CS 578: Cyber-security Part III: Rowhammer

Sanghyun Hong

sanghyun.hong@oregonstate.edu

ANNOUNCEMENT

• Do not cheat – will be handled by the university

ANNOUNCEMENT

- HW3 was out
- Checkpoint II presentations will be on 5/21
 - 8-10 min presentation + 3 min Q&A
 - Presentation MUST cover:
 - 1 slide on your research topic
 - 1 slides on your research goal(s)
 - 1-2 slides on your hypothesis and evaluation design
 - 1-2 slides on your preliminary results [very important]
 - 1 slide on your next steps until the final presentation

HOW CAN WE BREAK THE ISOLATION?

WHAT CAN WE DO WITH THE ROWHAMMER VULNERABILITY?

1990: Optimal Brain Damage¹ – Graceful Degradations

: we can remove 60% of model parameters, without the accuracy drop

¹LeCun et al., *Optimal Brain Damage*, NIPs'90

GRACEFUL DEGRADATION

- Techniques that rely on the graceful degradation
 - **Pruning**¹ : to reduce the inference cost
 - **Quantization**² : to compress the network size
 - Adding noise³ : to improve the robustness against adv. examples

- Techniques that rely on the graceful degradation
 - **Pruning**¹ : to reduce the inference cost
 - **Quantization**² : to compress the network size
 - Adding noise³ : to improve the robustness against adv. examples
- Prior work showed it is difficult to cause the accuracy drop
 - Indiscriminate poisoning⁴: blend poisons ≈ 11% drop (avg.)
 - Storage media errors⁵ : a lot of random bit errors \approx 5% drop (avg.)
 - Hardware fault attacks^{6,7} : a lot of random faults \approx 7% drops (avg.)

⁴Steinhardt et al., Certified Defenses for Data Poisoning Attacks, NeuralPS'17 ⁵Qin et al., Robustness of Neural Networks against Storage Media Errors, Arxiv'17 ⁶Li et al., Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications, SC'17 ⁷Breier et al., DeepLaser: Practical Fault Attack on Deep Neural Networks, Arxiv'18

GRACEFUL DEGRADATION – FALSE SENSE OF SECURITY?

- Techniques that rely on the graceful degradation
 - **Pruning**¹ : to reduce the inference cost
 - **Quantization**² : to compress the network size
 - Adding noise³ : to improve the robustness against adv. examples
- **Prior work** showed it is difficult to *cause the accuracy drop*
 - Indiscriminate poisoning⁴: blend poisons ≈ 11% drop (avg.)
 - Storage media errors⁵ : a lot of random bit errors \approx 5% drop (avg.)
 - Hardware fault attacks^{6,7} : a lot of random faults \approx 7% drops (avg.)

They focus on the best-case or the average-case degradation

⁴Steinhardt et al., Certified Defenses for Data Poisoning Attacks, NeuralPS'17 ⁵Qin et al., Robustness of Neural Networks against Storage Media Errors, Arxiv'17 ⁶Li et al., Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications, SC'17 ⁷Breier et al., DeepLaser: Practical Fault Attack on Deep Neural Networks, Arxiv'18

ILLUSTRATION: HOW DNN COMPUTES

• Accuracy: 99%

THE BEST-CASE: OPTIMAL BRAIN DAMAGE¹

• Accuracy: 99% (0% drop)

¹LeCun et al., *Optimal Brain Damage*, NIPs'90

ILLUSTRATION: DNN'S IN-MEMORY REPRESENTATION

• Accuracy: 99%

THE AVG-CASE: BITWISE ERRORS IN DNN'S IN-MEMORY REPR.

• Accuracy: 94% (5% drop on avg.)

Oregon State University Secure Al Systems

THE AVG-CASE: BITWISE ERRORS IN DNN'S IN-MEMORY REPR.

• Accuracy: 94% (5% drop on avg.)

THE WORST-CASE: A SINGLE BIT-FLIP

• Accuracy: 58% (41% drop)

Methodology

- 1) Flip each bit in all parameters of a DNN model
- 2) Measure the accuracy over the test-set for each flip
- 3) Mark Achilles bits when the bit flips, it causes the acc. drop > 10%

Methodology

- 1) Flip each bit in all parameters of a DNN model
- 2) Measure the accuracy over the test-set for each flip
- 3) Mark Achilles bits when the bit flips, it causes the acc. drop > 10%

Quantifying the vulnerability

- 1) Max. drop : the maximum acc. drop, observed from a model
- 2) Ratio. : % of parameters in a model that contains at least one Achilles bit

MNIST MODELS

Network	Acc.	# Params	Acc. Drop	Ratio
B(ase)	95.71	21,840		
B-Wide	98.46	85,670		
B-PReLU	98.13	21,843		
B-Dropout	96.86	21,840		
B-DP-Norm	97.97	21,962		
L(eNet)5	98.81	61,706		
L5-Dropout	98.72	61,706		
L5-D-Norm	99.05	62,598		

MNIST MODELS

Network	Acc.	# Params	Acc. Drop	Ratio	• Max. drop \geq 98% in all models
B(ase)	95.71	21,840	98 %		
B-Wide	98.46	85,670	99 %		
B-PReLU	98.13	21,843	99 %		
B-Dropout	96.86	21,840	99 %		
B-DP-Norm	97.97	21,962	99 %		
L(eNet)5	98.81	61,706	99 %		
L5-Dropout	98.72	61,706	99 %		
L5-D-Norm	99.05	62,598	98 %		

MNIST MODELS

Network	Acc.	# Params	Acc. Drop	Ratio
B(ase)	95.71	21,840	98 %	50%
B-Wide	98.46	85,670	99 %	50%
B-PReLU	98.13	21,843	99 %	99%
B-Dropout	96.86	21,840	99 %	49%
B-DP-Norm	97.97	21,962	99 %	51%
L(eNet)5	98.81	61,706	99 %	47%
L5-Dropout	98.72	61,706	99 %	45%
L5-D-Norm	99.05	62,598	98 %	49%

• Max. drop \geq **98%** in all models

> 45% of params contain ≥ 1
Achilles bit in all the DNNs

LARGE, COMPLEX DNN MODELS

Dataset	Network	Acc.	# Params	Acc. Drop	Ratio
CIFAR-10	B(ase)	83.74	776K	94 %	46.8%
	B-Slim	82.19	197K	93 %	46.7%
	B-Dropout	81.18	776K	94 %	40.5%
	B-D-Norm	80.17	778K	97 %	45.9%
	AlexNet	83.96	2.5M	96 %	47.3%
	VGG16	91.34	14.7M	99%	46.2%
ImageNet	AlexNet	79.07	61.1M	1 00 %	47.3%
	VGG16	90.38	138.4M	99%	42.1%
	ResNet50	92.86	25.6M	1 00 %	47.8%
	DenseNet161	93.56	28.9M	1 00 %	49.0%
	InceptionV3	88.65	27.2M	100 %	40.8%

• Max. drop \geq **98%** in all models

> 45% of params contain ≥ 1
Achilles bit in all the DNNs

The Vulnerability of DNNs to A Bit-flip Is Prevalent

- Capability
 - Surgical : can control the location of a bit-flip in memory
 - Inaccurate: cannot control the bit-flip location
- Knowledge
 - White-box: knows which parameters are vulnerable
 - Black-box : has no knowledge of a victim model

THREAT MODEL – SINGLE-BIT ADVERSARY

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security

THREAT MODEL – SINGLE-BIT ADVERSARY

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

THREAT MODEL – IF THE ADVERSARY CAN FLIP MULTIPLE BITS?

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRACTICAL HARDWARE ATTACK – ROWHAMMER

Rowhammer attacks

- Single-bit corruption primitives in DRAM-level
- Software-induced hardware fault attack

DRAM (Memory)

DRAM Banks

PRACTICAL HARDWARE ATTACK – ROWHAMMER

- Rowhammer attacks
 - Single-bit corruption primitives in DRAM-level
 - Software-induced hardware fault attack
 - Cross-VM: attacker only requires a co-located VM

DRAM (Memory)

DRAM Banks

EVALUATION

MLaaS scenario

- Victim : runs an off-the-shelf model (VGG16) in a VM
- Attacker : runs Rowhammer attacks against the victim's VM
- **Rowhammer** (Hammertime¹ DB)
 - Explore Rowhammer attacks systematically on 12 different DRAM chips
 - Experiments:
 - 300 experiments: 25 runs × each of 12 DRAM chips
 - **7500** bit-flips : **300** cumulative bit-flips × **300** experiments

¹Tartar et al., Defeating Software Mitigations against Rowhammer: A Surgical Precision Hammer, RAID'18

EVALUATION

- Results
 - The weakest attacker can inflict severe damage to the victim system
 - On average, 62% of the attacks cause the acc. drop > 10%
 - The time it takes to cause the acc. drop is < few minutes
 - Our attack is inconspicuous
 - Only 6 program crashes (0.08%) were observed over 7500 bit-flip attempts

TAKEAWAYS

- DNNs are *not* resilient to worst-case param. perturbations
 - All DNNs have a bit whose flip causes the accuracy drop up to 100%
 - 40-50% of all parameters in a model are vulnerable
- The vulnerability of DNNs to fault attacks is under-studied
 - One can inflict the vulnerability with *weaker attacks*, e.g., blind Rowhammer
 - The attacker can launch this attack in a practical setting, e.g., in the cloud
- We need solutions from both systems and ML
 - Systems: defenses that prevent flipping a specific-bit are not sufficient
 - **ML:** future work is required to build DNNs robust against new attacks

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current

