in C
- “as char” converts the output of “ptr.offset” as char
- It causes a compilation error (Rust prevents this)

Access the pointer values:
- Use “unsafe” to do the pointer arithmetic
- “unsafe” means we understand the consequences

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 97

fn main() {
let s: &str = "123";
let ptr: *const u8 = s.as_ptr();

unsafe {
println!("{}", *ptr.offset(1) as char);
println!("{}", *ptr.offset(2) as char);
println!("{}", *ptr.offset(3));

}
}

Access the out-of-bound values:
- “*ptr.offset(3)” accesses the 4th character [?!]

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 98

extern "C" {
fn abs(input: i32) -> i32;

}

fn main() {
println!("Absolute value of -3 according to C: {}", abs(-3));

}

An external function:
- The function “abs” is defined in C (not in Rust)

Use of the external function:
- A compilation error (cannot call “abs” directly)
- Not sure whether the abs implementation is safe

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable
− Dereference a raw pointer
− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 99

extern "C" {
fn abs(input: i32) -> i32;

}

fn main() {
unsafe {

println!("Absolute value of -3 according to C: {}", abs(-3));
}

}

An external function:
- The function “abs” is defined in C (not in Rust)

Use of the external function:
- A compilation error (cannot call “abs” directly)
- Not sure whether the abs implementation is safe

Use of the external function:
- Use “unsafe” to call the “abs” function

THIS TERM

• Part I:
− Process
− Threads
− Scheduling basics

• Part II:
− Files and I/Os
− File system basics

• Part III:
− IPC
− RPC
− Networking

• Part IV:
− Synchronization
− Rust

Secure AI Systems Lab :: CS 344 - Operating Systems I 100

Thank You!

Secure AI Systems Lab

Mon/Wed 12:00 – 1:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

