
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART I: INTERNET PROTOCOLS AND ECOSYSTEM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

ANNOUNCEMENT

• TA office hours
− Tu 11 am – 12 pm on Zoom (the link is available on Canvas)

• Call for actions
− Homework 1 out

− Term-project team-up

− In-class presentation sign-up
• May not have open-slots for yours if you are late

• No exceptions for this case; you will lose 10%

ANNOUNCEMENT

• TA office hours
− Tu 11 am – 12 pm on Zoom (the link is available on Canvas)

• Call for actions
− Homework 1 out

− Term-project team-up

− In-class presentation sign-up
• May not have open-slots for yours if you are late

• No exceptions for this case; you will lose 10%

− Note on paper critiques

• It is not a pleasant reading (2.5 hours of focused reading)

• Avoid generic comments, e.g.,

− “Good figures”

− “Awesome evaluation”

− “The paper is difficult-to-follow”

PRIMER ON THE INTERNET INFRASTRUCTURE

Secure AI Systems Lab :: CS 578 - Cyber-security 4

THE INTERNET

• The Net
− A system of computer networks; a network of networks

− Uses the Internet protocol suite (TCP/IP) to communicate

• Design principle
− Network is complex, O(N2)

− Manage small network, O(n2)

− Manage network of networks O(m2)

− N >>>>> m,n

− Make it simple!

5

1https://www.cs.utexas.edu/~mitra/csFall2018/cs329/lectures/fig1.gif

THE INTERNET: PACKET ROUTING

6

you

me

THE INTERNET: (NO) SECURITY

7

• No security (in TCP communication)

− Any router in the middle can see
any packet content :(

THE INTERNET: (NO) SECURITY

8

• Routers:
− Decide where the packet should go as a next step

− What if

• the router in the middle sends a packet to weird location?

• the router(s) are malicious (there is no such restriction)? you

me

We Cannot Establish Trust in Routers

THE INTERNET WITHOUT SECURITY

9

Search “Dog”

Everybody in the Middle Knows That I Searched ‘dogs’
and They Also Know the Search Result… Ugh…

THE INTERNET WITH A SECURE MECHANISM (SSL/TLS)

10

Search “Dog”

Check certificate, exchange keys, apply encryption with HMAC

Middle mans never know
DH exchange keys!!

I know these two are
communicating but not
about the secret key…0x1ce42780dfa1cea

089a9ea00de059ef5

Search “Dog”

The Middlemen Will Only See the Encrypted Contents
They Will Never Know the Secret Key …

• SSL/TLS
− Developed by Netscape in 1995

− Standardized by IETF as TLS

− https://www.ietf.org/rfc/rfc2246.txt

SSL/TLS: SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

11

https://www.ietf.org/rfc/rfc2246.txt

• SSL/TLS
− Developed by Netscape in 1995

− Standardized by IETF as TLS

− https://www.ietf.org/rfc/rfc2246.txt

• “Transport Layer” Security
− Why?

SSL/TLS: SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

12

https://www.ietf.org/rfc/rfc2246.txt

SSL/TLS: TRANSPORT LAYER SECURITY, WHY?

• Independent from the application running on a host

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

Process Process

socket socket

Host A Host B

Physical

Data-link

Network

Transport

Session

Presentation

Application

Physical (or Link)

Internet

Transport

Application

comm.

SSL/TLS: BENEFITS

• Enable to
− Establish secure comm channels btw two ends (hosts) on the Internet

• Client <-> Server (ex. OSU login)

• Server <-> Server (ex. Amazon requests a transaction with your credit card)

• Client <-> Client (ex. chat applications)

− Verify the server entity
• Use a digital certificate

• end-to-end secure communication channels
− Authentication: a digital certificate

− Key-exchange: Diffie-Hellman key exchange

− Confidentiality: Block ciphers

− Integrity: HMAC / MAC

14

HTTP: AN APPLICATION LAYER PROTOCOL

• Suppose we talk to a webserver

HTTP

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 15

HTTP: AN APPLICATION LAYER PROTOCOL

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 16

• Suppose we talk to a webserver

HTTPS: AN APPLICATION LAYER (SECURE) PROTOCOL

• Suppose we use HTTPs (instead of HTTP)

TLS TLSInsecure Internet

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 17

HTTPS: AN APPLICATION LAYER (SECURE) PROTOCOL

Run TLS handshake to establish a secure channel

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 18

TLS TLSInsecure Internet

HTTPS: AN APPLICATION LAYER (SECURE) PROTOCOL

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 19

LET’S SEE HOW HTTP PACKETS LOOK LIKE

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 20

LET’S SEE HOW HTTPS PACKETS LOOK LIKE

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 21

LET’S SEE HOW HTTPS PACKETS LOOK LIKE

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 22

HTTPS PACKETS

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 23

WHAT COULD GO WRONG – MEASUREMENT AT SCALE

Secure AI Systems Lab :: CS 578 - Cyber-security 24

WHAT COULD GO WRONG – MEASUREMENT AT SCALE

Secure AI Systems Lab :: CS 578 - Cyber-security 25

WHY DO WE NEED A LARGE-SCALE MEASUREMENT?

• Guide us in forming research questions about the Internet practices
− ZMap: IPv4 address space < 45-min

− Censys: IPv4 address scans with full protocol handshakes

− …

Secure AI Systems Lab :: CS 578 - Cyber-security 26

CENSYS FINDINGS

• Industrial control systems
− SCADA (Supervisory control and data acquisition) systems

• No authentication while communicating over the Internet

• No proper security protection mechanisms

Secure AI Systems Lab :: CS 578 - Cyber-security 27

CENSYS FINDINGS – CONT’D

• Heartbleed, Poodle, and SSLv3
− Heartbleed (https://heartbleed.com): CVE-2014-0160

• An implementation error in OpenSSL

• Patched quickly once known to public, but…

− Poodle
• A fundamental flaw in the SSLv3 protocol

• SSL 3.0 has been disabled immediately

Secure AI Systems Lab :: CS 578 - Cyber-security 28

https://heartbleed.com/

CRYPTOGRAPHY MISUSE IN THE WILD

Secure AI Systems Lab :: CS 578 - Cyber-security 29

A LARGE-SCALE MEASUREMENT ON TLS AND SSH SERVERS

• Guide us in forming research questions about cryptography misuses
− Weak keys (insufficient entropy in key generation)

− Reused primes

− Improper certificate validations

− …

Secure AI Systems Lab :: CS 578 - Cyber-security 30

POTENTIAL SECURITY PROBLEMS

• TLS and SSH hosts use the same keys
− 61% of TLS hosts and 65% of SSH hosts served the same key as another host

− Not all of them were due to the vulnerabilities

• 60% and 30% of the most common DSA host keys and RSA host keys
are from the large hosting providers

• Distinct TLS certificates are all belonging to the same organization

Secure AI Systems Lab :: CS 578 - Cyber-security 31

POTENTIAL SECURITY PROBLEMS – CONT’D

• Vulnerabilities keys

− Repeated keys due to low-entropy
• 5.23% of the TLS hosts use manufacturer-default certificates or keys

• 0.34% of the TLS hosts served repeated keys (98% are self-signed)

• 9.60% of the SSH hosts served repeated keys

− Factorable RSA keys

Secure AI Systems Lab :: CS 578 - Cyber-security 32

RSA REVISITED

• Key selection
− Choose two large prime number, p and q

• Public key:

− Set N = pq

− Choose e (e.g., 65537) as a coprime of φ = (p-1)(q-1)

• Private key:
− Fine d that satisfies de == 1 (mod φ)

• Security
− Concern: can an adversary guess the private key from the public key?

− To do such an attack, the attacker needs to find φ

− But we choose p and q as a large prime number; thus, it is difficult

Secure AI Systems Lab :: CS 370 - Introduction to Security 33

POTENTIAL SECURITY PROBLEMS – CONT’D

• Vulnerabilities keys

− Repeated keys due to low-entropy
• 5.23% of the TLS hosts use manufacturer-default certificates or keys

• 0.34% of the TLS hosts served repeated keys (98% are self-signed)

• 9.60% of the SSH hosts served repeated keys

− Factorable RSA keys (Mining Ps and Qs become easier)

• Obtain private keys for 0.40% of the TLS certificates; (0.5%) of the TLS hosts

• Obtain 0.02% of the RSA SSH host keys; 0.027% of the RSA SSH hosts

• These vulnerable keys are:

− System-generated certificates

− SSH host keys used by embedded devices, e.g., routers, firewalls or remote admin cards

Secure AI Systems Lab :: CS 578 - Cyber-security 34

THE SOURCES OF THE VULNERABILITIES

• Weak entropy and the Linux RNG
− Linux has entropy sources weakened under certain operating conditions

• It uses the Nonblocking pool entropy until Input pool reaches to a certain threshold

• The figure shows (red line) the time when the OpenSSH reads its initial PRNG

• OpenSSH reads the PRNG before the system is ready for the secure use

Secure AI Systems Lab :: CS 578 - Cyber-security 35

THE SOURCES OF THE VULNERABILITIES

• OpenSSH RSA key generation algorithm
− Suppose we generate p and q pairs across many systems

• (Left) If the t is the same while computing p and q, it will generate the same key

• (Middle) If the clock ticks while generating p, then p and q do not share a factor

• (Right) If the clock ticks while generating q, then p will be the same, but not q

Secure AI Systems Lab :: CS 578 - Cyber-security 36

THE SOURCES OF THE VULNERABILITIES

• OpenSSH RSA key generation algorithm
− Suppose we generate p and q pairs across many systems

• (Left) If the t is the same while computing p and q, it will generate the same key

• (Middle) If the clock ticks while generating p, then p and q do not share a factor

• (Right) If the clock ticks while generating q, then p will be the same, but not q

− Empirical analysis

Secure AI Systems Lab :: CS 578 - Cyber-security 37

MISTAKES IN IMPLEMENTING SECURE PROTOCOLS

Secure AI Systems Lab :: CS 578 - Cyber-security 38

BACKGROUND: SSL/TLS HANDSHAKE

Client (You)

• 1. Client hello
− Send version, random number, available

cipher suite, etc..

39

(google.com) Server

• 2. Server hello
• Sends server random,

version, choose cipher, etc.

• 3. Server Certificate
• Send certificate to the

client

BACKGROUND: HANDSHAKE STEP I – CLIENT HELLO

• The first message a client sends to the server
− It sends an SSL/TLS version, a random number, an available cipher suite, …

40

BACKGROUND: HANDSHAKE STEP I – CLIENT HELLO

• It sends supported cipher suites:
− TLS_ECDHE_RSA_WITH

AES_128_GCM_SHA256
ECDHE_RSA_AES_128_GCM_SHA256

41

BACKGROUND: HANDSHAKE STEP II – SERVER HELLO

• The first message a client sends to the server
− It sends an SSL/TLS version, a random number, an available cipher suite, …

• The server choose a cipher based on the client’s availability
− Chosen: TLS_ECDHE_RSA_AES_128_GCM_SHA256

42

BACKGROUND: HANDSHAKE STEP III – SERVER CERTIFICATE

• The first message a client sends to the server
− It sends an SSL/TLS version, a random number, an available cipher suite, …

• The server choose a cipher based on the client’s availability
− Chosen: TLS_ECDHE_RSA_AES_128_GCM_SHA256

• The server next sends the certificate information to the client
− It sends a full chain (PKI) of digital certificates

43

BACKGROUND: HANDSHAKE STEP IV – KEY EXCHANGE / VERIFYING SIGNATURE

• Key exchange
− The client knows the server’s public key written in their certificate

− The client chooses a random key and encrypt that with the server’s public key

− The encrypted key will be sent to the server

− It’s only the server who can decrypt the key (good)

44

Are We Secure Now? Can We See A Potential Security Issues?

BACKGROUND: POTENTIAL SECURITY PROBLEM

• Key exchange
− The client knows the server’s public key written in their certificate

− The client chooses a random key and encrypt that with the server’s public key

− The encrypted key will be sent to the server

− It’s only the server who can decrypt the key (good)

• Suppose:
− 3 years later, the server’s private key is stolen

− From then, the attacker can decrypt the all the data (private key, messages, …)

− What if the attacker also has all the encrypted messages before the breach?

45

BACKGROUND: HANDSHAKE REQUIRES FORWARD SECURITY

• Forward Secrecy / Perfect Forward Secrecy
− We want to keep all the communication secure

− Even if the server’s private key (i.e., the long-term key) has been breached

• Example of such breaches
− Heartbleed (https://heartbleed.com/): CVE-2014-0160

46

https://heartbleed.com/

BACKGROUND: SOLUTION – EPHEMERAL DIFFIE-HELLMAN

• The key idea:
− Do not use a fixed private value for all the DH

− This can lead to a serious information breach (stolen private key)

• Ephemeral DH
− Generate the private value every time we make a connection

− Never reuse the value

• User A secretly chooses a, send A = ga mod p

• User B secretly chooses b, send B = gb mod p

• User A and B will choose different a and b for the next time

47

REVISITED: DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS

g, p g, p

a b

ga mod p

ga mod p

gb mod p

gb mod p

a b

gab mod p gab mod p

Secure AI Systems Lab :: CS 578 - Cyber-security 48

BACKGROUND: ECDHE

• Elliptic-curve Diffie-Hellman Ephemeral (ECDHE)
− Both the client and server will generate new a and b, respectively

− Make it difficult for an adversary to infer the shared secret
even if the session is compromised (they don’t know b for other sessions)

49

https://www.youtube.com/watch?v=F3zzNa42-tQ

BACKGROUND: HANDSHAKE STEP IV

Client (You)

• 1. Client hello

50

(google.com) Server

• 2. Server hello

• 3. Server Certificate

• 4. Server Key Exchange
• Shares DH material,

signed by the public key

• 5. Server Hello Done

BACKGROUND: HANDSHAKE STEP IV – KEY EXCHANGE

• The server sends ECDHE material to the client
− ECDHE public value (pubkey) is signed by the RSA private key

− The public key is available in the certificate

51

BACKGROUND: HANDSHAKE STEP V – SERVER HELLO DONE

• The server sends ECDHE material to the client
− ECDHE public value (pubkey) is signed by the RSA private key

− The public key is available in the certificate

• The server hello done
− Indicate that the server has finished sending required values to the client

52

BACKGROUND: HANDSHAKE STEP

Client (You)

• 1. Client hello

53

(google.com) Server

• 2. Server hello

• 3. Server Certificate

• 4. Server Key Exchange
• Shares DH material, signed

by the public key

• 5. Server Hello DoneNow, the Client Can Verify Server
Signature and Share a Secret via DH!

BACKGROUND: HANDSHAKE STEP

54

Client (You)

• 6. Client Key Exchange
− Shares DH material after verifying server signature

for server’s DH material

• 7. Change Cipher Spec

• 8. Encrypted Handshake Message

(google.com) Server

• 5. Server Hello Done

Previous steps (omitted)

BACKGROUND: HANDSHAKE STEP VI – CLIENT KEY EXCHANGE

• The client also sends ECDHE material to the server
− After this, two parties will share a secret

− We will run the encryption and MAC key by using the shared secret

55

BACKGROUND: HANDSHAKE STEP VI – CLIENT GENERATES A SESSION KEY

• Now the client knows both ‘a’ and ‘b’ of ECDHE key exchange
− The client can compute the shared secret

− The client then computes the following keys from the shared secret

56

These are from
1. Client Hello and
2. Server Hello

BACKGROUND: HANDSHAKE STEP VII – CHANGE CIPHER SPEC (CLIENT)

• Secure communication:
− The client sends the server a message

− that now both should use encrypted communication after this point

57

Now, We Encrypt Messages and Generate MACs for the Client’s!

BACKGROUND: HANDSHAKE STEP VIII – ENCRYPTED HANDSHAKE MESSAGE

• The server asks
− the encrypted versions of previous messages

− to verify whether the client generated the keys correctly

58

BACKGROUND: HANDSHAKE STEP VIII – ENCRYPTED HANDSHAKE MESSAGE

• The server asks
− the encrypted versions of previous messages

− to verify whether the client generated the keys correctly

59

BACKGROUND: HANDSHAKE STEP

60

Client (You)

• 6. Client Key Exchange
− Shares DH material after verifying server signature

for server’s DH material

• 7. Change Cipher Spec

• 8. Encrypted Handshake Message

(google.com) Server

• 5. Server Hello Done

• 9. Change Cipher Spec

• 10. Encrypted Handshake Message

Previous steps (omitted)

BACKGROUND: HANDSHAKE STEP XV – CHECK CLIENT’S ENCRYPTED MESSAGES

• The server verifies the client’s encrypted handshake messages
− After generating client_write_key

− Decrypt the message

− Compute the same value

− Compare!

61

• The server lets the client know
− that we will use encrypted communication after this message

BACKGROUND: HANDSHAKE STEP XV – CHANGE CIPHER SPEC (SERVER)

62

Now, We Encrypt Messages and Generate MACs for the Server’s!

• The client asks
− the encrypted version of previous messages

− to verify whether the server generated keys correctly

BACKGROUND: HANDSHAKE STEP X – ENCRYPTED HANDSHAKE MESSAGE

63

BACKGROUND: HANDSHAKE STEP XI - SENDING APPLICATION DATA

• Now, the server and client
− will send encrypted data to the client

− both will always send [encrypted data] [MAC]

• The server will use server_write_key and server_write_mac_key

• The client will use client_write_key and client_write_mac_key

64

POTENTIAL SOURCES OF MISTAKES IN CERTIFICATION VALIDATION

• Detailed steps in client-side validation
− Chain-of-trust validation

− Hostname verification

− Certificate revocation and X.509 extensions

− …

Secure AI Systems Lab :: CS 578 - Cyber-security 65

POTENTIAL SOURCES OF MISTAKES IN CERTIFICATION VALIDATION

• SSL libraries
− OpenSSL: applications can customize chain-of-trust verification

− JSSE (Java): hostname verification can be optional

Secure AI Systems Lab :: CS 578 - Cyber-security 66

POTENTIAL SOURCES OF MISTAKES IN CERTIFICATION VALIDATION

• Data-transport libraries
− Apache HTTPClient:

• Hostname verification can be optional (and uses its own implementation)

• HTTPS consistency checks are not strictly done

− Weberknecht:
• Hostname verification can be optional

− PHP:

• Default functionality does not check the certificate validity

• Hostname verification can be ignored as it uses cURL

− cURL:

• (Unintentionally) disable hostname verification

− Python:
• Default functionality does not check the certificate validity

Secure AI Systems Lab :: CS 578 - Cyber-security 67

POTENTIAL SOURCES OF MISTAKES IN CERTIFICATION VALIDATION

• Misunderstanding the SSL API
− Amazon Flexible Payments service (PHP)

− PayPal Payments Standard and PayPal Invoicing:

• Hostname verification can be overridden and won’t be checked in that case

− PayPal IPN in ZenCart:

• Default, it does not check the certificate validity

− Lynx:

• Chain-of-trust verification is broken

− …

Secure AI Systems Lab :: CS 578 - Cyber-security 68

POTENTIAL SOURCES OF MISTAKES IN CERTIFICATION VALIDATION

• Using insecure middleware

• Using insecure SSL libraries

• … (check the case studies in the paper)

Secure AI Systems Lab :: CS 578 - Cyber-security 69

RECOMMENDATIONS FOR SECURE INTERNET INFRASTRUCTURE

Secure AI Systems Lab :: CS 578 - Cyber-security 70

RECOMMENDATIONS

• Secure TLS/SSL connections
− OS developers:

• Provide RNG interface to app developers

• Provide entropy conditions to applications

• Test comprehensively across diverse platforms

− App developers:

• Generate keys on first use, not on install or first boot

• Carefully address the warnings from crypto libraries

− Device manufacturers:
• Avoid factory-default keys or certificates

• Provide sufficient entropy when manufacturing

• Use hardware random generator if possible

Secure AI Systems Lab :: CS 578 - Cyber-security 71

RECOMMENDATIONS

• Secure TLS/SSL connections
− Certificate authorities:

• Monitor repeated, weak and factorable keys

− End users:

• Regenerate default or automatically generated keys

• Check for known weak keys

− Security and cryptography researchers:

• True RNG

• Primitives fail gracefully under weak entropy

Secure AI Systems Lab :: CS 578 - Cyber-security 72

RECOMMENDATIONS – CONT’D

• (Proper) certificate verification
− Application developers:

• Test (run fuzzing) with adversarial SSL certificates

• Test application code with certificates with chain-of-trust (not with self-signing)

• Check the library’s configurations carefully before its use

− SSL library developers:

• Make SSL libraries with explicit documentations and parameters

• Take the responsibility: manage SSL connections securely

• Use the collective intelligence: make the error reporting platform user-friendly

Secure AI Systems Lab :: CS 578 - Cyber-security 73

Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part I: Internet protocols and ecosystem
	Slide 2: Announcement
	Slide 3: Announcement
	Slide 4
	Slide 5: The Internet
	Slide 6: The Internet: packet routing
	Slide 7: The Internet: (no) security
	Slide 8: The Internet: (no) security
	Slide 9: The Internet without security
	Slide 10: The Internet with a secure mechanism (SSL/TLS)
	Slide 11: SSL/TLS: secure socket layer and transport layer security
	Slide 12: SSL/TLS: secure socket layer and transport layer security
	Slide 13: SSL/TLS: Transport layer security, why?
	Slide 14: SSL/TLS: Benefits
	Slide 15: HTTP: An application layer protocol
	Slide 16: HTTP: An application layer protocol
	Slide 17: HTTPS: An application layer (secure) protocol
	Slide 18: HTTPS: An application layer (secure) protocol
	Slide 19: HTTPS: An application layer (secure) protocol
	Slide 20: Let’s see how http packets look like
	Slide 21: Let’s see how https packets look like
	Slide 22: Let’s see how https packets look like
	Slide 23: HTTPS Packets
	Slide 24
	Slide 25
	Slide 26: Why do we need a large-scale measurement?
	Slide 27: Censys findings
	Slide 28: Censys findings – cont’d
	Slide 29
	Slide 30: A large-scale measurement on tls and ssh servers
	Slide 31: Potential security problems
	Slide 32: Potential security problems – cont’d
	Slide 33: RSA revisited
	Slide 34: Potential security problems – cont’d
	Slide 35: The sources of the vulnerabilities
	Slide 36: The sources of the vulnerabilities
	Slide 37: The sources of the vulnerabilities
	Slide 38
	Slide 39: Background: ssl/tls handshake
	Slide 40: Background: handshake step i – client hello
	Slide 41: Background: handshake step I – client hello
	Slide 42: Background: handshake step ii – server hello
	Slide 43: Background: handshake step iii – server certificate
	Slide 44: Background: handshake step iv – key exchange / verifying signature
	Slide 45: Background: potential security problem
	Slide 46: Background: handshake requires forward security
	Slide 47: Background: solution – ephemeral diffie-hellman
	Slide 48: Revisited: diffie-hellman key exchange in graphics
	Slide 49: Background: ecdhe
	Slide 50: Background: handshake step iv
	Slide 51: Background: handshake step iv – key exchange
	Slide 52: Background: handshake step v – server hello done
	Slide 53: Background: handshake step
	Slide 54: Background: handshake step
	Slide 55: Background: handshake step vi – client key exchange
	Slide 56: Background: handshake step vi – client generates a session key
	Slide 57: Background: handshake step vii – change cipher spec (client)
	Slide 58: Background: handshake step viii – Encrypted handshake message
	Slide 59: Background: handshake step viii – Encrypted handshake message
	Slide 60: Background: handshake step
	Slide 61: Background: handshake step xv – check client’s encrypted messages
	Slide 62: Background: handshake step xv – change cipher spec (server)
	Slide 63: Background: handshake step x – encrypted handshake message
	Slide 64: Background: handshake step xi - Sending application data
	Slide 65: Potential sources of mistakes in certification validation
	Slide 66: Potential sources of mistakes in certification validation
	Slide 67: Potential sources of mistakes in certification validation
	Slide 68: Potential sources of mistakes in certification validation
	Slide 69: Potential sources of mistakes in certification validation
	Slide 70
	Slide 71: Recommendations
	Slide 72: Recommendations
	Slide 73: Recommendations – cont’d
	Slide 74

