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HOW CAN WE DO SECURE COMMUNICATION?
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CRYPTO!

• Confidentiality
− We want to communicate with others securely (and privately)

Let’s have Local Boyz for dinner!

Secure AI Systems Lab :: CS 578 - Cyber-security 3



CRYPTO!

• Confidentiality
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CRYPTO!

• Confidentiality
− We want to communicate with others securely (and privately)

− Plaintext communication can be eavesdropped by an adversary

− Cryptography enables secure (and private) communication

Let’s have Local Boyz for dinner!

32843209482390472390230966

????????
What’s that 
number??
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BASIC TERMINOLOGY

• Terms
− Plaintext: readable text, before getting encrypted

− Ciphertext: encrypted text, transformed plaintext using an encryption algorithm 

− Encryption/decryption: the act of encrypting (or decrypting)

Let’s have Local Boyz for dinner!

32843209482390472390230966

????????
What’s that 
number??

Local Boyz…
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WHAT DOES IT MEAN BY PERFECTLY SECURE IN COMMUNICATION?
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PERFECT SECURITY

• Shannon's intuition
− An adversary should not distinguish a message M from a random text R

Claude Shannon (1916 ~ 2001)

A Father of Information Theory
and Modern Cryptography
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PERFECT SECURITY

• Shannon's intuition
− An adversary should not distinguish a message M from a random text R

− Formally:

• Pr[M = m|C = c] = Pr[M = m]

• where
− m is a message (from a set M)

− c is a ciphertext (from a set of all ciphertexts C)

• Pr[C = c|M = m] = Pr[C = c]

− It means:

• Ciphertext provides no additional information

• Observing c does not help with guessing M = m

• c is independent of the message m

Claude Shannon (1916 ~ 2001)

A Father of Information Theory
and Modern Cryptography
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HOW CAN WE DO PERFECTLY SECURE IN COMMUNICATION?
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BLOCK CIPHER: ENCRYPTION

• Block cipher
− Cryptographic algorithm that work only with fixed-length set of bits

• Terminology
− Block: a fixed size message M

− Key: a secret we use for encryption

• Shared between a sender and a receiver

− Encryption: use K to convert M into E

Block cipher
Key: 0xd7fe6798a7c6a9859b289ce

K

M
cs370{16bytemsg}

E

0x63733337307b3136627974656d73677d

0x354a820534573738475066bd38bf1540
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BLOCK CIPHER: DECRYPTION

• Block cipher
− Cryptographic algorithm that work only with fixed-length set of bits

• Terminology
− Block: a fixed size message M

− Key: a secret we use for encryption

• Shared between a sender and a receiver

− Encryption: use K to convert M into E

− Decryption: use K to convert E into M Block cipher
DecryptionKey: 0xd7fe6798a7c6a9859b289ce

K

M
cs370{16bytemsg}

E

0x63733337307b3136627974656d73677d

0x354a820534573738475066bd38bf1540
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BLOCK CIPHER

• Formally
− You can see encryption and decryption as

− Generating a permutation of numbers: 

• {0,1}n -> {0,1}n

• Mappings should be 1-to-1

− The key determines how to permute the numbers

Block cipher
DecryptionKey: 0xd7fe6798a7c6a9859b289ce

K

M
cs370{16bytemsg}

E

0x63733337307b3136627974656d73677d

0x354a820534573738475066bd38bf1540

M Ciphertext

0 0xaf531b0e1

1 0x14a986e7a

2 0xad738009d

3 0x5ed6985c5

4 0xf3b8aa2e8

5 0xad04ec00e

… 0x59fd94c21
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BLOCK CIPHER: IN OPERATION

• Goal
− We want to communicate with others securely (and privately)

− Both parties use the same block cipher algorithm

Let’s have Local Boyz for dinner!

Block cipher

E: 0xa0e82ffe

K: 0x5ed69….. (fixed-len)

M: 3
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BLOCK CIPHER: IN OPERATION

• Goal
− We want to communicate with others securely (and privately)

− Both parties use the same block cipher algorithm
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BLOCK CIPHER: IN OPERATION

• Goal
− We want to communicate with others securely (and privately)

− Both parties use the same block cipher algorithm

Let’s have Local Boyz for dinner!E: 0xa0e82ffe

????????
What’s that 
number??
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WHAT IS THE PROBLEM?
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SYMMETRIC KEY CRYPTOGRAPHY

• Problems
− How can we securely share the key between two parties?

− How can we manage communications from/to multiple parties (100+)?

Block
Cipher

Block
Cipher

M: Hello

C: 0x12f573bde2 C: 0x12f573bde2

M: Hello
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SYMMETRIC KEY CRYPTOGRAPHY

• Problems
− How can we securely share the key between two parties?

− How can we manage communications from/to multiple parties (100+)?

• Solutions
− What if I have two keys?

• Key A that only can encrypt a message (but can’t decrypt)

• Key B that can encrypt and decrypt a message

− How can I leverage the two keys?

• Share Key A to others

• Do not share; keep Key B private
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PUBLIC KEY CRYPTOGRAPHY

• The key idea
− Asymmetric key cryptography

− Use two different keys for encryption and decryption

• Public key: share to others, only can encrypt a message

• Private key: do not share, can encrypt and decrypt

− What is possible?
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PUBLIC KEY CRYPTOGRAPHY

• The key idea
− Asymmetric key cryptography

− Use two different keys for encryption and decryption

• Public key: share to others, only can encrypt a message

• Private key: do not share, can encrypt and decrypt

− What is possible?
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PUBLIC KEY CRYPTOGRAPHY

• The key idea
− Asymmetric key cryptography

− Use two different keys for encryption and decryption

• Public key: share to others, only can encrypt a message

• Private key: do not share, can encrypt and decrypt

− What is possible?

M: Hello
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Block
Cipher

Secure AI Systems Lab :: CS 578 - Cyber-security 23



PUBLIC KEY CRYPTOGRAPHY

• The key idea
− Asymmetric key cryptography

− Use two different keys for encryption and decryption

• Public key: share to others, only can encrypt a message

• Private key: do not share, can encrypt and decrypt

− What is possible?

• No one can decrypt a ciphertext unless they have the private key

• We do not need to share the private key to anyone else

• We share public key that can only encrypt the message
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PUBLIC KEY CRYPTOGRAPHY: ADVANTAGE

• Key exchange complexity
− Each person shares their public key to everybody

− But they do not share their private key 

− We need O(N) keys

• Benefit: it scales!
− Suppose we have a crypto conference with 400 folks

− Symmetric key crypto: we need 400 x 399 / 2 keys for secure comm.

− Asymmetric key crypto: we only need 400 public-private key pairs
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WHAT ARE THE PUBLIC-KEY CRYPTO WE USE IN PRACTICE?
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PUBLIC KEY CRYPTOGRAPHY: RSA

• RSA (Rivest, Shamir, Adleman)
− A popular public key cryptography algorithm

− It exploits the difficulty of prime factorization

• To break RSA, an adversary solves the prime factorization of a large number

− It is used for digital signature (we will revisit this later)

Secure AI Systems Lab :: CS 578 - Cyber-security 27



RSA

• Asymmetric key cryptography
− Public key: e and N

− Private key: d

• Key selection:
− Choose two large prime number, p and q

• Public key: 

− Set N = pq

− Choose e as a coprime of φ = (p-1)(q-1)

• Private key:

− Find d that satisfies de == 1 (mod φ)
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RSA

• Key selection:
− Choose two large prime number, p and q

• Public key: 

− Set N = pq

− Choose e (e.g., 65537) as a coprime of φ = (p-1)(q-1)

• Private key:
− Find d that satisfies de == 1 (mod φ)

• Security
− Concern: can an adversary guess the private key from the public key?

− To do such an attack, the attacker needs to find φ

− But we choose p and q as a large prime number; thus, it is difficult
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RSA ENCRYPTION

• Suppose we have
− Public key: e, N

− Message: M

− Ciphertext: Me mod N
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RSA DECRYPTION

• We have
− Public key: e, N

− Message: M

− Ciphertext: Me mod N

• Suppose we also have
− Public key: e N

− Private key: d (that satisfies ed = 1)

− Ciphertext: C = Me

− Plaintext: Cd mod N

• = (Me)d mod N

• = Med mod N

• = M mod N (N is a really large prime, so mostly it’s N)
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DIFFIE-HELLMAN KEY EXCHANGE

• Diffie-Hellman
− A method of securely exchanging cryptographic keys over a public channel

− Two parties can establish a shared secret (private) key over an insecure channel

• Security:
− Based on the difficulty of mathematical problem of discrete logarithm
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DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS

g, p g, p

a b

ga mod p

ga mod p

gb mod p

gb mod p

a b

gab mod p gab mod p
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DIFFIE-HELLMAN KEY EXCHANGE

• Diffie-Hellman
− A method of securely exchanging cryptographic keys over a public channel

− Two parties can establish a shared secret (private) key over an insecure channel

• Security:
− Based on the difficulty of mathematical problem of discrete logarithm

− Example:

• Given g, a, b, A, B, where

• ga mod p = A

• gb mod p = B

• Can you compute gab mod p?
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DIFFIE-HELLMAN KEY EXCHANGE

• User A & User B agrees on g and p, where g and p are primes

• User A secretly chooses a, send A = ga mod p

• User B secretly chooses b, send B = gb mod p

• User A receives B, compute Ba = (gb)a mod p = gab mod p

• User B receives A, compute Ab = (ga)b mod p = gab mod p

• gab mod p is our secret
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DIFFIE-HELLMAN KEY EXCHANGE

• gab mod p is our secret

• Suppose:
− Attacker knows g, p, A = ga mod p and B = gb mod p

− A+B = (ga + gb) mod p

− AB = g(a+b) mod p

• Security:
− Hard to compute gab from those values

− Discrete logarithm; can you guess a from A = ga mod p 
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DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS

g, p g, p

a b

ga mod p

ga mod p

gb mod p

gb mod p

a b

gab mod p gab mod p
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DIFFIE-HELLMAN KEY EXCHANGE EXAMPLE

• g = 5, p = 23

• A chooses a = 4
− A = 54 mod 23 = 625 mod 23 = 4

• B chooses b = 3
− B = 53 mod 23 = 125 mod 23 = 10

• B4 = 104 mod 23 = 10000 mod 23 = 18

• A3 = 43 mod 23 = 64 mod 23 = 18

• 5(4*3) = 512 mod 23 = 18
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DIFFIE-HELLMAN KEY EXCHANGE: IMPLICATIONS

• Users are agreeing on two prime numbers
− g, p

• User A chooses any integer a, nobody knows it

• User B chooses any integer b, nobody knows it

• By sharing ga mod P and gb mod p
− Both shares gab mod P without leaking a nor b

Two entities can interactively share a secret 
without directly leaking the secrets to others
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DIGITAL CERTIFICATE AND ITS ECOSYSTEM
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DIGITAL CERTIFICATE: MOTIVATION

• An example scenario:
− Suppose the oregonstate.edu server has the public/private key

− You want to connect to the website securely

− Confidentiality: comes from the Block Cipher that we will use

− Integrity: comes from HMAC

• Where’s authenticity?
− How do you know the other end is oregonstate.edu?

Plaintext

IV Ciphertext with padding HMAC
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HOW CAN WE CHECK THE AUTHENTICITY?

Knock, knock, who’s this?

oregonstate.edu, just believe what I said!

• Can we check the other end is the one that we want to talk with?

We Need Some Ways to Check If They Are OSU (Authenticity)!
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HOW CAN WE CHECK THE AUTHENTICITY?

Knock, knock, who’s this?

oregonstate.edu, just believe what I said!

• Can we check the other end is the one that we want to talk with?

We Need Some Ways to Check If They Are OSU (Authenticity)!
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HOW DO WE DO THAT IN THE REAL-LIFE?

www.oregonstate.edu
0x83823787832a87b876

e67fe67e6da
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HOW CAN WE DO THIS FOR ONLINE COMMUNICATION?

• Intuition
− Need an identification mechanism 

− Need information that we can use to verify the sender

• Solution
− Let’s do this with RSA cryptography algorithm

− Let “oregonstate.edu” publicize the public key

− Let “oregonstate.edu” share their info. and signed by their private key
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DIGITAL SIGNATURE AND RSA

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages

− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N

− Decryption is applying the public exponent to a ciphertext: M = Ce mod N
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DIGITAL SIGNATURE AND RSA

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages

− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N

− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

RSA

M: SH’s MSG

S: 0x12f573bde2
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DIGITAL SIGNATURE AND RSA

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages

− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N

− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

RSA

M: SH’s MSG

S: 0x12f573bde2
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DIGITAL SIGNATURE AND RSA

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages

− RSA can be used for “signing”

• Encryption and decryption for digital signature
− Encryption is applying the private exponent to a plaintext: C = Md mod N

− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

RSA

M’s from “SH”

M: SH’s MSG

S: 0x12f573bde2
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HOW CAN WE DO THIS FOR ONLINE COMMUNICATION?

• Intuition
− Need an identification mechanism 

− Need information that we can use to verify the sender

• Solution: Public Key Infrastructure (PKI)
− Let’s do this with RSA cryptography algorithm

− Let “oregonstate.edu” publicize the public key

− Let “oregonstate.edu” share their info. and signed by their private key
(= we create a digital certificate)
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THE INFO: DIGITAL CERTIFICATE

• A file that contains
− Entity info (CN)

− Issuer info (CN)

− Public key

− Signature
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HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information

− Public key

− Signature (proving that I have the public key)

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

Secure AI Systems Lab :: CS 578 - Cyber-security 52



HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information

− Public key

− Signature (proving that I have the public key)

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

Get SHA256 sum of this part

Sign it with the private key
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HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information

− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)

   RSA_encrypt(private_key, SHA-256(certificate))
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HOW TO CREATE A DIGITAL CERTIFICATE?

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)
    RSA_encrypt(private_key, SHA-256(certificate))

 

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

Get SHA256 sum of this part

Sign it with the private key
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HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information

− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)

   RSA_encrypt(private_key, SHA-256(certificate))

 

• Anyone with the public key can verify the result
− Get issuer’s public key from their certificate
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CERTIFICATION CREATION DETAILS: STEP 1

• The certificate requesting entity fills
− Entity information

− Public Key

• Entity:
− For google, its *.google.com

− Can be your website address

• *.secure-ai.systems
− also has a certificate

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (with beaver’s private key)
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CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity

• Their identification

• Owning the target domain name

• Owning the public key

− The signature

• Decrypt the signature with public key

• It must be the same as SHA256 sum

• It proves their holding the private key

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (with beaver’s private key)
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CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity:

• Their identification

• Owning the target domain name

• etc…

− Then, fill issuer information

• Issuer information

• Issuer public key

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff
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CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity:

• Their identification

• Owning the target domain name

• etc…

− Then, fill issuer information

• Issuer information

• Issuer public key

− and then, sign the certificate

• Get SHA-256 of the certificate

• Attach it as a signature!

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff
Signature: 0xffeeddccbbaa00112233445566778899
 (InCommon RSA’s private key)
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THE CERTIFICATE ISSUED

• Now InCommon RSA verified
− oregonstate.edu is owned by

− Oregon State University

− With a specific Public Key
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RECAP: OSU CERTIFICATE

• OSU owns “oregonstate.edu”
− Verified by InCommon RSA

• Verification of the certificate
− Use InCommon RSA’s public key

− Where is it? It is written in InCommon RSA’s certificate

• But InCommon RSA, who will verify their identity?
− InCommon RSA verifies “oregonstate.edu”

− Who will verify InCommon RSA?
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LET’S SEE IT FROM THE BROWSER

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self
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TRUST CHAIN

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self
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TRUST CHAIN – CONT’D

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self
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TRUST CHAIN – CONT’D

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self
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TRUST CHAIN IN REAL-LIFE

• An example:
− Student

− Oregon resident

− U.S. Citizen

• When issuing the student ID
− We verify your Oregon ID…
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TRUST CHAIN IN REAL-LIFE

• An example:
− Student

− Oregon resident

− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport
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TRUST CHAIN IN REAL-LIFE

• An example:
− Student

− Oregon resident

− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport

• When issuing the U.S. passport
− Require your birth certificate or previously issued passport..
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TRUST CHAIN IN REAL-LIFE

• An example:
− Student

− Oregon resident

− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport

• When issuing the U.S. passport
− Require your birth certificate or previously issued passport..

We need someone to verify the 
originality of the proving document…
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ROOT CERTIFICATE AUTHORITY (ROOT CA ≈ US IN PREV. EXAMPLE)

• Define small set of trustworthy certificate authorities
− Private companies are authorized by some jurisdiction to run the CA company

• Google Trust Service (GTS CA)

• DigiCert

• Verisign

• etc..

• Trust their self-signed certificate
− Stored in almost every computer machines
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PUBLIC KEY INFRASTRUCTURE (PKI)

oregonstate.edu

InCommon

USERTrust

• An Infrastructure that provides public key with certificate chain

• Trust anchor: Root CA
− Set a small set of entities use self-signed cert

• Verify the certificate chain!
− Must verify the entire chain
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LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate
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LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert (certificate)
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LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

Oregonstate verified by InCommon RSA
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LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

InCommon RSA verified by USERTrust RSA
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LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

USERTrust RSA is self-verified (ROOT CA)
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Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current
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