
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART III: ROWHAMMER

Sanghyun Hong
sanghyun.hong@oregonstate.edu



ANNOUNCEMENT

• Do not cheat – will be handled by the university
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ANNOUNCEMENT

• HW3 was out

• Checkpoint II presentations will be on 5/21
− 8-10 min presentation + 3 min Q&A

− Presentation MUST cover:

• 1 slide on your research topic

• 1 slides on your research goal(s)

• 1-2 slides on your hypothesis and evaluation design

• 1-2 slides on your preliminary results [very important]

• 1 slide on your next steps until the final presentation
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HOW CAN WE BREAK THE ISOLATION?
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WHAT CAN WE DO WITH THE ROWHAMMER VULNERABILITY?
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1990: Optimal Brain Damage1 – Graceful Degradations
: we can remove 60% of model parameters, without the accuracy drop

1LeCun et al., Optimal Brain Damage, NIPs’90
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• Techniques that rely on the graceful degradation
− Pruning1  : to reduce the inference cost

− Quantization2 : to compress the network size

− Adding noise3 : to improve the robustness against adv. examples

GRACEFUL DEGRADATION

1Li et al., Pruning Filters for Efficient ConvNets, ICLR’17
2Wang et al., Training Deep Neural Networks with 8-bit Floating Point Numbers, NeuraIPS’18
3Zhou et al., Breaking Transferability of Adversarial Samples with Randomness, ArXiv’18
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• Techniques that rely on the graceful degradation
− Pruning1  : to reduce the inference cost

− Quantization2 : to compress the network size

− Adding noise3 : to improve the robustness against adv. examples
 

• Prior work showed it is difficult to cause the accuracy drop
− Indiscriminate poisoning4: blend poisons ≈ 11% drop (avg.)

− Storage media errors5  : a lot of random bit errors ≈ 5% drop (avg.)

− Hardware fault attacks6,7  : a lot of random faults  ≈ 7% drops (avg.)

GRACEFUL DEGRADATION

4Steinhardt et al., Certified Defenses for Data Poisoning Attacks, NeuraIPS’17
5Qin et al., Robustness of Neural Networks against Storage Media Errors, Arxiv’17
6Li et al., Understanding Error Propagation in  Deep Learning Neural Network (DNN) Accelerators and Applications , SC’17
7Breier et al., DeepLaser: Practical Fault Attack on Deep Neural Networks, Arxiv’18
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• Techniques that rely on the graceful degradation
− Pruning1  : to reduce the inference cost

− Quantization2 : to compress the network size

− Adding noise3 : to improve the robustness against adv. examples
 

• Prior work showed it is difficult to cause the accuracy drop
− Indiscriminate poisoning4: blend poisons ≈ 11% drop (avg.)

− Storage media errors5  : a lot of random bit errors ≈ 5% drop (avg.)

− Hardware fault attacks6,7  : a lot of random faults  ≈ 7% drops (avg.)

GRACEFUL DEGRADATION – FALSE SENSE OF SECURITY?

4Steinhardt et al., Certified Defenses for Data Poisoning Attacks, NeuraIPS’17
5Qin et al., Robustness of Neural Networks against Storage Media Errors, Arxiv’17
6Li et al., Understanding Error Propagation in  Deep Learning Neural Network (DNN) Accelerators and Applications , SC’17
7Breier et al., DeepLaser: Practical Fault Attack on Deep Neural Networks, Arxiv’18

They focus on the best-case or the average-case degradation

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 9



ILLUSTRATION: HOW DNN COMPUTES

• Accuracy: 99%

1 2 0

Convolutional Convolutional Fully-connected Fully-connected
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Convolutional Convolutional Fully-connected Fully-connected

THE BEST-CASE: OPTIMAL BRAIN DAMAGE1

• Accuracy: 99% (0% drop)

1 2 0

Remove unimportant parameters

1LeCun et al., Optimal Brain Damage, NIPs’90
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Convolutional Convolutional Fully-connected Fully-connected

ILLUSTRATION: DNN’S IN-MEMORY REPRESENTATION

• Accuracy: 99%

Memory (DRAM)

Weight | Bias Weight  | Bias Weight   | Bias Weight | Bias

1 2 0

Data
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Convolutional Convolutional Fully-connected Fully-connected

THE AVG-CASE: BITWISE ERRORS IN DNN’S IN-MEMORY REPR.

• Accuracy:

1 2 0

Memory (RAM)

94% (5% drop on avg.) 

Weight | Bias
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Convolutional Convolutional Fully-connected Fully-connected

THE AVG-CASE: BITWISE ERRORS IN DNN’S IN-MEMORY REPR.

• Accuracy:

1 2 0

Memory (RAM)0.35: 1.4 x 2−2 : 0 | 0111 1101 | 011 0011 0110 1111 1101 0001

Sign Exponent Mantissa

0.48: 1.9 x 2−2 : 0 | 0011 1001 | 111 0011 0110 1111 1101 0001

94% (5% drop on avg.) 

Weight   Bias
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Convolutional Convolutional Fully-connected Fully-connected

• Accuracy:

1 2 0

Memory (RAM)

THE WORST-CASE: A SINGLE BIT-FLIP

Weight   Bias

0.35: 1.4 x 2−2 : 0 | 0111 1101 | 011 0011 0110 1111 1101 0001

Sign Exponent Mantissa

1.2E+38: 1.4 x 2−𝟏𝟐𝟔 : 0 | 1011 1001 | 111 0011 0110 1111 1101 0001

58% (41% drop) 
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• Methodology
1) Flip each bit in all parameters of a DNN model

2) Measure the accuracy over the test-set for each flip

3) Mark Achilles bits – when the bit flips, it causes the acc. drop > 10%

HOW VULNERABLE ARE DNNS TO A SINGLE BIT-FLIP?
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• Methodology
1) Flip each bit in all parameters of a DNN model

2) Measure the accuracy over the test-set for each flip

3) Mark Achilles bits – when the bit flips, it causes the acc. drop > 10%

• Quantifying the vulnerability
1) Max. drop : the maximum acc. drop, observed from a model

2) Ratio.         : % of parameters in a model that contains at least one Achilles bit

HOW VULNERABLE ARE DNNS TO A SINGLE BIT-FLIP?
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MNIST MODELS

Network Acc. # Params Acc. Drop Ratio

B(ase) 95.71 21,840

B-Wide 98.46 85,670

B-PReLU 98.13 21,843

B-Dropout 96.86 21,840

B-DP-Norm 97.97 21,962

L(eNet)5 98.81 61,706

L5-Dropout 98.72 61,706

L5-D-Norm 99.05 62,598
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MNIST MODELS

Network Acc. # Params Acc. Drop Ratio

B(ase) 95.71 21,840 98 %

B-Wide 98.46 85,670 99 %

B-PReLU 98.13 21,843 99 %

B-Dropout 96.86 21,840 99 %

B-DP-Norm 97.97 21,962 99 %

L(eNet)5 98.81 61,706 99 %

L5-Dropout 98.72 61,706 99 %

L5-D-Norm 99.05 62,598 98 %

• Max. drop ≥ 98% in all models
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MNIST MODELS

Network Acc. # Params Acc. Drop Ratio

B(ase) 95.71 21,840 98 % 50%

B-Wide 98.46 85,670 99 % 50%

B-PReLU 98.13 21,843 99 % 99%

B-Dropout 96.86 21,840 99 % 49%

B-DP-Norm 97.97 21,962 99 % 51%

L(eNet)5 98.81 61,706 99 % 47%

L5-Dropout 98.72 61,706 99 % 45%

L5-D-Norm 99.05 62,598 98 % 49%

• Max. drop ≥ 98% in all models

• > 45% of params contain ≥ 1 
Achilles bit in all the DNNs
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LARGE, COMPLEX DNN MODELS

Dataset Network Acc. # Params Acc. Drop Ratio
C

IF
A

R
-1

0

B(ase) 83.74 776K 94 % 46.8%

B-Slim 82.19 197K 93 % 46.7%

B-Dropout 81.18 776K 94 % 40.5%

B-D-Norm 80.17 778K 97 % 45.9%

AlexNet 83.96 2.5M 96 % 47.3%

VGG16 91.34 14.7M 99 % 46.2%

Im
ag

eN
et

AlexNet 79.07 61.1M 100 % 47.3%

VGG16 90.38 138.4M 99 % 42.1%

ResNet50 92.86 25.6M 100 % 47.8%

DenseNet161 93.56 28.9M 100 % 49.0%

InceptionV3 88.65 27.2M 100 % 40.8%

• Max. drop ≥ 98% in all models

• > 45% of params contain ≥ 1 
Achilles bit in all the DNNs

The Vulnerability of DNNs to A Bit-flip Is Prevalent
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• Capability
− Surgical   : can control the location of a bit-flip in memory

− Inaccurate: cannot control the bit-flip location

• Knowledge
− White-box: knows which parameters are vulnerable

− Black-box  : has no knowledge of a victim model

THREAT MODEL – BIT-FLIP ATTACKER
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THREAT MODEL – SINGLE-BIT ADVERSARY

White-boxBlack-box

Inaccurate

Surgical
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THREAT MODEL – SINGLE-BIT ADVERSARY

White-boxBlack-box

Inaccurate

Surgical

Strongest attacker

𝑷(𝒉𝒊𝒕 𝒂𝒏 𝑨𝒄𝒉𝒊𝒍𝒍𝒆𝒔 𝒃𝒊𝒕) ≈ 100%

Weakest attacker

𝑷 𝒉𝒊𝒕 𝒂𝒏 𝑨𝒄𝒉𝒊𝒍𝒍𝒆𝒔 𝒃𝒊𝒕  ≈ 𝛆
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Weakest Stronger attacker

𝑷 𝒉𝒊𝒕 𝒂𝒏 𝑨𝒄𝒉𝒊𝒍𝒍𝒆𝒔 𝒃𝒊𝒕  >> 𝛆

THREAT MODEL – IF THE ADVERSARY CAN FLIP MULTIPLE BITS?

White-boxBlack-box

Inaccurate

Surgical

𝑷 𝒉𝒊𝒕 𝒂𝒏 𝑨𝒄𝒉𝒊𝒍𝒍𝒆𝒔 𝒃𝒊𝒕  ≈ 𝛆

Weakest attacker
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• Rowhammer attacks
− Single-bit corruption primitives in DRAM-level

− Software-induced hardware fault attack

PRACTICAL HARDWARE ATTACK – ROWHAMMER 

DRAM (Memory)

Row Buffer Row Buffer Row Buffer

DRAM Banks

64-bit data

Row Buffer

Data in the victim’s memory

Row Buffer

Row Buffer

Row Buffer

0      0 1      0      1
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• Rowhammer attacks
− Single-bit corruption primitives in DRAM-level

− Software-induced hardware fault attack

− Cross-VM: attacker only requires a co-located VM

PRACTICAL HARDWARE ATTACK – ROWHAMMER 

DRAM (Memory)

Row Buffer Row Buffer Row Buffer

DRAM Banks

64-bit data

Row Buffer

Row Buffer

Data in the victim’s memory

Row Buffer

Row Buffer

Row Buffer

0      0 1      0      1
1      0 1      1      0

0      1 0      0      0

Row Buffer

Data accessed by an attacker

Row Buffer

1      0 0      0      1
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• MLaaS scenario
− Victim : runs an off-the-shelf model (VGG16) in a VM

− Attacker : runs Rowhammer attacks against the victim’s VM

• Rowhammer (Hammertime1 DB)

− Explore Rowhammer attacks systematically on 12 different DRAM chips

− Experiments:

• 300 experiments: 25 runs × each of 12 DRAM chips

• 7500 bit-flips       : 300 cumulative bit-flips × 300 experiments

EVALUATION

1Tartar et al., Defeating Software Mitigations against Rowhammer: A Surgical Precision Hammer, RAID’18
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• Results
− The weakest attacker can inflict severe damage to the victim system

• On average, 62% of the attacks cause the acc. drop > 10%

• The time it takes to cause the acc. drop is < few minutes

− Our attack is inconspicuous

• Only 6 program crashes (0.08%) were observed over 7500 bit-flip attempts

EVALUATION
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TAKEAWAYS

• DNNs are not resilient to worst-case param. perturbations
− All DNNs have a bit whose flip causes the accuracy drop up to 100%

− 40-50% of all parameters in a model are vulnerable

• The vulnerability of DNNs to fault attacks is under-studied
− One can inflict the vulnerability with weaker attacks, e.g., blind Rowhammer

− The attacker can launch this attack in a practical setting, e.g., in the cloud

• We need solutions from both systems and ML
− Systems: defenses that prevent flipping a specific-bit are not sufficient

− ML: future work is required to build DNNs robust against new attacks 
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Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current
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