
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART II: MEMORY SAFETY – MORE

Sanghyun Hong
sanghyun.hong@oregonstate.edu

ATTENTION REQUIRED

• Call for actions
− Homework 1 is due today

− Homework 2 went out today

− Checkpoint presentation I (on the 23rd)

• 8-10 min presentation + 1-3 min Q&A

• Presentation MUST cover:

− (1-2 slides) A research problem your team chose

− (3-4 slides) A review of the prior work relevant to your problem

≫How is your team’s work different from the prior work?

≫What’s the paper your team picked and the results your team will reproduce?

− (5-6 slides) Next steps

• No class on 4.21 (Mon); use this day wisely to prep and practice the presentation

Secure-AI Systems Lab (SAIL) - CS499/599: Trustworthy ML 2

PREVENT BUFFER OVERFLOW (OVERRUN)

Secure AI Systems Lab :: CS 578 - Cyber-security 3

BUFFER OVERFLOW – AN EXAMPLE

• Recall: x86 calling convention
− Program stack is used for matching call/return pairs

− main() calls proc_user_input()

− Run proc_user_input()

− Once finished, the program must
return to the point in main

− main() continues

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 4

BUFFER OVERFLOW – AN EXAMPLE

• Exploitation
− Get the shell() function address

− Shell() is at 0x804858b

− Now we exploit the buffer overflow

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 5

BUFFER OVERFLOW – AN EXAMPLE

• Exploitation

No ARGS (void)

AAAA

AAAA

AAAA

No ARGS (void)

Return Addr

AAAA

ARG 2 (flag)

ARG 1 (string)

Flag =
0x8048760

AAAA

AAAA

%esp

%ebp

12 'A's

0x8048760

12 more 'A's

Put 0x804858b

ebp-c

ebp-10

ebp-14

esp

esp+4

esp+8

ebp-18

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 6

One can change the return address. It allows us to make
the program return to an arbitrary address, e.g., we can
run a malicious function from this

BUFFER OVERFLOW – AN EXAMPLE

• Exploitation

No ARGS (void)

AAAA

AAAA

AAAA

No ARGS (void)

0x804858b

AAAA

ARG 2 (flag)

ARG 1 (string)

Flag =
0x8048760

AAAA

AAAA

%esp

%ebp

12 'A's

0x8048760

12 more 'A's

Put 0x804858b

ebp-c

ebp-10

ebp-14

esp

esp+4

esp+8

ebp-18

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 7

BUFFER OVERFLOW – AN EXAMPLE

• Exploitation

No ARGS (void)

AAAA

AAAA

AAAA

No ARGS (void)

Return Addr

AAAA

ARG 2 (flag)

ARG 1 (string)

Flag =
0x8048760

AAAA

AAAA

%esp

%ebp

ebp-c

ebp-10

ebp-14

esp

esp+4

esp+8

ebp-18

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 8

BUFFER OVERFLOW – AN EXAMPLE

• Exploitation

− Now the program will run the shell()

− It will run the bash shell with a higher privilege

No ARGS (void)

AAAA

AAAA

AAAA

No ARGS (void)

0x804858b

AAAA

ARG 2 (flag)

ARG 1 (string)

Flag =
0x8048760

AAAA

AAAA

%esp

%ebp

ebp-c

ebp-10

ebp-14

esp

esp+4

esp+8

ebp-18

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 9

STACKGUARD

• What is it?
− A compiler-enhanced technique

− It stores a random value (canary) when a function calls

No ARGS (void)

AAAA

AAAA

AAAA

No ARGS (void)

Return Addr

0xDEADBEEF

ARG 2 (flag)

ARG 1 (string)

Flag =
0x804877c

Saved EBP

ebp-c

ebp-10

ebp-14

esp

esp+4

esp+8

ebp-18

%espSecure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 10

Put 'A's

STACKGUARD – CONT’D

• What is it?
− A compiler-enhanced technique

− It stores a random value (canary) when a function calls

• How does it work?
− Checks if the canary is compromised when the function returns

− If the value has been compromised, the program crashes

− Otherwise, the program returns successfully

No ARGS (void)

AAAA

AAAA

AAAA

No ARGS (void)

0x804858b

AAAA

ARG 2 (flag)

ARG 1 (string)

AAAA
Flag =

0x8048760

AAAA

ebp-c

ebp-10

ebp-14

esp

esp+4

esp+8

ebp-18

%espSecure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 11

Put 'A's

STACKGUARD – CONT’D

• What is it?
− A compiler-enhanced technique

− It stores a random value (canary) when a function calls

• How does it work?
− Checks if the canary is compromised when the function returns

− If the value has been compromised, the program crashes

− Otherwise, the program returns successfully

• How to disable?
− StackGuard is set by default

− You can compile with the flag -fno-stack-protector

No ARGS (void)

AAAA

AAAA

AAAA

No ARGS (void)

Return Addr

0xDEADBEEF

ARG 2 (flag)

ARG 1 (string)

Flag =
0x804877c

Saved EBP

ebp-c

ebp-10

ebp-14

esp

esp+4

esp+8

ebp-18

%espSecure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 12

STACKGUARD – CONT’D

• What is it?
− A compiler-enhanced technique

− It stores a random value (canary) when a function calls

• How does it work?
− Checks if the canary is compromised when the function returns

− If the value has been compromised, the program crashes

− Otherwise, the program returns successfully

• How to evade?
− Brute-force attacks:

• The attacker can crash a program 1010 times

• Each with different canary values; successful in the long run

No ARGS (void)

AAAA

AAAA

AAAA

No ARGS (void)

Return Addr

0xDEADBEEF

ARG 2 (flag)

ARG 1 (string)

Flag =
0x804877c

Saved EBP

ebp-c

ebp-10

ebp-14

esp

esp+4

esp+8

ebp-18

%espSecure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 13

ADDRESS SANITIZER (ASAN)

• What is it?
− A runtime memory corruption analyzer

− Developed for analyzing:

• Stack and heap buffer overflow

• Global variable overflow

• Use-after-free and use-after-return

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 14

ADDRESS SANITIZER (ASAN) – CONT’D

• How does it work?
− Compiles a program with instrumentation; option is -fsanitize=address

• It instruments each and every memory access (inserts a check)

• If the memory a program accesses is poisoned, then the program crashes

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 15

ADDRESS SANITIZER (ASAN) – CONT’D

• How does it work?
− Compiles a program with instrumentation; option is -fsanitize=address

− Once the program runs, it creates shadow memory

• It allocates 1/8 of the virtual address space

• Makes a direct mapping with a scale and offset

• Green zones are valid memory addresses allocated at a certain point of execution

• Red zones are invalid memory addresses

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 16

ADDRESS SANITIZER (ASAN) – CONT’D

• How does it work?
− Compiles a program with instrumentation; option is -fsanitize=address

− Once the program runs, it creates shadow memory

• It allocates 1/8 of the virtual address space

• Makes a direct mapping with a scale and offset

• Green zones are valid memory addresses allocated at a certain point of execution

• Red zones are invalid memory addresses

− If *p does not point to the valid address,
then the program crashes

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 17

ADDRESS SANITIZER (ASAN) – CONT’D

• How does it work?
− Compiles a program with instrumentation; option is -fsanitize=address

− Once the program runs, it creates shadow memory

• It allocates 1/8 of the virtual address space

• Makes a direct mapping with a scale and offset

• Green zones are valid memory addresses allocated at a certain point of execution

• Red zones are invalid memory addresses

− If *p does not point to the valid address, then the program crashes

• How to evade?
− It may not detect buffer overflows caused by user inputs (e.g., ours)

− Red zones are not added between variables in structures

− Red zones are not added between array elements

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 18

PREVENT MEMORY PROBLEMS – RUST

Secure AI Systems Lab :: CS 578 - Cyber-security 19

A TRADE OFF BETWEEN CONTROL AND SAFETY

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

Control Safety

C C++ Java Python
JS

…
#define BUFSIZE 20

int main(void) {
 char *buf;
 char *str = "Hello world!";

// initialize the memory space
 buf = (char *) malloc(sizeof(char) * BUFSIZE);

// copy the string to the buffer
strncpy(buf, str, BUFSIZE);

// print the string
 printf("Buffer contains: %s.\n", buf);

 return 0;
}

…import

if __main__ == "__main__":
 buf = ""
 str = "Hello world!"

 // copy the string
 buf += str

 // print out it
 print ("{}".format(buf))
 # done.

Example:
 - C: More control over mem. allocation, but less safe
 - Python: Less control, but more safe

A TRADE OFF BETWEEN CONTROL AND SAFETY – CONT’D

• Example: C has more control, but care must be taken

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

…
#define BUFSIZE 20

int main(void) {
 char *buf;
 char *str = "Hello world!";

// initialize the memory space
 buf = (char *) malloc(sizeof(char) * BUFSIZE);

// copy the string to the buffer
strncpy(buf, str, BUFSIZE);

 // free the buffer
 free(buf);

// print the string
 printf("Buffer contains: %s.\n", buf);

 return 0;
}

• Allocate 20 bytes

• “buf” points the first char of “Hello world!”

• “buf” points “NULL”

• “buf” is used in the printf statement
(Note: use-after-free vulnerability – link)

C (example):
 - We can control the memory allocations
 - We must be careful when we allocate (safety)

Example scenario
 - Programs run on the OS for satellites
 - Programs run on the NASA’s Curiosity

https://cwe.mitre.org/data/definitions/416.html

• Example: Python doesn’t need mem. control, but often less efficient
…import

if __main__ == "__main__":
 buf = ""
 str = "Hello world!"

 // copy the string
 buf += str

 // nullify the string
 str = ""

 // print out it
 print ("{}".format(buf))
 # done.

A TRADE OFF BETWEEN CONTROL AND SAFETY – CONT’D

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

• Python interpreter allocates 20 bytes

• The interpreter allocates 20 bytes

• “str” releases the string, but we do not
 know if the mem is de-allocated after this

• “buf” is used in the print statement

Python (example):
 - We cannot control the memory allocations
 - We do not need to care the mem. de-allocations
 [Garbage collector (GC) will do this management,
 but it requires ++computations and ++memory]

Example scenario
 - Programs run on your laptop
 - Programs run on the clusters (or in the cloud)

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

RUST!

• Rust
− A programming language designed for (memory) safety and performance

− Try this example (link)!

• Write a Rust program (hello.rs)

• Compile and run the program (rustc hello.rs)

• Rust addresses
− Runtime performance (unlike Python or Java, Rust does not use GC)

− Memory leaks (no explicit allocation/de-allocation)

− No data-race condition

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

https://doc.rust-lang.org/rust-by-example/hello.html

RUST EXAMPLE: HELLO WORLD

• Hello-world

Secure AI Systems Lab :: CS 344 - Operating Systems I 24

fn main() {
 println! ("Hello world! ");

}

RUST TYPE: WE CAN EXPLICITLY/IMPLICITLY SET A VARIABLE TYPE

• Hello-world

• Types supported

Secure AI Systems Lab :: CS 344 - Operating Systems I 25

fn main() {
 println! ("Hello world! ");

}

fn main() {
 let logical: bool = true;
 let a_float: f64 = 1.0;
 let default_float = 3.0; // f64
 let default_integer = 7; // i32
 let default_unsigned64: usize = 100; // u64

 let mut inferred_type = 12;
 inferred_type = 4294967296;

 let mut mutable = 12; mutable = 21;
 mutable = true;

 let mutable = true;
}

Initialize variables:
 - Line 1: we can set it to “bool”
 - Line 2: we can set it to “f64” (64-bit float: double)
 - Line 3: it can automatically define it to “f64” (3.0)
 - Line 4: it can automatically define it to “i32” (7)
 - Line 5: we can use “usize” to define “u64” (64-bit)

RUST TYPE: FIXED VARIABLES AND MUTABLE VARIABLES

• Hello-world

• Types supported

Secure AI Systems Lab :: CS 344 - Operating Systems I 26

fn main() {
 println! ("Hello world! ");

}

fn main() {
 let logical: bool = true;
 let a_float: f64 = 1.0;
 let default_float = 3.0; // f64
 let default_integer = 7; // i32
 let default_unsigned64: usize = 100; // u64

 let mut inferred_type = 12;
 inferred_type = 4294967296;

 let mut mutable = 12; mutable = 21;
 mutable = true;

 let mutable = true;
}

Initialize variables:
 - Line 1: we can set it to “bool”
 - Line 2: we can set it to “f64” (64-bit float: double)
 - Line 3: it can automatically define it to “f64” (3.0)
 - Line 4: it can automatically define it to “i32” (7)
 - Line 5: we can use “usize” to define “u64” (64-bit)

Variable types can be inferred from context:
 - Line 1: we can set the var. to a mutable (mut)
 - Line 2: it will automatically set the var to “i64”

RUST TYPE: FIXED VARIABLES AND MUTABLE VARIABLES – CONT’D

• Hello-world

• Types supported

Secure AI Systems Lab :: CS 344 - Operating Systems I 27

fn main() {
 println! ("Hello world! ");

}

fn main() {
 let logical: bool = true;
 let a_float: f64 = 1.0;
 let default_float = 3.0; // f64
 let default_integer = 7; // i32
 let default_unsigned64: usize = 100; // u64

 let mut inferred_type = 12;
 inferred_type = 4294967296;

 let mut mutable = 12; mutable = 21;
 mutable = true;

 let mutable = true;
}

Initialize variables:
 - Line 1: we can set it to “bool”
 - Line 2: we can set it to “f64” (64-bit float: double)
 - Line 3: it can automatically define it to “f64” (3.0)
 - Line 4: it can automatically define it to “i32” (7)
 - Line 5: we can use “usize” to define “u64” (64-bit)

Variable types can be inferred from context:
 - Line 1: we can set the var. to a mutable (mut)
 - Line 2: it will automatically set the var to “i64”

Mutable variables:
 - Line 1: we can update the value of the mutable var.
 - Line 2: but we cannot change the type of it

RUST TYPE: VARIABLE SHADOWING

• Hello-world

• Types supported

Secure AI Systems Lab :: CS 344 - Operating Systems I 28

fn main() {
 println! ("Hello world! ");

}

fn main() {
 let logical: bool = true;
 let a_float: f64 = 1.0;
 let default_float = 3.0; // f64
 let default_integer = 7; // i32
 let default_unsigned64: usize = 100; // u64

 let mut inferred_type = 12;
 inferred_type = 4294967296;

 let mut mutable = 12; mutable = 21;
 mutable = true;

 let mutable = true;
}

Initialize variables:
 - Line 1: we can set it to “bool”
 - Line 2: we can set it to “f64” (64-bit float: double)
 - Line 3: it can automatically define it to “f64” (3.0)
 - Line 4: it can automatically define it to “i32” (7)
 - Line 5: we can use “usize” to define “u64” (64-bit)

Variable types can be inferred from context:
 - Line 1: we can set the var. to a mutable (mut)
 - Line 2: it will automatically set the var to “i64”

Mutable variables:
 - Line 1: we can update the value of the mutable var.
 - Line 2: but we cannot change the type of it

Shadowing:
 - Line 1: we can override the variable
 (variable shadowing: link)

• Example I

RUST EXAMPLE: ARRAY, INDEXING, FOR-LOOP, AND IF STATEMENTS

Secure AI Systems Lab :: CS 344 - Operating Systems I 29

fn main() {
 let xs: [i32; 5] = [1, 2, 3, 4, 5];
 let ys: [i32; 10] = [0; 10];

 println! ("The first element: {}", xs[0]);
 println! ("Elements from the first to the fourth: {}", xs[0 .. 3]);

}

Initialize arrays:
 - Line 1: we can create an array “i32”; the len is 5
 - Line 2: we can initialize with all 0s

Indexing:
 - Line 1: we can access an element by the index
 - Line 2: we can access multiple elements

• Example I

• Example II
fn main() {

 for n in 1…101 {
 if n < 10 && n % 5 == 0 {
 println!("The number smaller than 10 and divisible by 5: {}", n);
 } else {
 println!("The number is {}", n);
 }
 }

 println!("The final number will be {}", n);
}

RUST EXAMPLE: ARRAY, INDEXING, FOR-LOOP, AND IF STATEMENTS

Secure AI Systems Lab :: CS 344 - Operating Systems I 30

fn main() {
 let xs: [i32; 5] = [1, 2, 3, 4, 5];
 let ys: [i32; 10] = [0; 10];

 println! ("The first element: {}", xs[0]);
 println! ("Elements from the first to the fourth: {}", xs[0 .. 3]);

}

Initialize arrays:
 - Line 1: we can create an array “i32”; the len is 5
 - Line 2: we can initialize with all 0s

Indexing:
 - Line 1: we can access an element by the index
 - Line 2: we can access multiple elements

If … else:
 - Line 1: we can use && for the “and” condition
 (“or” is || / “not” is ! / “not eq” is !=)

For loop:
 - Line 1: it iterates from 1 to 100 (i.e., 101 – 1)
 (alternative: for n in 1..=100)

• Function calls

RUST EXAMPLE: FUNCTION

Secure AI Systems Lab :: CS 344 - Operating Systems I 31

fn compute(x: u32, y: u32) -> u32 {
 if x == 0 {
 return 0;
 }

 let z = x.pow(y);
 z

}

fn main() {
 let val;

 val = compute(3, 4);
 println! ("Result: {}", val);

}

Rust function:
 - Line 1: we receive two arguments x, y
 (both x, y are “u32” and returns “u32”)
 - Line 2: if “x == 0” then return 0
 (we need “return” if we exit the fn early)
 - Line 3: compute x^y and store it to z
 - Line 4: return z
 (no explicit return statement is required)

Rust function “call”:
 - Line 1: create “val” variable
 - Line 2: call the “compute” function with 3 and 4
 - Line 3: store the result to “val”
 (Note: won’t work if we “let val = 0;” in Line 1)

RUST CORE CONCEPTS

• Core concepts
− Ownership and borrowing

− Concurrency

− Unsafe code

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

RUST OWNERSHIP

• Ownership
− Definition: a set of rules how a Rust program manages memory

− Rust rules:

• Each value in Rust has a variable “owner”

• There can be only one owner at a time

• If the owner goes out of scope, the value will disappear

− Ownership example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 33

fn take(vec: Vec<String>){
 println!("{:?}", vec);
}

fn main() {
 let mut vec = Vec::new();
 vec.push(String::from("Hello "));
 vec.push(String::from("World "));
 take(vec);

 vec.push(String::from("from the other side!"))
}

vector

data

length

capacity

Hello

World

vector

data

length

capacity

RUST OWNERSHIP

• Ownership
− Definition: a set of rules how a Rust program manages memory

− Rust rules:

• Each value in Rust has a variable “owner”

• There can be only one owner at a time

• If the owner goes out of scope, the value will disappear

− Ownership example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 34

fn take(vec: Vec<String>){
 println!("{:?}", vec);
}

fn main() {
 let mut vec = Vec::new();
 vec.push(String::from("Hello "));
 vec.push(String::from("World "));
 take(vec);

 vec.push(String::from("from the other side!"))
}

Note:
 The last line will cause an error! No “vec”
 Ownership is forced by the Rust compiler

It prevents:
 Use-after-free vulnerability
 (dangling pointers)

But Sometimes, We Need “vec” again in main!

RUST BORROWING

• Borrowing
− Definition: a way to access data without taking ownership over it

− Borrowing example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 35

fn borrow(vec: &Vec<String>){
 println!("{:?}", vec);
}

fn main() {
 let mut vec = Vec::new();
 vec.push(String::from("Hello "));
 vec.push(String::from("World "));
 borrow(&vec);

 vec.push(String::from("from the other side!"))
}

vector

data

length

capacity

Hello

World

vec

from the…

RUST BORROWING

• Borrowing
− Definition: a way to access data without taking ownership over it

− Borrowing example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 36

fn borrow(vec: &Vec<String>){
 println!("{:?}", vec);
}

fn main() {
 let mut vec = Vec::new();
 vec.push(String::from("Hello "));
 vec.push(String::from("World "));
 borrow(&vec);

 vec.push(String::from("from the other side!"))
}

vector

data

length

capacity

Hello

World

vec

from the…

Note:
 The “borrow” fn uses a shared reference “vec”
 The “vec” disappears if the function ends
 The “vec” in main still is alive

But “vec” Is Immutable in “borrow”!

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses

− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 37

use std::thread;

fn main() {
 let mut balance = 200;
 let mut threads = vec![];

 // deposit thread
 threads.push(thread::spawn(move || {
 let mut new_balance = balance;
 new_balance += 100;
 println!("Increase the balance {}", new_balance);
 }));

 // withdrawal thread
 threads.push(thread::spawn(move || {
 let mut new_balance = balance;
 new_balance -= 300;
 println!("Decrease the balance {}", new_balance);
 }));

 for thread in threads {
 let _ = thread.join();
 }
 println!("Final balance {}", balance);
}

Deposit thread:
 - Line 1: read the balance and make it mutable
 - Line 2: increase the balance by 100
 - Line 3: print out the balance

Withdrawal thread:
 - Line 1: read the balance and make it mutable
 - Line 2: decrease the balance by 300
 - Line 3: print out the balance

Thread join:
 - Line 1: wait for the threads to join
 - Line 2: print out the balance value

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses

− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 38

use std::thread;

fn main() {
 let mut balance = 200;
 let mut threads = vec![];

 // deposit thread
 threads.push(thread::spawn(move || {
 let mut new_balance = balance;
 new_balance += 100;
 println!("Increase the balance {}", new_balance);
 }));

 // withdrawal thread
 threads.push(thread::spawn(move || {
 let mut new_balance = balance;
 new_balance -= 300;
 println!("Decrease the balance {}", new_balance);
 }));

 for thread in threads {
 let _ = thread.join();
 }
 println!("Final balance {}", balance);
}

Results:
 $./main
 Decrease the balance -100
 Increase the balance 300
 Final balance 200

Note:
 “balance” is a read-only shared variable
 “new_balance” only exists in each thread
 No effect on the actual “balance” in main

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses

− Shared mutable accesses

− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 39

use std::thread; use std::sync::{Arc,Mutex};

fn main() {
 let balance = Arc::new(Mutex::new(200));
 let mut threads = vec![];

 // deposit thread
 let balance4deposit = Arc::clone(&balance);
 threads.push(thread::spawn(move || {
 let mut new_balance = balance4deposit.lock().unwrap();
 *new_balance += 100;
 println!("Increase the balance {}", new_balance);
 }));

 // withdrawal thread
 let balance4withdrawal = Arc::clone(&balance);
 threads.push(thread::spawn(move || {
 let mut new_balance = balance4withdrawal.lock().unwrap();
 *new_balance -= 300;
 println!("Decrease the balance {}", new_balance);
 }));

 for thread in threads {
 let _ = thread.join();
 }

 println!("Final balance {}", *balance.lock().unwrap());
}

Mutable by threads:
 - Mutex: mutable if we lock() the variable
 - Arc : send-able to multiple threads

Deposit thread:
 - Line 1: clone the Arc instance; point to the same.
 - Line 2: lock and get the balance value
 - Line 3: increase 100 (cf. access with *)

Withdrawal thread:
 - The same as the deposit thread
 – Decrease the balance by $300

RUST CONCURRENCY

• Concurrency
− Shared read-only accesses

− Shared mutable accesses

− Concurrency example:

Secure AI Systems Lab :: CS 344 - Operating Systems I 40

use std::thread; use std::sync::{Arc,Mutex};

fn main() {
 let balance = Arc::new(Mutex::new(200));
 let mut threads = vec![];

 // deposit thread
 let balance4deposit = Arc::clone(&balance);
 threads.push(thread::spawn(move || {
 let mut new_balance = balance4deposit.lock().unwrap();
 *new_balance += 100;
 println!("Increase the balance {}", new_balance);
 }));

 // withdrawal thread
 let balance4withdrawal = Arc::clone(&balance);
 threads.push(thread::spawn(move || {
 let mut new_balance = balance4withdrawal.lock().unwrap();
 *new_balance -= 300;
 println!("Decrease the balance {}", new_balance);
 }));

 for thread in threads {
 let _ = thread.join();
 }

 println!("Final balance {}", *balance.lock().unwrap());
}

Results:
 $./main

 Increase the balance 300
 Decrease the balance 0
 Final balance 0

Note:
 “balance” is a mutable shared variable
 “new_balance” points to the mutable variable
 Require to wrap with Arc for sending to threads
 Modify the value is only available after lock()

UNSAFE CODE IN RUST

• Safety that Rust offers:
− Memory safety

• Cannot mutate an immutable variable

• To modify a mutable variable in a function:

− The function should own the variable (ownership)

− The function that just borrows the variable cannot mutate it (borrowing)

− Data-race freedom

• Threads cannot mutate a shared variable without “locking”

• Safety that is “out-of-scope”:
− Deadlocks (not the data-race)

− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 41

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 42

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 43

use std::thread;

static anumber: i32 = 10;

fn main() {
 let mut threads = vec![];

 for tidx in 0..10 {
 threads.push(thread::spawn(move || {
 println!("Thread {}: anumber is {}", tidx, anumber);
 }));
 }

 for thread in threads {
 let _ = thread.join();
 }
}

Static variable:
 - “anumber” can be accessible in any code in this file

Create 10 threads:
 - Each thread prints the thread index and “anumber”

Results:
 $./main
 Thread 0: anumber is 10
 Thread 4: anumber is 10
 Thread 5: anumber is 10
 Thread 2: anumber is 10
 Thread 8: anumber is 10
 …

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 44

use std::thread;

static mut anumber: i32 = 10;

fn main() {
 let mut threads = vec![];

 for tidx in 0..10 {
 threads.push(thread::spawn(move || {
 println!("Thread {}: anumber is {}", tidx, anumber);
 }));
 }

 for thread in threads {
 let _ = thread.join();
 }
}

Static (mutable) variable:
 - We want “anumber” can be modified in any code

Create 10 threads:
 - Each thread prints the thread index and “anumber”

Static variable:
 - “anumber” can be accessible in any code in this file

Create 10 threads:
 - It will return a Rust compilation error
 - Rust prevents us from directly modifying static mut
 - Rust prohibits us from even just accessing it

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 45

use std::thread;

static mut anumber: i32 = 10;

fn main() {
 let mut threads = vec![];

 for tidx in 0..10 {
 threads.push(thread::spawn(move || {
 unsafe {
 anumber += 1;
 println!("Thread {}: anumber is {}", tidx, anumber);
 }
 }));
 }

 for thread in threads {
 let _ = thread.join();
 }

 unsafe {
 println!("The final anumber is {}", anumber);
 }
}

Static (mutable) variable:
 - We want “anumber” can be modified in any code

Create 10 threads:
 - Use “unsafe” keyword if we modify “anumber”
 - “unsafe” means we understand the consequences
 - Now each thread will increase “anumber” by 10

Print out the static mutable:
 - Use “unsafe” even for just printing out

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 46

use std::thread;

static mut anumber: i32 = 10;

fn main() {
 let mut threads = vec![];

 for tidx in 0..10 {
 threads.push(thread::spawn(move || {
 unsafe {
 anumber += 1;
 println!("Thread {}: anumber is {}", tidx, anumber);
 }
 }));
 }

 for thread in threads {
 let _ = thread.join();
 }

 unsafe {
 println!("The final anumber is {}", anumber);
 }
}

Static (mutable) variable:
 - We want “anumber” can be modified in any code

Create 10 threads:
 - Use “unsafe” keyword if we modify “anumber”
 - “unsafe” means we understand the consequences
 - Now each thread will increase “anumber” by 10

Print out the static mutable:
 - Use “unsafe” even for just printing out

Results:
 $./main
 Thread 0: anumber is 20
 Thread 2: anumber is 30
 Thread 3: anumber is 40
 Thread 4: anumber is 50
 Thread 5: anumber is 60
 Thread 7: anumber is 70
 Thread 1: anumber is 80
 Thread 6: anumber is 90
 Thread 8: anumber is 100
 Thread 9: anumber is 110
 The final anumber is 110

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 47

fn main() {
 let s: &str = "123";
 let ptr: *const u8 = s.as_ptr();

 println!("{}", *ptr.offset(1) as char);
 println!("{}", *ptr.offset(2) as char);
}

A variable:
 - “s” contains the address of the string “123”

A (pointer) variable:
 - “ptr” is the pointer for the string “123”
 - “ptr” is “constant” and the type of “u8”

Dereference the pointer values:
 - “ptr.offset(#)” is the same as *(ptr + 1) in C
 - “as char” converts the output of “ptr.offset” as char
 - It causes a compilation error (Rust prevents this)

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 48

fn main() {
 let s: &str = "123";
 let ptr: *const u8 = s.as_ptr();

 unsafe {
 println!("{}", *ptr.offset(1) as char);
 println!("{}", *ptr.offset(2) as char);
 }
}

A variable:
 - “s” contains the address of the string “123”

A (pointer) variable:
 - “ptr” is the pointer for the string “123”
 - “ptr” is “constant” and the type of “u8”

Dereference the pointer values:
 - “ptr.offset(#)” is the same as *(ptr + 1) in C
 - “as char” converts the output of “ptr.offset” as char
 - It causes a compilation error (Rust prevents this)

Results:
 $./main
 2
 3

What Does It Mean by “Understanding the Consequences”?

Access the pointer values:
 - Use “unsafe” to do the pointer arithmetic
 - “unsafe” means we understand the consequences

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 49

fn main() {
 let s: &str = "123";
 let ptr: *const u8 = s.as_ptr();

 unsafe {
 println!("{}", *ptr.offset(1) as char);
 println!("{}", *ptr.offset(2) as char);
 println!("{}", *ptr.offset(3));
 }
}

Access the out-of-bound values:
 - “*ptr.offset(3)” accesses the 4th character [?!]

Results:
 $./main
 2
 3
 10

UNSAFE CODE IN RUST

• What can be “unsafe” in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 50

extern "C" {
 fn abs(input: i32) -> i32;
}

fn main() {
 println!("Absolute value of -3 according to C: {}", abs(-3));
}

An external function:
 - The function “abs” is defined in C (not in Rust)

Use of the external function:
 - A compilation error (cannot call “abs” directly)
 - Not sure whether the abs implementation is safe

UNSAFE CODE IN RUST

• Allow “unsafe” code in Rust:
− Mutate a static mutable variable

− Dereference a raw pointer

− Call external functions (not defined with Rust)

Secure AI Systems Lab :: CS 344 - Operating Systems I 51

extern "C" {
 fn abs(input: i32) -> i32;
}

fn main() {
 unsafe {
 println!("Absolute value of -3 according to C: {}", abs(-3));
 }
}

An external function:
 - The function “abs” is defined in C (not in Rust)

Use of the external function:
 - A compilation error (cannot call “abs” directly)
 - Not sure whether the abs implementation is safe

Use of the external function:
 - Use “unsafe” to call the “abs” function

Results:
 $./main
 Absolute value of -3 according to C: 3

RUST ADVANTAGES

• Rust addresses these problems:
− Runtime check and performance

• Rust does not require to use GC

• Rust users (who write the code) consider memory allocations

• Rust performs compilation time checks

− Memory safety (no explicit allocation/de-allocation)

• Memory allocations are handled by “ownerships” and “borrowing”

• Only one “owner” exists at a time; “ownership” transfers if we pass the variable to fn

• “borrowing” allows to access data without “own”ing it

− No data-race condition

• Shared data have two types: “read-only” and “mutable”

• “read-only” data can only be read by others (e.g., threads that access it)

• “mutable” data can only be read after the lock()

Secure AI Systems Lab :: CS 344 - Operating Systems I 52

Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part II: Memory safety – more
	Slide 2: Attention required
	Slide 3
	Slide 4: Buffer overflow – an example
	Slide 5: Buffer overflow – an example
	Slide 6: Buffer overflow – an example
	Slide 7: Buffer overflow – an example
	Slide 8: Buffer overflow – an example
	Slide 9: Buffer overflow – an example
	Slide 10: StackGuard
	Slide 11: StackGuard – cont’d
	Slide 12: StackGuard – cont’d
	Slide 13: StackGuard – cont’d
	Slide 14: Address sanitizer (asan)
	Slide 15: Address sanitizer (asan) – cont’d
	Slide 16: Address sanitizer (asan) – cont’d
	Slide 17: Address sanitizer (asan) – cont’d
	Slide 18: Address sanitizer (asan) – cont’d
	Slide 19
	Slide 20: A trade off between control and safety
	Slide 21: A trade off between control and safety – cont’d
	Slide 22: A trade off between control and safety – cont’d
	Slide 23: Rust!
	Slide 24: Rust example: hello world
	Slide 25: Rust type: we can explicitly/implicitly set a variable type
	Slide 26: Rust type: fixed variables and mutable variables
	Slide 27: Rust type: fixed variables and mutable variables – cont’d
	Slide 28: Rust type: variable shadowing
	Slide 29: Rust example: array, indexing, for-loop, and if statements
	Slide 30: Rust example: array, indexing, for-loop, and if statements
	Slide 31: Rust example: function
	Slide 32: Rust core concepts
	Slide 33: Rust ownership
	Slide 34: Rust ownership
	Slide 35: Rust borrowing
	Slide 36: Rust borrowing
	Slide 37: Rust concurrency
	Slide 38: Rust concurrency
	Slide 39: Rust concurrency
	Slide 40: Rust concurrency
	Slide 41: Unsafe code in rust
	Slide 42: Unsafe code in rust
	Slide 43: Unsafe code in rust
	Slide 44: Unsafe code in rust
	Slide 45: Unsafe code in rust
	Slide 46: Unsafe code in rust
	Slide 47: Unsafe code in rust
	Slide 48: Unsafe code in rust
	Slide 49: Unsafe code in rust
	Slide 50: Unsafe code in rust
	Slide 51: Unsafe code in rust
	Slide 52: Rust advantages
	Slide 53

