
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART I: BASIC CRYPTO FOR NETWORK/INTERNET SEC.

Sanghyun Hong
sanghyun.hong@oregonstate.edu

HOW CAN WE DO SECURE COMMUNICATION?

Secure AI Systems Lab :: CS 578 - Cyber-security 2

CRYPTO!

• Confidentiality
− We want to communicate with others securely (and privately)

Let’s have Local Boyz for dinner!

Secure AI Systems Lab :: CS 578 - Cyber-security 3

CRYPTO!

• Confidentiality
− We want to communicate with others securely (and privately)

− Plaintext communication can be eavesdropped by an adversary

Let’s have Local Boyz for dinner!

Local Boyz…

Secure AI Systems Lab :: CS 578 - Cyber-security 4

CRYPTO!

• Confidentiality
− We want to communicate with others securely (and privately)

− Plaintext communication can be eavesdropped by an adversary

− Cryptography enables secure (and private) communication

Let’s have Local Boyz for dinner!

32843209482390472390230966

????????
What’s that
number??

Secure AI Systems Lab :: CS 578 - Cyber-security 5

BASIC TERMINOLOGY

• Terms
− Plaintext: readable text, before getting encrypted

− Ciphertext: encrypted text, transformed plaintext using an encryption algorithm

− Encryption/decryption: the act of encrypting (or decrypting)

Let’s have Local Boyz for dinner!

32843209482390472390230966

????????
What’s that
number??

Local Boyz…

Secure AI Systems Lab :: CS 578 - Cyber-security 6

WHAT DOES IT MEAN BY PERFECTLY SECURE IN COMMUNICATION?

Secure AI Systems Lab :: CS 578 - Cyber-security 7

PERFECT SECURITY

• Shannon's intuition
− An adversary should not distinguish a message M from a random text R

Claude Shannon (1916 ~ 2001)

A Father of Information Theory
and Modern Cryptography

Secure AI Systems Lab :: CS 578 - Cyber-security 8

PERFECT SECURITY

• Shannon's intuition
− An adversary should not distinguish a message M from a random text R

− Formally:

• Pr[M = m|C = c] = Pr[M = m]

• where
− m is a message (from a set M)

− c is a ciphertext (from a set of all ciphertexts C)

• Pr[C = c|M = m] = Pr[C = c]

− It means:

• Ciphertext provides no additional information

• Observing c does not help with guessing M = m

• c is independent of the message m

Claude Shannon (1916 ~ 2001)

A Father of Information Theory
and Modern Cryptography

Secure AI Systems Lab :: CS 578 - Cyber-security 9

HOW CAN WE DO PERFECTLY SECURE IN COMMUNICATION?

Secure AI Systems Lab :: CS 578 - Cyber-security 10

BLOCK CIPHER: ENCRYPTION

• Block cipher
− Cryptographic algorithm that work only with fixed-length set of bits

• Terminology
− Block: a fixed size message M

− Key: a secret we use for encryption

• Shared between a sender and a receiver

− Encryption: use K to convert M into E

Block cipher
Key: 0xd7fe6798a7c6a9859b289ce

K

M
cs370{16bytemsg}

E

0x63733337307b3136627974656d73677d

0x354a820534573738475066bd38bf1540

Secure AI Systems Lab :: CS 578 - Cyber-security 11

BLOCK CIPHER: DECRYPTION

• Block cipher
− Cryptographic algorithm that work only with fixed-length set of bits

• Terminology
− Block: a fixed size message M

− Key: a secret we use for encryption

• Shared between a sender and a receiver

− Encryption: use K to convert M into E

− Decryption: use K to convert E into M Block cipher
DecryptionKey: 0xd7fe6798a7c6a9859b289ce

K

M
cs370{16bytemsg}

E

0x63733337307b3136627974656d73677d

0x354a820534573738475066bd38bf1540

Secure AI Systems Lab :: CS 578 - Cyber-security 12

BLOCK CIPHER

• Formally
− You can see encryption and decryption as

− Generating a permutation of numbers:

• {0,1}n -> {0,1}n

• Mappings should be 1-to-1

− The key determines how to permute the numbers

Block cipher
DecryptionKey: 0xd7fe6798a7c6a9859b289ce

K

M
cs370{16bytemsg}

E

0x63733337307b3136627974656d73677d

0x354a820534573738475066bd38bf1540

M Ciphertext

0 0xaf531b0e1

1 0x14a986e7a

2 0xad738009d

3 0x5ed6985c5

4 0xf3b8aa2e8

5 0xad04ec00e

… 0x59fd94c21

Secure AI Systems Lab :: CS 578 - Cyber-security 13

BLOCK CIPHER: IN OPERATION

• Goal
− We want to communicate with others securely (and privately)

− Both parties use the same block cipher algorithm

Let’s have Local Boyz for dinner!

Block cipher

E: 0xa0e82ffe

K: 0x5ed69….. (fixed-len)

M: 3

Secure AI Systems Lab :: CS 578 - Cyber-security 14

BLOCK CIPHER: IN OPERATION

• Goal
− We want to communicate with others securely (and privately)

− Both parties use the same block cipher algorithm

Let’s have Local Boyz for dinner!E: 0xa0e82ffe

Secure AI Systems Lab :: CS 578 - Cyber-security 15

BLOCK CIPHER: IN OPERATION

• Goal
− We want to communicate with others securely (and privately)

− Both parties use the same block cipher algorithm

Let’s have Local Boyz for dinner!E: 0xa0e82ffe

Block cipher

E: 0xa0e82ffe

K: 0x5ed69….. (fixed-len)

M: 3

Secure AI Systems Lab :: CS 578 - Cyber-security 16

BLOCK CIPHER: IN OPERATION

• Goal
− We want to communicate with others securely (and privately)

− Both parties use the same block cipher algorithm

Let’s have Local Boyz for dinner!E: 0xa0e82ffe

????????
What’s that
number??

Secure AI Systems Lab :: CS 578 - Cyber-security 17

WHAT IS THE PROBLEM?

Secure AI Systems Lab :: CS 578 - Cyber-security 18

SYMMETRIC KEY CRYPTOGRAPHY

• Problems
− How can we securely share the key between two parties?

− How can we manage communications from/to multiple parties (100+)?

Block
Cipher

Block
Cipher

M: Hello

C: 0x12f573bde2 C: 0x12f573bde2

M: Hello

Secure AI Systems Lab :: CS 578 - Cyber-security 19

SYMMETRIC KEY CRYPTOGRAPHY

• Problems
− How can we securely share the key between two parties?

− How can we manage communications from/to multiple parties (100+)?

• Solutions
− What if I have two keys?

• Key A that only can encrypt a message (but can’t decrypt)

• Key B that can encrypt and decrypt a message

− How can I leverage the two keys?

• Share Key A to others

• Do not share; keep Key B private

Secure AI Systems Lab :: CS 578 - Cyber-security 20

PUBLIC KEY CRYPTOGRAPHY

• The key idea
− Asymmetric key cryptography

− Use two different keys for encryption and decryption

• Public key: share to others, only can encrypt a message

• Private key: do not share, can encrypt and decrypt

− What is possible?

Secure AI Systems Lab :: CS 578 - Cyber-security 21

PUBLIC KEY CRYPTOGRAPHY

• The key idea
− Asymmetric key cryptography

− Use two different keys for encryption and decryption

• Public key: share to others, only can encrypt a message

• Private key: do not share, can encrypt and decrypt

− What is possible?

M: Hello

C: 0x12f573bde2

Block
Cipher

Secure AI Systems Lab :: CS 578 - Cyber-security 22

PUBLIC KEY CRYPTOGRAPHY

• The key idea
− Asymmetric key cryptography

− Use two different keys for encryption and decryption

• Public key: share to others, only can encrypt a message

• Private key: do not share, can encrypt and decrypt

− What is possible?

M: Hello

C: 0x12f573bde2

Block
Cipher

Secure AI Systems Lab :: CS 578 - Cyber-security 23

PUBLIC KEY CRYPTOGRAPHY

• The key idea
− Asymmetric key cryptography

− Use two different keys for encryption and decryption

• Public key: share to others, only can encrypt a message

• Private key: do not share, can encrypt and decrypt

− What is possible?

• No one can decrypt a ciphertext unless they have the private key

• We do not need to share the private key to anyone else

• We share public key that can only encrypt the message

Secure AI Systems Lab :: CS 578 - Cyber-security 24

PUBLIC KEY CRYPTOGRAPHY: ADVANTAGE

• Key exchange complexity
− Each person shares their public key to everybody

− But they do not share their private key

− We need O(N) keys

• Benefit: it scales!
− Suppose we have a crypto conference with 400 folks

− Symmetric key crypto: we need 400 x 399 / 2 keys for secure comm.

− Asymmetric key crypto: we only need 400 public-private key pairs

Secure AI Systems Lab :: CS 578 - Cyber-security 25

WHAT ARE THE PUBLIC-KEY CRYPTO WE USE IN PRACTICE?

Secure AI Systems Lab :: CS 578 - Cyber-security 26

PUBLIC KEY CRYPTOGRAPHY: RSA

• RSA (Rivest, Shamir, Adleman)
− A popular public key cryptography algorithm

− It exploits the difficulty of prime factorization

• To break RSA, an adversary solves the prime factorization of a large number

− It is used for digital signature (we will revisit this later)

Secure AI Systems Lab :: CS 578 - Cyber-security 27

RSA

• Asymmetric key cryptography
− Public key: e and N

− Private key: d

• Key selection:
− Choose two large prime number, p and q

• Public key:

− Set N = pq

− Choose e as a coprime of φ = (p-1)(q-1)

• Private key:

− Find d that satisfies de == 1 (mod φ)

Secure AI Systems Lab :: CS 578 - Cyber-security 28

RSA

• Key selection:
− Choose two large prime number, p and q

• Public key:

− Set N = pq

− Choose e (e.g., 65537) as a coprime of φ = (p-1)(q-1)

• Private key:
− Find d that satisfies de == 1 (mod φ)

• Security
− Concern: can an adversary guess the private key from the public key?

− To do such an attack, the attacker needs to find φ

− But we choose p and q as a large prime number; thus, it is difficult

Secure AI Systems Lab :: CS 578 - Cyber-security 29

RSA ENCRYPTION

• Suppose we have
− Public key: e, N

− Message: M

− Ciphertext: Me mod N

Secure AI Systems Lab :: CS 578 - Cyber-security 30

RSA DECRYPTION

• We have
− Public key: e, N

− Message: M

− Ciphertext: Me mod N

• Suppose we also have
− Public key: e N

− Private key: d (that satisfies ed = 1)

− Ciphertext: C = Me

− Plaintext: Cd mod N

• = (Me)d mod N

• = Med mod N

• = M mod N (N is a really large prime, so mostly it’s N)

Secure AI Systems Lab :: CS 578 - Cyber-security 31

DIFFIE-HELLMAN KEY EXCHANGE

• Diffie-Hellman
− A method of securely exchanging cryptographic keys over a public channel

− Two parties can establish a shared secret (private) key over an insecure channel

• Security:
− Based on the difficulty of mathematical problem of discrete logarithm

Secure AI Systems Lab :: CS 578 - Cyber-security 32

DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS

g, p g, p

a b

ga mod p

ga mod p

gb mod p

gb mod p

a b

gab mod p gab mod p

Secure AI Systems Lab :: CS 578 - Cyber-security 33

DIFFIE-HELLMAN KEY EXCHANGE

• Diffie-Hellman
− A method of securely exchanging cryptographic keys over a public channel

− Two parties can establish a shared secret (private) key over an insecure channel

• Security:
− Based on the difficulty of mathematical problem of discrete logarithm

− Example:

• Given g, a, b, A, B, where

• ga mod p = A

• gb mod p = B

• Can you compute gab mod p?

Secure AI Systems Lab :: CS 578 - Cyber-security 34

https://web.northeastern.edu/dummit/docs/cryptography_3_discrete_logarithms_in_cryptography.pdf

DIFFIE-HELLMAN KEY EXCHANGE

• User A & User B agrees on g and p, where g and p are primes

• User A secretly chooses a, send A = ga mod p

• User B secretly chooses b, send B = gb mod p

• User A receives B, compute Ba = (gb)a mod p = gab mod p

• User B receives A, compute Ab = (ga)b mod p = gab mod p

• gab mod p is our secret

Secure AI Systems Lab :: CS 578 - Cyber-security 35

DIFFIE-HELLMAN KEY EXCHANGE

• gab mod p is our secret

• Suppose:
− Attacker knows g, p, A = ga mod p and B = gb mod p

− A+B = (ga + gb) mod p

− AB = g(a+b) mod p

• Security:
− Hard to compute gab from those values

− Discrete logarithm; can you guess a from A = ga mod p

Secure AI Systems Lab :: CS 578 - Cyber-security 36

DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS

g, p g, p

a b

ga mod p

ga mod p

gb mod p

gb mod p

a b

gab mod p gab mod p

Secure AI Systems Lab :: CS 578 - Cyber-security 37

DIFFIE-HELLMAN KEY EXCHANGE EXAMPLE

• g = 5, p = 23

• A chooses a = 4
− A = 54 mod 23 = 625 mod 23 = 4

• B chooses b = 3
− B = 53 mod 23 = 125 mod 23 = 10

• B4 = 104 mod 23 = 10000 mod 23 = 18

• A3 = 43 mod 23 = 64 mod 23 = 18

• 5(4*3) = 512 mod 23 = 18

Secure AI Systems Lab :: CS 578 - Cyber-security 38

DIFFIE-HELLMAN KEY EXCHANGE: IMPLICATIONS

• Users are agreeing on two prime numbers
− g, p

• User A chooses any integer a, nobody knows it

• User B chooses any integer b, nobody knows it

• By sharing ga mod P and gb mod p
− Both shares gab mod P without leaking a nor b

Two entities can interactively share a secret
without directly leaking the secrets to others

Secure AI Systems Lab :: CS 578 - Cyber-security 39

DIGITAL CERTIFICATE AND ITS ECOSYSTEM

Secure AI Systems Lab :: CS 578 - Cyber-security 40

DIGITAL CERTIFICATE: MOTIVATION

• An example scenario:
− Suppose the oregonstate.edu server has the public/private key

− You want to connect to the website securely

− Confidentiality: comes from the Block Cipher that we will use

− Integrity: comes from HMAC

• Where’s authenticity?
− How do you know the other end is oregonstate.edu?

Plaintext

IV Ciphertext with padding HMAC

Secure AI Systems Lab :: CS 578 - Cyber-security 41

HOW CAN WE CHECK THE AUTHENTICITY?

Knock, knock, who’s this?

oregonstate.edu, just believe what I said!

• Can we check the other end is the one that we want to talk with?

We Need Some Ways to Check If They Are OSU (Authenticity)!

Secure AI Systems Lab :: CS 578 - Cyber-security 42

HOW CAN WE CHECK THE AUTHENTICITY?

Knock, knock, who’s this?

oregonstate.edu, just believe what I said!

• Can we check the other end is the one that we want to talk with?

We Need Some Ways to Check If They Are OSU (Authenticity)!

Secure AI Systems Lab :: CS 578 - Cyber-security 43

HOW DO WE DO THAT IN THE REAL-LIFE?

www.oregonstate.edu
0x83823787832a87b876

e67fe67e6da

Secure AI Systems Lab :: CS 578 - Cyber-security 44

HOW CAN WE DO THIS FOR ONLINE COMMUNICATION?

• Intuition
− Need an identification mechanism

− Need information that we can use to verify the sender

• Solution
− Let’s do this with RSA cryptography algorithm

− Let “oregonstate.edu” publicize the public key

− Let “oregonstate.edu” share their info. and signed by their private key

Secure AI Systems Lab :: CS 578 - Cyber-security 45

DIGITAL SIGNATURE AND RSA

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages

− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N

− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

Secure AI Systems Lab :: CS 578 - Cyber-security 46

DIGITAL SIGNATURE AND RSA

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages

− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N

− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

RSA

M: SH’s MSG

S: 0x12f573bde2
Secure AI Systems Lab :: CS 578 - Cyber-security 47

DIGITAL SIGNATURE AND RSA

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages

− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N

− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

RSA

M: SH’s MSG

S: 0x12f573bde2
Secure AI Systems Lab :: CS 578 - Cyber-security 48

DIGITAL SIGNATURE AND RSA

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages

− RSA can be used for “signing”

• Encryption and decryption for digital signature
− Encryption is applying the private exponent to a plaintext: C = Md mod N

− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

RSA

M’s from “SH”

M: SH’s MSG

S: 0x12f573bde2
Secure AI Systems Lab :: CS 578 - Cyber-security 49

HOW CAN WE DO THIS FOR ONLINE COMMUNICATION?

• Intuition
− Need an identification mechanism

− Need information that we can use to verify the sender

• Solution: Public Key Infrastructure (PKI)
− Let’s do this with RSA cryptography algorithm

− Let “oregonstate.edu” publicize the public key

− Let “oregonstate.edu” share their info. and signed by their private key
(= we create a digital certificate)

Secure AI Systems Lab :: CS 578 - Cyber-security 50

THE INFO: DIGITAL CERTIFICATE

• A file that contains
− Entity info (CN)

− Issuer info (CN)

− Public key

− Signature

Secure AI Systems Lab :: CS 578 - Cyber-security 51

HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information

− Public key

− Signature (proving that I have the public key)

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

Secure AI Systems Lab :: CS 578 - Cyber-security 52

HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information

− Public key

− Signature (proving that I have the public key)

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

Get SHA256 sum of this part

Sign it with the private key

Secure AI Systems Lab :: CS 578 - Cyber-security 53

HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information

− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)

 RSA_encrypt(private_key, SHA-256(certificate))

Secure AI Systems Lab :: CS 578 - Cyber-security 54

HOW TO CREATE A DIGITAL CERTIFICATE?

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)
 RSA_encrypt(private_key, SHA-256(certificate))

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

Get SHA256 sum of this part

Sign it with the private key

Secure AI Systems Lab :: CS 578 - Cyber-security 55

HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information

− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)

 RSA_encrypt(private_key, SHA-256(certificate))

• Anyone with the public key can verify the result
− Get issuer’s public key from their certificate

Secure AI Systems Lab :: CS 578 - Cyber-security 56

CERTIFICATION CREATION DETAILS: STEP 1

• The certificate requesting entity fills
− Entity information

− Public Key

• Entity:
− For google, its *.google.com

− Can be your website address

• *.secure-ai.systems
− also has a certificate

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (with beaver’s private key)

Secure AI Systems Lab :: CS 578 - Cyber-security 57

CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity

• Their identification

• Owning the target domain name

• Owning the public key

− The signature

• Decrypt the signature with public key

• It must be the same as SHA256 sum

• It proves their holding the private key

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (with beaver’s private key)

Secure AI Systems Lab :: CS 578 - Cyber-security 58

CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity:

• Their identification

• Owning the target domain name

• etc…

− Then, fill issuer information

• Issuer information

• Issuer public key

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff

Secure AI Systems Lab :: CS 578 - Cyber-security 59

CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity:

• Their identification

• Owning the target domain name

• etc…

− Then, fill issuer information

• Issuer information

• Issuer public key

− and then, sign the certificate

• Get SHA-256 of the certificate

• Attach it as a signature!

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff
Signature: 0xffeeddccbbaa00112233445566778899
 (InCommon RSA’s private key)

Secure AI Systems Lab :: CS 578 - Cyber-security 60

THE CERTIFICATE ISSUED

• Now InCommon RSA verified
− oregonstate.edu is owned by

− Oregon State University

− With a specific Public Key

Secure AI Systems Lab :: CS 578 - Cyber-security 61

RECAP: OSU CERTIFICATE

• OSU owns “oregonstate.edu”
− Verified by InCommon RSA

• Verification of the certificate
− Use InCommon RSA’s public key

− Where is it? It is written in InCommon RSA’s certificate

• But InCommon RSA, who will verify their identity?
− InCommon RSA verifies “oregonstate.edu”

− Who will verify InCommon RSA?

Secure AI Systems Lab :: CS 578 - Cyber-security 62

LET’S SEE IT FROM THE BROWSER

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

Secure AI Systems Lab :: CS 578 - Cyber-security 63

TRUST CHAIN

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

Secure AI Systems Lab :: CS 578 - Cyber-security 64

TRUST CHAIN – CONT’D

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

Secure AI Systems Lab :: CS 578 - Cyber-security 65

TRUST CHAIN – CONT’D

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

Secure AI Systems Lab :: CS 578 - Cyber-security 66

TRUST CHAIN IN REAL-LIFE

• An example:
− Student

− Oregon resident

− U.S. Citizen

• When issuing the student ID
− We verify your Oregon ID…

Secure AI Systems Lab :: CS 578 - Cyber-security 67

TRUST CHAIN IN REAL-LIFE

• An example:
− Student

− Oregon resident

− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport

Secure AI Systems Lab :: CS 578 - Cyber-security 68

TRUST CHAIN IN REAL-LIFE

• An example:
− Student

− Oregon resident

− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport

• When issuing the U.S. passport
− Require your birth certificate or previously issued passport..

Secure AI Systems Lab :: CS 578 - Cyber-security 69

TRUST CHAIN IN REAL-LIFE

• An example:
− Student

− Oregon resident

− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport

• When issuing the U.S. passport
− Require your birth certificate or previously issued passport..

We need someone to verify the
originality of the proving document…

Secure AI Systems Lab :: CS 578 - Cyber-security 70

ROOT CERTIFICATE AUTHORITY (ROOT CA ≈ US IN PREV. EXAMPLE)

• Define small set of trustworthy certificate authorities
− Private companies are authorized by some jurisdiction to run the CA company

• Google Trust Service (GTS CA)

• DigiCert

• Verisign

• etc..

• Trust their self-signed certificate
− Stored in almost every computer machines

Secure AI Systems Lab :: CS 578 - Cyber-security 71

PUBLIC KEY INFRASTRUCTURE (PKI)

oregonstate.edu

InCommon

USERTrust

• An Infrastructure that provides public key with certificate chain

• Trust anchor: Root CA
− Set a small set of entities use self-signed cert

• Verify the certificate chain!
− Must verify the entire chain

Secure AI Systems Lab :: CS 578 - Cyber-security 72

LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Secure AI Systems Lab :: CS 578 - Cyber-security 73

LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert (certificate)

Secure AI Systems Lab :: CS 578 - Cyber-security 74

LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

Oregonstate verified by InCommon RSA
Secure AI Systems Lab :: CS 578 - Cyber-security 75

LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

InCommon RSA verified by USERTrust RSA
Secure AI Systems Lab :: CS 578 - Cyber-security 76

LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

USERTrust RSA is self-verified (ROOT CA)
Secure AI Systems Lab :: CS 578 - Cyber-security 77

Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part I: Basic crypto for network/internet sec.
	Slide 2
	Slide 3: Crypto!
	Slide 4: Crypto!
	Slide 5: Crypto!
	Slide 6: Basic terminology
	Slide 7
	Slide 8: Perfect security
	Slide 9: Perfect security
	Slide 10
	Slide 11: Block cipher: encryption
	Slide 12: Block cipher: decryption
	Slide 13: Block cipher
	Slide 14: Block cipher: in operation
	Slide 15: Block cipher: in operation
	Slide 16: Block cipher: in operation
	Slide 17: Block cipher: in operation
	Slide 18
	Slide 19: Symmetric key cryptography
	Slide 20: Symmetric key cryptography
	Slide 21: Public key cryptography
	Slide 22: Public key cryptography
	Slide 23: Public key cryptography
	Slide 24: Public key cryptography
	Slide 25: Public key cryptography: advantage
	Slide 26
	Slide 27: Public key cryptography: RSA
	Slide 28: RSA
	Slide 29: RSA
	Slide 30: RSA encryption
	Slide 31: RSA decryption
	Slide 32: Diffie-Hellman key exchange
	Slide 33: Diffie-Hellman key exchange in graphics
	Slide 34: Diffie-Hellman key exchange
	Slide 35: Diffie-Hellman key exchange
	Slide 36: Diffie-Hellman key exchange
	Slide 37: Diffie-Hellman key exchange in graphics
	Slide 38: Diffie-Hellman key exchange example
	Slide 39: Diffie-Hellman key exchange: implications
	Slide 40
	Slide 41: Digital certificate: motivation
	Slide 42: How can we check the authenticity?
	Slide 43: How can we check the authenticity?
	Slide 44: How do we do that in the real-life?
	Slide 45: How can we do this for online communication?
	Slide 46: Digital signature and rsa
	Slide 47: Digital signature and rsa
	Slide 48: Digital signature and rsa
	Slide 49: Digital signature and rsa
	Slide 50: How can we do this for online communication?
	Slide 51: The info: digital certificate
	Slide 52: How to create a digital certificate?
	Slide 53: How to create a digital certificate?
	Slide 54: How to create a digital certificate?
	Slide 55: How to create a digital certificate?
	Slide 56: How to create a digital certificate?
	Slide 57: Certification creation details: step 1
	Slide 58: Certification creation details: step 2
	Slide 59: Certification creation details: step 2
	Slide 60: Certification creation details: step 2
	Slide 61: The certificate issued
	Slide 62: Recap: osu certificate
	Slide 63: Let’s see it from the browser
	Slide 64: Trust chain
	Slide 65: Trust chain – cont’d
	Slide 66: Trust chain – cont’d
	Slide 67: Trust chain in real-life
	Slide 68: Trust chain in real-life
	Slide 69: Trust chain in real-life
	Slide 70: Trust chain in real-life
	Slide 71: Root certificate authority (Root CA almost equal to US in prev. example)
	Slide 72: Public key infrastructure (PKI)
	Slide 73: Let’s verify oregonstate.edu
	Slide 74: Let’s verify oregonstate.edu
	Slide 75: Let’s verify oregonstate.edu
	Slide 76: Let’s verify oregonstate.edu
	Slide 77: Let’s verify oregonstate.edu
	Slide 78

